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Ramp vicinities are arguably the known black-spots on urban expressways. There, while maintaining high
speed, drivers need to respond to several complex events such as maneuvering, reading road signs, route
planning and maintaining safe distance from other maneuvering vehicles simultaneously which demand
higher level of cognitive response to ensure safety. Therefore, any additional discomfort caused by traffic dynam-
ics may induce driving error resulting in a crash. This manuscript presents a methodology for identifying these
dynamically forming hazardous traffic conditions near the ramp vicinities with high resolution real-time traffic
flow data. It separates the ramp vicinities into four zones – upstream and downstream of entrance and exit
ramps, and builds four separate real-time crash predictionmodels. Around two year (December 2007 to October
2009) crash data as well as their matching traffic sensor data from Shibuya 3 and Shinjuku 4 expressways under
the jurisdiction of Tokyo Metropolitan Expressway Company Limited have been utilized for this research.
Random multinomial logit, a forest of multinomial logit models, has been used to identify the most important
variables. Finally, a real-time modeling method, Bayesian belief net (BBN), has been employed to build the
fourmodels using ramp flow, flow and congestion index in the upstream and flow and speed in the downstream
of the ramp location as variables. The newly proposedmodels could predict 50%, 42%, 43% and 55% of the future
crashes with around 10% false alarm for the downstream of entrance, downstream of exit, upstream of entrance
and upstream of exit ramps respectively. Themodels can be utilized in combination with various traffic smooth-
ing measures such as ramp metering, variable speed limit, warning messages through variable message signs,
etc. to enhance safety near the ramp vicinities.

© 2013 International Association of Traffic and Safety Sciences. Production and hosting by Elsevier Ltd.
All rights reserved.
1. Introduction

Ramp vicinities are arguably the most crash prone locations on
urban expressways. There, the drivers need to maintain high speed
and yet respond to several complex events, such as, maneuvering,
taking decisions regarding routes, reading road signs and not to men-
tion, maintaining safe distance from othermaneuvering vehicles simul-
taneously. Hence, any additional disruption in the traffic condition may
force driving error which can eventually lead to a crash. If the formation
of a disrupted traffic condition can be spotted early, road authorities can
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take proactive measures by warning the drivers as well as applying
various traffic smoothing methods such as variable speed limits,
rampmetering, main line metering, etc. to bring the traffic condition
back to normal. Recently, a small group of researchers, mainly from
North America, are actively pursuing studies with loop detector
data to reveal the interrelationship between crash and traffic flow
variables [1,19,20,23–25,27]. They have emphasized that certain
traffic conditions can be associated with high crash likelihood. Oh et
al. [25] implied causal relationship between crash likelihood and 5 min-
ute standard deviation of speed and average occupancy. Abdel-Aty et al.
[3] ascertained that traffic leading to crash differs between high speed
and low speed scenarios. At high speed, quick formation and subse-
quent dissipation of queues cause a backward shock wave and in case
of low speed scenario, the impact between a congested downstream
and a fast paced upstream impends driving errors. Dias et al. [11] dis-
covered positive correlation between level of congestion and crash
occurrence. Zheng et al. [32] underscored that recurring patterns of
decelerations followed by acceleration increases crash risk. The findings
have also stimulated idea of building models that can eventually fore-
cast the crash potential for a short time window in near future taking
the real-time loop detector data as input [4,5,12,13,15,16,24,25]. As
ces. Production and hosting by Elsevier Ltd. All rights reserved.
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the researchfield is in its infancy, the existingmodels are yet theoretical
and have several major drawbacks. Considering crash phenomena as
generic throughout the road section is one of the major drawbacks of
the previous studies. Pande and Abdel-Aty [28] affirmed that presence
of ramp in the downstream has impact on crash but did not shed light
on the types of ramps and their relative vicinity. Jovanis and Chang
[18] implied that traffic conditions vary substantially between the
basic freeway segments and the ramp areas. General observation may
verify that traffic conditions even vary among different types of ramps
and their locations. For example, a high proportion of merging traffic
can be observed at the downstream of an entrance ramp whereas
diverging traffic is quite predominant near the upstream of an exit
ramp. On the contrary, maneuvering frequency is comparatively lower
in the basic freeway segments than the ramp vicinities. Therefore, it
may not be suitable to use a universal model for both the basic freeway
segments and the ramp areas. Thismay be onemajor reason behind the
low detection and high false alarm rate of the existing models. Hossain
andMuromachi [13] have dealt with this issue and developed real-time
crash prediction models solely for the basic freeway segments and
obtained a high detection rates for future crashes with low false alarm.
Also, in a later study, Hossain and Muromachi have demonstrated that
underlying phenomena behind crash is substantially different among
basic freeway segments as well as different ramp vicinities. Likewise,
building separate real-time crash prediction models for the ramp vicin-
ities have another advantage. The existing models were developed as-
suming that they will be implemented throughout the length of the
expressway rather than on specific areas of interest. Nevertheless, this
may often deter the expressway authorities as it involves huge initial
investments as well as regular maintenance cost. On the contrary,
ramp vicinities, which are widely regarded as black-spots, cover only a
fraction of the total length of the expressway and it is cost effective for
authorities interested in real-time monitoring of hazardous location to
implement the models first in these locations.

This study separates the ramp vicinities into four zones— upstream
and downstream of the entrance and exit ramps; and develops four dif-
ferent real-time crash prediction models. As per the knowledge of the
authors, thismay be the first attempt to build real-time crash prediction
models specifically for the ramp vicinities. The manuscript is organized
into fivemajor sections. The introductory section has stated themotiva-
tion of the study, its theoretical background and its objectives. Section 2
describes the activities involving experimental design, data extraction
and processing. The third section provides a concise yet adequate intro-
duction to Bayesian belief net (BBN), the real-time modeling method
employed in the study. It also briefly explains random multinomial
logit (RMNL) model which has been applied for variable selection.
The subsequent section discusses the model building process as
well as their performance evaluation. The concluding section summa-
rizes the noble findings,mentions the limitations and lays out the future
directions.

