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Let Y be an n × pmultivariate normal randommatrix with general

covarianceΣY andW be a symmetric matrix. In the present article,

the property that a matrix quadratic form Y ′WY is distributed as a

difference of two independent (noncentral) Wishart random ma-

trices is called the (noncentral) generalized Laplacianness (GL).

Then a set of algebraic results are obtained which will give the

necessary and sufficient conditions for the (noncentral) GL of ama-

trix quadratic form. Further, two extensions of Cochran’s theorem

concerning the (noncentral) GL and independence of a family of

matrix quadratic forms are developed.
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1. Introduction

In the research of the distribution of quadratic forms, the problem that a quadratic form is

distributed as a difference of two independent chi-squire random variables and its generalization

have been investigated by many scholars. Usually, the equivalent algebraic conditions are expected

to characterize the property that a quadratic form is distributed as a difference of two independent

chi-squire random variables.
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Luther [9] established the equivalence between the distribution of a quadratic form as the unique

difference of two stochastically independent chi-square distributions and the tripotency of its un-

derlying matrix. Later, Baldessari [2] developed necessary and sufficient conditions under which a

quadratic form, innormal randomvariables, is distributedasagiven linear combinationof independent

chi-square random variables, generalizing Luther’s result. Tan [22] extended Baldessari’s results to a

quadratic form in possibly singular normal random variables. Khatri [8] further extended Baldessari’s

result to the singular covariance matrix, to quadratic forms and to quadratic expressions.

Moreover, Tan [21] extended the problem from the univariate case to the multivariate case and

obtained some extensions of Cochran’s theorem concerning differences of independent noncentral

Wishart random matrices, where the covariance of normal random matrix Y is the structure of

Kronecker product A ⊗ �. Wong andWang [24] extended Tan’s results to the case of a general covari-

ance matrix, meaning that the collection of all np elements in Y has an arbitrary np × np covariance

matrix.Masaro andWong [11] derived a set of necessary and sufficient conditions for Laplace–Wishart

distribution associatedwithmatrix quadratic formswhen Y follows amultivariate normal distribution

with zero mean and Laplace–Wishart distribution has a diagonal covariance. Brief summaries of the

related development are available in Anderson and Styan [1] and Hu [6].

Other scholars who also worked on chi-square difference and their generalizations, in distribution

function approach, include Pearson et al. [15], Gurland [5], Shah [20], Robinson [19], Press [16] and

Provost [17]. The similar research also appeared for gamma difference, see Mathai [13]. Cochran’s

theorem was proposed in Cochran [3]. A summary of the extensions of Cochran’s theorem concern-

ing chi-squareness or Wishartness and independence is given in Hu [6,7], and recently Masaro and

Wong [12].

This article will extend Tan’s results to the general covariance ΣY of Y as did in Wong and Wang

[24]. The new results obtained in this article, based on Masaro and Wong’s work [11] greatly improve

Wong and Wang’s works as well as extend Masaro and Wong’s work.

In this article, Y denotes an n × pmultivariate normal randommatrix with general covariance ΣY

and W denotes a symmetric matrix. The property that a matrix quadratic form Y ′WY is distributed

as a difference of two independent (noncentral) Wishart random matrices is called the (noncentral)

generalized Laplacianness (GL). The terminology is quoted from Mathai [13]. The organization of this

article is as follows.

In Section 2, some necessary preliminaries are summarized. Conditions for the GL of a matrix

quadratic form are established in Section 3 and a general extension of Cochran’s theorem concerning

the GL and independence of a family of matrix quadratic forms is developed in Section 4. The parallel

results to, respectively, the noncentral GL of a matrix quadratic form and an extension of Cochran’s

theorem concerning the noncentral GL and independence of a family of matrix quadratic forms are

established in Sections 5 and 6. The concluding remarks is briefly stated in Section 7. The related

lemmas are presented in Appendix.

2. Preliminaries

In this paper, Mn×p denotes the set of n × p matrices over the real set �. The trace inner product

〈, 〉 equipped in Mn×p is defined as 〈A, B〉 = tr(AB′) for all A, B ∈ Mn×p, where B′ is the transpose of

B. ‖.‖ denotes the trace norm in Mn×p and |A| denotes the determinant of A. Sp denotes the set of

symmetric matrices of order p over the real set�. Np denotes the set of nonnegative definite matrices

of order p over the real set �. Im denotes the identity matrix of order m.

We use eij to denote the matrix whose ijth entry is 1 and all other entries 0 and Eij the symmetric

matrix of order p whose ijth entry and jith entry both are 1 and all other entries 0. Write Bp = {Eij :
1� i � j � p}, called the basic base of the set Sp.

For a nonnegative definite matrix Σ of order p, there exists an orthogonal matrix H such that

H′ΣH = diag[σ1, σ2, . . . , σp] with σi � 0. Write Hp = {HEijH′ : 1� i � j � p, Eij ∈ Bp}, called the

similar base, associated with Σ , of the set Sp.

We use A+ to denote theMoore–Penrose inverse ofmatrix A and Sr(A) the spectral radius of square
matrix A. A square matrix A is said to be tripotent if A3 = A.
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For ann × pmatrixY ,Y iswritten intoY = [y1, y2, . . . , yn]′,yi ∈ �p,where�p is thepdimensional

real space, andvec(Y)denotesnpdimensional vector [y′
1, y

′
2, . . . , y

′
n]′. Here thevecoperator transforms

a matrix into a vector by stacking the rows of the matrix one underneath the other. The Kronecker

product A ⊗ B of matrices A and B is defined to be A ⊗ B = [aijB]. And (A ⊗ B)vec(C) = vec(ACB′).
The commutationmatrixKnp is defined byKnpvec(Y

′) = vec(Y), Y ∈ Mn×p. AndΣY ′ = K ′
npΣYKnp,

see Magnus and Neudecker [10].

The following lemma, see Rao [18, Chapter 1], is useful for our subsequent discussion.

Lemma 2.1. For matrices A, B and C, AB′B = CB′B is equivalent to AB′ = CB′. Similarly, B′BA = B′BC is

equivalent to BA = BC.

Define

G(s, s̃,Σ , W,ΣY ) = ΣY (W ⊗ s)ΣY (W ⊗ Σ+)ΣY (W ⊗ s̃)ΣY , for s, s̃ ∈ Sp,

and

Γ (s, s̃,Σ , W, L) = L(s ⊗ W)L′