2. Study area and the data

2.1. Study area

A research of this nature demands large sample size as well as a
detector layout that is to some extent uniform. The Shibuya 3 and
Shinjuku 4 are arguably the two busiest urban expressways in Japan
and every year they sustain a substantial number of crashes. Moreover,
they have a relatively uniform (approximately 250 m center to center)
detector spacing which makes them highly suitable for this research.
The Shibuya 3 and Shinjuku 4 routes have two lanes in each direction
and are respectively 11.9 and 13.5 km long. The expressways all together
harbor 14 entrance and 15 exit ramps and 210 detectors. A detailedmap
has also been provided by the TokyoMetropolitan Expressway Company
Limited to identify the location of ramps (see Fig. 1). They have also
provided access to a separate dataset containing the location of detectors
in nearest 10 m to facilitate the research. The detectors installed in the
expressways yield data of speed, vehicle count, occupancy and number
of heavy vehicles for each 8 ms round the clock (24 h a day, 365 days
a year) for each lane. However, the Tokyo Metropolitan Expressway
Company Limited later archives the data by aggregating for all lanes for
every 5 min. Hence, the supplied dataset contains 5 minute vehicle
count, 5 minute vehicle count for heavy vehicles only, 5 minute average
speed as well as occupancy for each detector location. The crash data
contain information on date, time, location (in nearest 10 m), route
number, direction (in-bound or out-bound), lane, and number of vehi-
cles involved along with their types and type of crash. The data have
been collected in two phases spanning over two different time frames.
The first dataset contains both crash and detector data from December
2007 to March 2008 for Shibuya 3 route and from December 2007 to
October 2008 for Shinjuku 4 route (Phase I). The second phase data col-
lection encompassed data fromMay 2008 to October 2009 for Shibuya 3
route and November 2008 to October 2009 for Shinjuku 4 route. Thus,
the final dataset contains 22 and 23 month detectors as well as crash
data for these routes respectively. Another crucial point in the study is
the accuracy of the reported time of crash as real-time crash prediction
models are supposed to identify hazard risk for a very short timewindow
and error in reported crash time in data will make the newly built
models highly erroneous. In an interview the authority responsible for
identifying the time of crash has confirmed that the reported crash
time canbe considered to bewithin aminute of its occurrence for various
reasons. These two expressways are located in the heart of Tokyo, one of
the busiest mega cities in the world and serve substantial number of
traffic even during night time on the weekends. A portion of the routes
are under constant camera surveillance. Safety cars are in operation
round the clock on these routes. Moreover, as they have only two
lanes in each direction, any incident on road creates high impact and
gets detected very quickly. Interestingly, the crash type recorded in
the crash database included — rear end, side swipe, hitting road furni-
ture, tipping over alongwith some other typeswhichmaynot be directly
related to crash. They include vehicles catching fire, hitting objects acci-
dentally fallen fromother vehicles or objects falling fromvehicles but not
hitting any other vehicle, etc. As these incidents are not directly related
to crash which might have taken place due to hazardous traffic condi-
tions, they were excluded from the crash samples under consideration.
The final crash dataset contains 3018 crash cases (1141 for Phase I and
1877 for Phase II).

2.2. Experimental design

Preliminary analysis on the crash dataset suggests that approxi-
mately 55% of the crashes took place within 375 m from the ramp
vicinities and crash concentration reduces beyond 375 m from the
ramp locations. As mentioned earlier, this manuscript develops crash
prediction models for the upstream and downstream of entrance and
exit ramps separately. Therefore, these four models are built with
crashes that had occurred within 375 m upstream and downstream of
entrance and exit ramps. The underlying concept of the model is to
treat the possibility of a crash occurrence as a classification problem,
associate a dataset with hazardous traffic condition and identify its cor-
responding normal traffic condition data, build a classification based
model with them and calculate the probability of a future traffic condi-
tion data belonging to any of these two traffic conditions. Hence, it is
important to define hazardous and normal traffic conditions. Oh et al.
[23] selected a 5 minute time period ending at the time of crash as
hazardous traffic condition. They retrieved the corresponding normal
traffic condition by taking another 5 minute time period ending 30 min
before the reported crash time. Zheng et al. [32] seconded the approach
but considered a larger interval (10 min). Abdel-Aty et al. [6] argued
that the objective of a real-time crash prediction model is to identify
the evolving risk of a crash so that countermeasures can be taken to
pacify the traffic. They emphasized that themodel must allow adequate



Fig. 1. The study area.
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time for an intervention to demonstrate positive results. Hence, they
also recommended a 5 minute time period but that ends 10 min before
the reported time of crash as the hazardous traffic condition. [27] inves-
tigated both a 3 minute and a 5 minute aggregation and concluded that
the later produces better result for crash prediction. For normal traffic
conditions, apart from the definition of Oh et al. [23–25], Abdel-Aty
et al. [6] defined it as a 5 minute time period occurring at the same
time and same day of the week within the dataset but the crash date.
Hossain and Muromachi [15] further refined the definition by ex-
cluding those data when a crash had occurred within 1 h from the
normal traffic condition data. This study follows the definition by
Hossain and Muromach [15] for extracting data of normal traffic condi-
tion. To elaborate more, assume that a crash took place on the in-bound
direction of Shinjuku 4 route at 8:15 amon 16 October, 2008 (Thursday).
a

Fig. 2. Selected positions of det
Hence, the hazardous traffic condition for this crash data will be a time
period between 8:05 am and 8:10 am on that day. Its corresponding
normal traffic condition should be the traffic flow data from 8:05 am to
8:10 am for all the Thursdays in the dataset. To refine the data further,
if any crash had occurred within 1 h from any of the data points of
the normal traffic condition then those data points will be discarded to
ensure purity of the normal traffic condition data. The last stage of the
data extraction process involves selecting the detector combination
from which the hazardous and normal traffic condition data will be
extracted. Fig. 2 demonstrates the chosen detector locations for data ex-
traction for all four conditions— upstream and downstream of entrance
and exit ramps. Hence, for each condition, data have been extracted from
the detector on the ramp (d2) as well as from one detector each in the
downstream (Location 1: detector d1) and upstream (Location 2:
b

ectors for data extraction.



Table 2
Sample size for model building and evaluation.

Location Model Evaluation

Hazardous Normal Hazardous Normal

Downstream — entrance 143 6182 22 978
Downstream — exit 102 5148 19 793
Upstream — entrance 136 5534 21 916
Upstream — exit 147 7006 29 1318
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detector d3) with respect to the ramp location. The detectors d1 and d3
are selected in such way that they are placed at least 300 m away from
the ramp location creating a minimum gap of 600 m between them.
However, there are some locations where two ramps are very closely
spaced disallowing a 300 m gapwithout overlapping with the adjacent
ramp. In those cases, one detector in between the two ramps has been
chosen as d1 or d3 (depending on the location) and the other detector
on the mainstream has been chosen in such a way that it is at least
500 m away from that already selected detector.

Now, as mentioned earlier, the detectors in location d1 and d3 yield
data on 5 minute cumulative vehicle count, 5 minute cumulative heavy
vehicle count, 5 minute average speed and occupancy. However, the
detector on ramp, i.e., d2 only yields data on 5 minute aggregated vehi-
cle count. These information are stored in variables: d1q, d1p, d1v, d1o,
d3q, d3p, d3v, d3o and d2qwhere the seconddigit represents the detec-
tor number and the third digit represents the variable, i.e., ‘q’ forflow, ‘p’
for heavy vehicle flow, ‘v’ for speed and ‘o’ for occupancy. These are the
most common variables that can be found in the previous studies as
well and most of the modern detectors can yield data for these vari-
ables. Zheng et al. [32] have demonstrated that crash risk is directly re-
lated to oscillating (stop and go) traffic and measured its impact.
Previously, Dias et al. [11] had introduced congestion index, a measure
that standardizes the level of congestion (CI), as a new variable and
demonstrated decent results in finding their interrelationship with
crash. They calculated CI at each detector location as:

Congestion Index CIð Þ ¼ Free Flow Speed−Speedð Þ=Free Flow Speed;
when CI > 0 ¼ 0;when CIb ¼ 0: ð1Þ

This study also includes CI at location d1 and d3 as new variables
calculated based on Eq. (1) and represents them as d1i and d3i. The
free flow speed at each detector location has been calculated from
the speed-flow and speed-occupancy plots. Apart from these, the
study also considers the longitudinal variation of the traffic flow vari-
ables between detectors 1 and 3 and they are represented as: d13q,
d13p, d13v, d13o and d13i. Hence, every data point associated with a
hazardous or normal traffic condition is represented with 16 variables
(2 × 5 = 10 variables directly from d1 and d3, 1 from d2 and 5 more
representing the longitudinal differences).

The initial dataset contains 680 (89 on Shibuya 3 and 591 on
Shinjuku 4) and 970 (411 on Shibuya 3 and 559 on Shinjuku 4) crash
samples for Phases I and II respectively for the ramp vicinities. Table 1
presents the distribution of crash types associated with the four ramp
vicinities. However, after retrieving the corresponding detector data
for all the crash samples, only 619 cases from both the phases had com-
plete information of all the 16 variables. Of these, the last two months'
crash data have been kept for evaluating the performance of themodels
and the rest of the datawill be used to train themodels. Table 2 presents
the details regarding the sample size for the datasets for modeling and
evaluation.

3. Methodology

The study on real-time crash prediction deals with a classifica-
tion problem of a scenario with dichotomous outcome. It also has
Table 1
Distribution of crash types near ramp vicinities.

Crash type Location

Downstream
entrance (%)

Downstream
exit (%)

Upstream
entrance (%)

Upstream
exit (%)

Rear-end 44.91 55.46 31.73 51.09
Side-swipe 31.02 26.05 36.06 38.69
Road furnitures 23.61 16.81 32.21 8.76
Tip over 0.46 1.68 0 1.46
some of its own problem specific requirements. As it can be ob-
served from the previous section, the study deals with a problem hav-
ing a small sample size for one of the two outcomes but employs a large
variable space to make predictions. The predictors are highly correlated
in nature as well. Moreover, a real-time crash prediction model is sup-
posed to assess the risk of a traffic condition within a very short time
window and thus, it is better for it to have a small variable space. For
this, a mechanism is needed to identify and rank the most important
variables. The study employs random multinomial logit (RMNL), a re-
cently introduced method that combines the benefits of random forest
(RF) [9] and multinomial logit (MNL) models, for variable selection.
For the modeling purpose, the research faces some major challenges.
The model uses detector data corresponding to crash as the input
data. It is always difficult to have a large sample size in most of the re-
search areas concerning road crashes. Crash is a highly diverse and com-
plexphenomenon anddepends on a series of variables.Moreover,when
new data are available, it may not contain information regarding all the
variables present in the model. Hence, the method used for real-time
crash prediction is expected to be flexible enough to update itself in
course of timewith partially available new data, accommodate correlated
variables, as well as incorporate new variables easily into the existing
model when data are available in future. Considering these, Bayesian be-
lief net (BBN) has been chosen in this study as the method for real-time
crash predictionmodel building. This itself is a real-timemodeling meth-
odwhich also ensures shorter calculation time under real-time operation.
The following sections provide a brief but self containing introduction to
RMNL and BBN.
3.1. Random multinomial logit (RMNL)

The approaches followed by most of the notable previous studies for
selecting the variables for modeling can be classified into three groups:
engineering judgment, logistic regression and random forest. Among
these, logistic regression has so far been the most widely used
[2,3,27,28]. It has a robust theoretical background and the method is
well known in a wide variety of research fields. However, logistic regres-
sion can be vulnerable in handling a large variable space with too many
highly correlated variables. Abdel-Aty et al. [6] addressed this issue by ap-
plying random forestwhich uses the boosting [30] and bagging [8]meth-
od of ensemble learning coupled with random variable selection to
overcome the problems associatedwithmulti-collinearity. Random for-
est also has an in-built mechanism to associate numerical value to the
relative importance of the variables in the model. However, according
to Strobl et al. [31], although the method is considered stable, unbiased
and capable of handling large variable space with small sample size, it
can be biased when any or a group of variables have relatively larger
number of classes as compared to the other variables under consider-
ation. Prinzie and Poel [29] addressed the shortcomings of both these
models by introducing the boosting and bagging method as well as
the random variable selection technique of random forest intomultino-
mial logit model and named the new method as random multinomial
logit (RMNL). The basic difference between random forest and RMNL is
in the method used for generating trees. In case of random forest the
trees generated are classification and regression trees (CART) [7]whereas
the trees in RMNL are individualmultinomial logitmodels. The procedure
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of calculating the relative variable importance can be explained in four
steps:

i) Let L be the dataset under consideration with N records, M vari-
ables and B trees. The b-th bootstrap sample Lb is created by ran-
domly selecting n samples (approximately 2/3rd of N) with
replacement from L. Next, the out of bag (OOB) of Lb is created
extracting L − Lb.

ii) Let Tb be one of the B trees of logit model generated by randomly
selecting m out of M variables from Lb.

iii) The OOB error rate rb of tree Tb is obtained by comparing the
predicted outcome of the L − Lb datasetwith the actual outcome
using the logit model developed in Tb.

iv) Relative variable importance of each variable is calculated by
permuting the values of all the variables one by one for each of
the B trees, recalculating the difference in misclassification rate
for each permuted variable and averaging the misclassification
differences for each variable for the B trees. To elaborate more,
for each j-th variable of Tb permute all its data points in Lb and
recalculate the misclassification rate rjb. The value |rb − rjb| is
called the importance of the j-th variable Vj for Tb. The process
is repeated for all B trees. The final importance of the j-th variable
is obtained by averaging all the values of Vj. Hence, the term ‘var-
iable importance’ in RMNL reflects how much misclassification
error is associated with wrongly calculating the value of the var-
iable under concern. A higher value indicates that the variable is
more important.

At present there are no commercial or open source software products
available to apply RMNL. Therefore, a program has been developed for
this study using R scripting language [10] applying the detailed algo-
rithm provided by [29].

3.2. Bayesian belief net (BBN)

3.2.1. The fundamentals
A BBN N = (G = (V, E), P) consists of a set of probability distribu-

tions P and an acyclic directed graph (DAG) G of a set of unique random
variables represented by nodes (or vertices) V and connected with
directed links (or edges) E where there is a conditional probability dis-
tribution P(Xi|parents(Xi)) for each random variable Xi V. The joint
probability distribution of the universe of unique random variable
U = {X1, …., Xn} for a system factorizes according to the structure of G
as [17,22]:

P Uð Þ ¼ P X1;X2;…;Xn½ � ¼ ∏
n

i¼1
P Xi parents Xið Þj Þ:ð ð2Þ

In general, Eq. (2) represents a system or an expert's perspective
regarding the system represented with the interrelationship among
a set of random variables [X1, X2,…, Xn]. Now, Eq. (2) can be utilized
to obtain answer regarding any probabilistic query on the system
a

Fig. 3. An example Bayes
when knowledge about state of one or a set of random variables
will be available. For example, let us assume that evidence regarding
the state of m random variables e1,…., em becomes available (m b n).
Plugging this new information into Eq. (2) we can obtain Eq. (3):

P U; eð Þ ¼ ∏
n

i¼1
PðXi parents Xið Þj Þ∏

m

j¼1
ej: ð3Þ

Now, if wewould like to draw inference regarding different states of
a random variable X U then we will need to marginalize the left hand
side of Eq. (3) as Eq. (4):

P X; eð Þ ¼ ∑
U 5 Xf g

P U; eð Þ: ð4Þ

Finally, P(X|e) can be calculated by using the Bayes' theorem [17]
as illustrated by Eq. (5):

P X; eð Þ ¼ ∑P X; eð Þ
P eð Þ ¼ ∑P X; eð Þ

∑
X

P X; eð Þ : ð5Þ

3.2.2. An example BBN
To illustrate the concept, let Fig. 3a represent a system explained by

an expertwith four variablesU = {X1,…., X4}. Here, X2 and X4 are called
the ‘parent nodes’ as they have no incoming nodes and thus they are
conditionally independent from rest of the variables in the system. X1
is a ‘child node’ of X2 and X1 and X4 are the parents of X3. Applying
Eq. (2), this system can be presented mathematically as:

P Uð Þ ¼ P X1;X2;…;X4½ � ¼ P X2ð ÞP X4ð ÞP X1 X2j ÞP X3 X1;X4j Þ:ðð ð6Þ

Let X1 have k states and the probability distribution of different
states of X1 be P(X1) = (x11, x12, …, x1j, …, x1k). If evidence e from
one instance of data suggest that X1 is in j state then the probability
distribution can be represented as P(X1) = (0, 0, …, x1j, …, 0). Now,
the posterior belief associated with the state of any other variable in
U can be calculated by plugging this evidence into Eq. (6) and then
using Eqs. (4) and (5).

Now, let us assume a situation where the model represented with
Fig. 3a and Eq. (6) is being transferred to represent a similar system
but in a different environment. The DAG for the new environment has
been updated as illustrated by Fig. 3b based on local expert opinion and
higher level of data availability (X5). The new model can be explained
mathematically as:

P Uð Þ ¼ P X1;X2;…;X5½ � ¼ P X2ð ÞP X5ð ÞP X1 X2j ÞP X3 X1;X4j ÞP X4 X5j Þ:ððð ð7Þ

Hence, the model can be customized for the new environment
only by building the probability distribution P(X5) and re-building
the conditional probability table P(X4|X5).
b

ian belief net (BBN).
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Fig. 4. Parent divorcing mechanism in BBN.
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3.2.3. Parent divorcing in BBN
Complexity of the conditional probability table of a node in a BBN

depends on its number of parents and their states. For example, if a
node Y in a BBN has set of parents with n elements, i.e., S = {X1,....,Xn}
and if Y has M states and Xi S has Q states each then the conditional
probability table of Y will have MxNn number of cells in it (see Fig. 4a).
In such situations, the parent divorcing method by Olesen et al. [26]
can be employed to reduce the model complexity. Parent divorcing re-
duces the complexity of a child node by introducing ‘intermediate’
nodes in between the child node and the parent node(s). Each interme-
diate node becomes a function of one or more parent nodes and gets
a b

c d

Fig. 5. Variable importance (top 6) for (a) downstream of entrance ramp, (b) downstr
represented as their child. These intermediate nodes then become the
parent nodes of the original child node Y as illustrated by Fig. 4b. Nor-
mally these intermediate nodes have states fewer than M. Hence, after
‘parent divorcing’, the new conditional probability table of Y will have
much fewer number of cells.
3.2.4. Suitability of BBN for real-time crash prediction models
BBN is a relatively newer probabilistic graphical modeling method

that is gaining popularity for its flexibility and efficiency in reasoning
under uncertainty. Unlike conventional statistical modeling methods,
the BBN models the complete system (limited by the knowledge,
availability of data and pre-decided complexity of the system) rather
than focusing on only the problem. Therefore, it does not separate the
independent and dependent variables. Inference about the state of any
variable can be made based on the available evidence about other vari-
ables. When information about a variable is sought, it is called the ‘out-
come variable’. When evidence about a variable or a set of variables is
available they are together called ‘information variables’. The method
has some inherent benefits that are highly suitable for predicting
crash in real-time. An acceptable sample size consisting of matching
crash and detector data is a prerequisite to develop such models. As
crash is a rare event, many a time it is difficult to amass a sufficiently
large sample for model building. Moreover, sometimes data on all the
variables may not share the same time period. A BBN based model can
overcomeboth these hindrances.Whennewdata are available, the con-
ditional probability tables can be updated to re-calibrate the model. In
case of partial data availability, for example, if data forX1 and X2 become
available in a later time period for the model in Fig. 3a then the model
can be partially re-calibrated by updating probability tables P(X2) and
P(X1|X2). Moreover, crash is a highly complex phenomena and it is per-
ceived to be the result of interaction of a wide range of variables. As
demonstrated with Fig. 3b and Eq. (7), when the model needs to
eam of exit ramp, (c) upstream of entrance ramp and (d) upstream of exit ramp.



Table 3
Correlation among information variables.

Pearson correlation (ρ)

Location Variable d1q d1v d3q d3v d3i

Downstream entrance d1q 1.0 −0.120 0.949 −0.071 0.126
d1v 1.0 −0.109 0.896 −0.912
d3q 1.0 −0.041 0.0901
d3v 1.0 −0.980

Downstream exit d1q 1.0 0.0204 0.972 −0.192 0.073
d1v 1.0 0.004 0.854 −0.914
d3q 1.0 −0.199 0.079
d3v 1.0 −0.969

Upstream entrance d1q 1.0 −0.249 0.946 −0.155 0.241
d1v 1.0 −0.210 0.879 −0.907
d3q 1.0 −0.081 0.171
d3v 1.0 −0.977

Upstream exit d1q 1.0 −0.026 0.948 −0.091 0.040
d1v 1.0 −0.023 0.879 −0.898
d3q 1.0 −0.075 0.024
d3v 1.0 −0.988

Table 4
Outcome of the logistic regression models.

Estimate Std. err. Z-value Pr(>|z|)

(a) Model 1: downstream of entrance ramp
(Intercept) −0.6312 0.2903 −2.175 0.0296*
d1q −0.0103 0.0015 −7.028 2.09e−12***
d1v −0.0257 0.0032 −7.999 1.25e−15***

(b) Model 2: downstream of entrance ramp
(Intercept) −2.7283 0.2847 −9.582 b2e−16***
d3q −0.0105 0.0017 −6.290 3.16e−10***
d3i 1.83401 0.2346 7.818 5.35e−15***

(c) Model 1: downstream of exit ramp
(Intercept) −1.7589 0.3359 −5.237 1.63e−07***
d1q −0.0060 0.0019 −3.254 0.00114**
d1v −0.0229 0.0037 −6.202 5.57e−10***

(d) Model 2: downstream of exit ramp
(Intercept) −3.7835 0.3493 −10.832 b2e−16***
d3q −0.0044 0.0018 −2.480 0.0131*
d3i 1.9458 0.3101 6.276 3.48e−10***

(e) Model 1: upstream of entrance ramp
(Intercept) −1.2433 0.3162 3.932 8.44e−05***
d1q −0.0080 0.0014 −5.861 4.60e−09***
d1v −0.0188 0.0034 −5.536 3.10e−08***

(f) Model 2: upstream of entrance ramp
(Intercept) −2.7013 0.2683 −10.069 b2e−16***
d3q −0.0099 0.0016 −6.179 6.43e−10***
d3i 1.7037 0.2490 6.843 7.77e−12***

(g) Model 1: upstream of exit ramp
(Intercept) −1.2298 0.3055 −4.025 5.70e−05***
d1q −0.0093 0.0016 −5.798 6.73e−09***
d1v −0.0185 0.0030 −6.258 3.91e−10***

(h) Model 2: upstream of exit ramp
(Intercept) −3.4129 0.3738 −9.130 b2e−16***
d3q −0.0076 0.0017 −4.561 5.09e−06***
d3i 2.5759 0.2796 9.214 b2e−16***

Signif. codes: 0, ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05, ‘.’ 0.1 and ‘’ 1.
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accommodate new variables, it can be achieved without requiring
rebuilding the whole model from the scratch. Traffic flow variables are
highly correlated in nature and unlike many of the available statistical
methods, e.g., binomial logit models, BBN is capable of handling multi-
collinearity issues. Likewise, BBN is more relaxed towards having statisti-
cal assumptions, such as linearity and additivity. Besides these, BBN based
models also have the capability to sequentially update itself when new
data becomes available provided that its structure and initial specifica-
tions of the conditional probability distributions are given in advance.
The process is known as ‘adaptation’. This is outside the scope of this
manuscript and the interested readers are requested to consult
[17,22] for further details. For a real-time crash predictionmodel, adap-
tation can benefit in two ways. Firstly, an initial model built with low
sample size can be updated in real-time once it has been implemented
in real life scenario. Secondly, it addresses the issue of model transfer-
ability as amodel built for one expressway can be customized for another
expressway by further training it with new data. This way, themodel can
benefit from the existing domain knowledge and update itself based on
the scenario in the new environment.

4. Model building

The model building process has been subdivided into three parts —
variable selection, building the BBN and performance evaluation.

4.1. Variable selection

The data collected during the Phase I of the research have been ap-
plied to identify and rank the most important variables for modeling.
The variable representing ramp flow (d2q) has not been included to
be ranked as sufficient literatures are available in support of its im-
portance in influencing crash [28]. Thus, the study avoids redundancy
and directly incorporates ramp flow as a variable for the final BBN
models. The Phase I data contain 120, 86, 110 and 98 samples for
hazardous traffic conditions respectively for the downstream and up-
stream of entrance and exit ramps and their corresponding 4268,
3785, 3738 and 4164 samples for normal traffic conditions. RMNL has
been applied for all four ramp vicinities separately through growing
500 trees of logit model by randomly selecting 4 variables at a time
and the results for the average variable importance have been extracted
for every 100 trees. The difference in average variable importance for
themost important variables are found to be negligible (up to 4 decimal
points) between 400 and 500 trees and the results yielded after 500
trees have been finalized as the relative average variable importance.
The outcomes for the top six most important variables have been illus-
trated by Fig. 5. It can be observed that the 5 minute cumulative vehicle
count and average speed are the two most important variables for the
detector in the downstream (d1q and d1v) for all four ramp vicinities.
The 5 minute cumulative vehicle count is also always among the top
two variables yielded by the upstream detector (d3q). It is interesting
to observe that none of the variables representing spatial variation of
traffic flowvariables (d13q, d13p, d13v and d13i) are found to bewithin
the top 6 positions for any of the ramp vicinities. This suggests that the
hazardous traffic condition in this study can be better distinguished
from the normal traffic condition based on the values of the individual
detectors rather than their spatial variation. The study intends to choose
two most important variables from both the detectors in the upstream
(Location 2) and the downstream (Location 1). Hence, along with d1q,
d1v and d3q the fourth variable under consideration is the one between
d3i and d3v. To choose the fourth variable the study investigates the cor-
relation among these 5 variables by performing a Pearson correlation test
and the results are shown in Table 3. It can be observed that d1q is highly
correlated (ρ > |0.7|) with d3q; d1v is highly correlated with d3v and
d3i; and d3v is highly correlated with d3i in all four cases. As d3i has
relatively lower correlation with other information variables, it has
been selected along with d1q, d1v and d3q for the final model building
with BBN. Lastly, to provide an overall idea about the variables, Table 4
illustrates their descriptive statistics based on their association with
hazardous and normal traffic conditions.

4.2. The BBN models

As mentioned earlier, a BBN model consists of two parts — the
graphical and the numerical parts. The outcome variable in the models
is ‘crash’ with two categories representing the hazardous traffic condi-
tion and the normal traffic condition. Alongside the ramp flow, the



Fig. 6. Proposed graph for BBN models.
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previous section has selected d1q, d1v, d3q and d3i as the other infor-
mation variables. One possible way of designing the graphical model
can be by drawing an arc from all the information variables to the out-
come variable ‘crash’. Though logically sound, it will have some major
demerits in its numerical part. To exemplify, if each of the information
variables has even only five categories each then the conditional prob-
ability table for the outcome variable ‘crash’ will have 55 = 3125 cells
for each of its outcomes (hazardous or normal) and thus increase the
complexity of the model geometrically. Moreover, as the sample size
is not large specially for the hazardous traffic conditions, very few
cells of the hazardous traffic condition category in the conditional prob-
ability table of ‘crash’will contain values. This problem can be addressed
by applying the parent divorcing method (Section 3.2). For that, this
study introduces two intermediate variables; risk factor 1 (RF1) and
risk factor 2 (RF2) in between the information variables and the outcome
variable as shown in Fig. 6. The RF1 and RF2 both have four categories to
explain the risk of crash— very high, high, low and very low. Hence, the
conditional probability table for crash now will have 4 × 4 × A = 64A
Fig. 7. a. The final BBN models (a) downstream of entrance ramp and (b) downstream of exi
ramp.
cells for each of the two outcomes (A is the number of categories in
d2q) and both RF1 and RF2 will have B × C × 4 cells where B and C
are the number of categories for d1q and d1v for RF1 and d3q and d3i
for RF2. Thus, the complexity of the conditional probability table for
the outcome variable ‘crash’ can be substantially reduced.

The break points for these categories of RF1 and RF2 are calculated
by first developing two binary logit models with d1q, d1v, crash
(Model 1) and d3q, d3i, crash (Model 2) as the variables. Subsequently,
the probability of crash for each data point has been calculated. The
break points for the two intermediate variables have then been derived
from these twomodels by reclassifying the continuous probability values
into categories. The results of the two models for all four ramp vicinities
are presented with Table 5. The calculation for the categorization of the
intermediate variables is demonstrated briefly in Appendix A.

The next step in BBN involves generating the probability tables for
the information variables without parents (P(d1q), P(d1v), P(d3q),
P(d3i) and P(d2q)) and the conditional probability tables for those
having parent nodes (here, P(RF1|d1q, d1v), P(RF2|d3q, d3i) and
P(crash|RF1,RF2, d2q)). For this, it is necessary to categorize the con-
tinuous variables d1q, d1v, d3q, d3v and d2q. Histograms have been
produced for all these variables considering their association both
with hazardous and normal traffic condition to decide upon their
final categories. Special care has been taken to ensure that the condi-
tional probability tables for the child nodes contain at least one value
for each of the conditions. Lastly, BBN models for the four ramp vicin-
ities have been made using Hugin Expert [22] as the software tool
following the methodology mentioned in Section 3.2. The final models
are illustrated by Fig. 7. Although the fourmodels use the same variable
set, Fig. 7 suggests that they do not share the same categories for all
t ramp. b. The final BBN models (a) upstream of entrance ramp and (b) upstream of exit



Fig. 7 (continued).
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the variables. The values in the conditional probability tables also vary
substantially. Moreover, the overall probability of any traffic condition
belonging to hazardous or normal traffic condition based on the given
probabilities of different information variables (e.g., 5.03 in the model
for the downstream of entrance ramp as illustrated by Fig. 7(a)) also
differs among the models. These differences justify the importance of
developing different models for the four ramp vicinities— downstream
and upstream of the entrance and exit ramps.

4.3. Performance evaluation

The performances of the newly built models have been evaluated
with their corresponding datasets containing hazardous traffic condi-
tions resulting from crashes that took place during the last two months
in the study area. However, their corresponding normal traffic condition
data have been extracted from throughout the study area (Table 2).
Therefore, for every crash data, their two normal traffic condition data
points from within the last two months of the study period were
re-extracted to form the evaluation dataset. The final evaluation dataset
contains 22, 19, 21 and 29 data points representing hazardous traffic
conditions in downstream and upstream of entrance and exit ramps
and their corresponding 44, 38, 42 and 58 normal traffic condition
data points respectively. The prediction success has been presented in
Table 6. The probability value that represents the chance of a data be-
longing to hazardous traffic condition when no other information is
available (e.g., 5.03 for the downstream of entrance ramp as illustrated
by Fig. 7(a)) has been used as the minimum baseline threshold. Later,
higher threshold values have also been used to investigate the overall
prediction performance. This measure ensures a very conservative ap-
proach in whichmaintaining sufficient accuracy in reducing false alarms
(misclassifying normal traffic condition) has high priority. In general
detection of hazardous traffic formation will bring benefit when it will
be coupled with appropriate evasive measures. Hence, it is important
to identify those conditions which pose abnormally high level of threat.
Moreover, the research field dealing with real-time intervention de-
signing is still in its infancy and several of the previous studies have
recommended warning the road users through variable message signs
[21]. Therefore, a low false alarm rate will mean fewer numbers of un-
necessary warning signs which will eventually help in maintaining
the trust of the road users.

Table 6 suggests that all the four models can predict more around
60% or more formation of hazardous traffic conditions for the initial
threshold value. However, apart from the upstream of the exit ramps
the other three ramp vicinities generated more than 25% false alarms
for this threshold value. This study investigates how much prediction
accuracy for the hazardous condition formation can be achieved by
maintaining a false alarm rate less than 10–12%. The results suggest
that the downstream of entrance ramps and the upstream of the exit
ramps can still maintain classification accuracy over 50% under this
boundary condition. However, the accuracy of the other two ramp
vicinities for identifying hazardous traffic formation with the increased
threshold value drops to just over 42%. There can be at least two proba-
ble reasons for this. Maneuvering in the rampsmainly takes place in the
downstreamof the entrance ramp (merging traffic) and theupstreamof
exit ramp (diverging traffic) causing more detectable interruptions in
the mainline traffic flow. This may also be because a larger number of
crash samples were available for modeling for these two locations.

5. Conclusion

The idea of predicting crash for a very short time window in near
future by observing the traffic condition in real-time is one of the



Table 5
Descriptive statistics of the information variables.

Detector:
variable

Min 1stQ Median Mean 3rdQ Max.

de: d1q 54.0 113.5 153.0 162.9 206.0 309.0
(Crash = 1)a

de: d1q 27.0 158.0 207.0 197.2 240.0 355.0
(Crash = 0)
de: d1v 4.00 17.30 40.10 40.91 62.60 82.30
(Crash = 1)
de: d1v 4.80 33.42 65.80 56.05 72.70 91.20
(Crash = 0)
de: d3q 52.0 104.0 144.0 148.3 191.0 271.0
(Crash = 1)
de: d3q 25.0 140.0 182.0 175.3 212.0 302.0
(Crash = 0)
de: d3i 0.0000 0.1100 0.5400 0.4726 0.8400 0.9600
(Crash = 1)
de: d3i 0.0000 0.0600 0.1100 0.2695 0.5500 0.9500
(Crash = 0)
dx: d1q 29.0 115.2 153.0 153.2 198.8 274.0
(Crash = 1)
dx: d1q 15.0 135.0 181.0 172.6 214.0 301.0
(Crash = 0)
dx: d1v 4.10 20.30 43.50 43.29 66.88 88.10
(Crash = 1)
dx: d1v 4.80 50.80 68.00 58.99 76.10 95.10
(Crash = 0)
dx: d3q 33.0 125.8 171.0 169.8 213.2 291.0
(Crash = 1)
dx: d3q 17.0 144.0 192.0 183.6 228.0 318.0
(Crash = 0)
dx: d3i 0.0000 0.1400 0.3900 0.4251 0.7150 0.9300
(Crash = 1)
dx: d3i 0.0000 0.0700 0.1400 0.2532 0.3400 0.9400
(Crash = 0)
ue: d1q 31.0 119.5 173.0 173.1 227.0 292.0
(Crash = 1)
ue: d1q 22.0 159.0 212.0 200.2 246.0 355.0
(Crash = 0)
ue: d1v 6.20 25.50 53.35 46.49 68.05 83.00
(Crash = 1)
ue: d1v 4.70 32.30 64.80 55.16 72.70 94.60
(Crash = 0)
ue: d3q 29.0 108.8 155.0 151.9 198.0 257.0
(Crash = 1)
ue: d3q 15.0 144.0 187.0 176.3 214.0 312.0
(Crash = 0)
ue: d3i 0.0000 0.1100 0.4650 0.4546 0.7750 0.9400
(Crash = 1)
ue: d3i 0.0000 0.0600 0.1200 0.2918 0.6700 0.9600
(Crash = 0)
ux: d1q 34.0 127.0 176.0 169.9 206.5 292.0
(Crash = 1)
ux: d1q 19.0 170.0 200.0 193.7 225.0 332.0
(Crash = 0)
ux: d1v 4.50 18.65 37.40 43.44 71.85 87.70
(Crash = 1)
ux: d1v 3.50 29.42 70.20 57.38 76.20 97.00
(Crash = 0)
ux: d3q 36.0 144.5 186.0 181.1 221.5 307.0
(Crash = 1)
ux: d3q 17.0 180.0 210.0 204.4 237.0 339.0
(Crash = 0)
ux: d3i 0.0000 0.2100 0.6000 0.5289 0.8000 0.9500
(Crash = 1)
ux: d3i 0.0000 0.0900 0.1700 0.2881 0.5400 0.9400
(Crash = 0)

de = downstream entrance; dx = downstream exit; ue = upstream entrance;
ux =upstream exit.

a Crash = 1 and 0 stand for hazardous and normal traffic conditions respectively.

Table 6
Evaluation of model performance.

Location Threshold Hazardous Normal Hazardous
(%)

Normal
(%)

Downstream
(entrance)

5.03 13 26 59.09 59.09
5.25 12 36 54.55 81.82
5.50 11 41 50 93.18

Downstream (exit) 2.83 12 31 63.16 81.58
3.00 11 32 57.89 84.21
3.50 8 34 42.11 89.47

Upstream (entrance) 3.31 13 29 61.90 69.05
3.50 9 36 42.86 85.71
3.75 9 37 42.86 88.10

Upstream (exit) 2.35 22 43 75.86 74.14
3.25 20 47 68.97 81.03
3.75 16 52 55.17 89.66

77M. Hossain, Y. Muromachi / IATSS Research 37 (2013) 68–79
emerging fields in proactive road safety management system. The
application of such a system may become highly useful especially
for urban expressways as they serve the peak hour demand of mega
city traffic. Any crash during these peak hours normally has huge
consequences and reducing even a fraction of it is highly desirable.
The recent development enjoyed in the field of information technology
has opened up the possibility of actual implementation of such a system
in near future. The currently available models are yet theoretical and
need to address several issues related to i) the variables to be used, ii)
detectors to be used to extract data, iii) updating the model in course
of time, iv) transferring existing models to other expressways, etc. To
isolate these problems, the manuscripts identify the ramp vicinities as
one of the most hazardous road sections on the urban expressways
and present models that can predict the formation of hazardous traffic
conditions in these areas in real-time. This can be considered more
appropriate from the implementation point of view as ramp vicinities
generally occupy a fraction of the whole expressway and it demands
more attention from the drivers to drive in these areas as the number
of decisions needed to be taken by themare higher. Thus, implementing
a system like that for such a small but vulnerable area will bemore pro-
ductive from the point of view of the expressway authorities. Moreover,
the manuscript also acknowledged that traffic conditions in the down-
stream and upstream of entrance and exit ramps may not be identical
and thus, instead of making one universal model, it develops four sepa-
rate models following the samemethodology for these four ramp vicin-
ities. Shibuya 3 and Shinjuku 4 routes under the jurisdiction of Tokyo
Metropolitan Expressway Company Limited were chosen as the study
area as they are two of the busiest expressways in Tokyo, they experi-
ence high number of crashes throughout the year and they are densely
packed with detectors.

The study finds that approximately 55% of the reported crashes in
the study area took place within 375 m from the ramp locations. The
downstream of the entrance ramps and the upstream of the exit
ramps experienced more crashes, too as compared to the other two
ramp areas. This is also expected as substantial amount of maneuvering
takeplace in these locations. For every ramp location, the study collected
data from 3 detectors, one placed more than 300 m downstream, one
placed more than 300 m upstream from the ramp location and the
third one placed on the ramp. Apart from the 5 minute cumulative vehi-
cle count, 5 minute heavy vehicle count, 5 minute average speed and
occupancy the study has also introduced congestion index as one of
the potential predictors of hazardous traffic condition. For the detector
on ramp only the 5 minute cumulative vehicle count was available.
The initial variable space contained 16 variables for model building.
They were highly correlated in nature as well. RMNL, was introduced
as a method to identify the top 4 most important variables from the
complete variable space. RMNL makes a fusion of multinomial logit
and random forest to come up with a modeling method that is free
from themulti-collinearity issues ofmultinomial logit and can associate
relative numeric values to express the importance of variables. The final
variable space used for developing four separate models for the four
ramp vicinities included the 5 minute vehicle count yielded by both
the upstream and downstream detectors, the speed in downstream,
congestion index in the upstream and the ramp flows. Next, BBN was



Table A1
Descriptive statistics for excess probability after applying Rule 1 and Rule 2 for Model
1: downstream of entrance ramp.

Rule Min 1stQ Median Mean 3rdQ Max.

Rule 1 0.0003 0.0099 0.0298 0.0435 0.0620 0.1856
Rule 2a 0.0198 0.0146 0.0121 0.0110 0.0078 0.0000

a All the values are negative.
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applied to develop the final models. BBN is a popular real-time probabi-
listic prediction method in the field of artificial intelligence. It has some
inherent properties that make it highly suitable for predicting crash in
real-time. Road crashes are normally influenced by an assorted collec-
tion of factors. However, being a rare event, it is always difficult to
find a large sample to develop the model with a large variable space.
Moreover, data for all the potential variables may not be available at a
time. Hence, themodelingmethod is required to have inherent capabil-
ities to add new variables as well as partially update itself when new
data become available. BBN has both the capabilities to update itself
by introducing new variables aswell as updating themodel with partial
data that will be available in future without needing to recalibrate the
complete model. The newly developed BBN models could predict 50%,
42%, 43% and 55% of all the crashes from the evaluation dataset for the
downstream of entrance ramp, downstream of exit ramp, upstream of
entrance ramp and upstream of exit ramp respectively maintaining a
false alarm rate less than or around 10%. At this moment, it is very diffi-
cult to compare the performance of the models presented in this man-
uscript with the previously proposed models. As far as the authors
know this may be the first attempt in which real-time crash prediction
models have been exclusively built for the areas near the ramps only.
Although some previous models included presence of ramp as a vari-
able they did not consider the varying traffic conditions in the different
parts of the entrance and exit ramps. As the performance of the models
was calculated based on data from the same expressway and that is
also, for a short period of time, in actual scenario, initially, a variation
of performance is expected. However, BBN has inherent capability to
train the model in real-time as real-time data are being fed into it on
regular basis. Hence, it can be expected that in course of time, themodels
will get accustomed to the condition of the location where it is being
implemented and once it reaches accepted level of accuracy, expressway
authorities can take the decision of applying it to administer various
crash preventive interventions.

The proposed models have been specifically made for the ramp
vicinities and may not be directly used for the long basic freeway
segments of expressway. The model also did not consider variables
related to weather. Moreover, the manuscript has kept its scope limited
within predicting crashes in real-time anddid not explain the underlying
phenomena of crash. The study also did not propose countermeasures to
bring the hazardous traffic condition back to normal. At present, the
study only predicts the probability of future crash but does not indicate
its type. It is recommended that future studies also incorporate crash
reports and investigate if the crashes can be predicted along with their
types. It is expected that the outcome of the studywill reduce the gap be-
tween theory and practice for predicting crash in real-time and existing
as well as future studies focusing on designing appropriate countermea-
sures, such as Hossain and Muromachi [14], will be able to utilize the
proposed models to evaluate their efficacy.
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Appendix A. Sample calculation demonstrating the selection of
the break points for the intermediate variables

The procedure followed to calculate the risk factor 1 (RF1) and 2
(RF2) are same for all four ramp vicinities. Here a sample calculation
has been presented to explain the steps involved in selecting the break
points to classify RF1 for the downstream of entrance ramp.

Let a randomly selected data point associated with hazardous traffic
condition in the dataset used for modeling has values:

d1q = 113 (5 minute cumulative vehicle count yielded by the
downstream detector).
d1v = 9.3 (5 minute average speed in kilometers per hour yielded
by the downstream detector).

Now, from the parameters presented by Table 4(a), the probability
of a traffic condition belonging to hazardous category can be calculated
as = 1 / (1 + exp(−(−0.6312 − 0.0103 ∗ 113 − 0.0257 ∗ 19.3))) =
1 / (1 + exp(−2.03411)) = 0.11567.

Now, the dataset used for modeling has 143 and 6182 data points
associated with hazardous and normal traffic conditions respectively.
Thus, the average probability of a data point belonging to the hazardous
traffic condition is = (143)/(143 + 6182) = 0.0226.

Thus, the excess probability for the data point is = 0.11567 −
0.0226 = 0.093.

The same procedure has been repeated for the complete dataset to
calculate the excess probability of every data point. Subsequently, the
descriptive statistics (mean,median, 1st quartile, 3rd quartile,minimum,
maximum) of all these excess probabilities have been calculated with
these rules:

Rule 1: for crash = ‘yes’ and excess probability > 0.
Rule 2: for crash = ‘no’ and excess probability b 0.

The results are presented in Table A1. It can be observed that, the
median value 0.0298 (median value for Rule 1) is used as the break
point between ‘very high’ risk and ‘high’ risk, 0.0 is used as the break
point between ‘high’ risk and ‘low’ risk. Accordingly −0.0121 is used as
break point between ‘low risk’ and ‘very low’ risk for RF1 of Model 1 for
the downstream of entrance ramp. This conservative approach ensures
that a data point gets classified as ‘high risk’ only when its probability
to belong to hazardous traffic condition is substantially higher than the
average probability and vice versa. Continuing with the illustration, the
calculated excess probability for the data point is 0.093 which is higher
than 0.0298 and thus gets classified as ‘very high’.
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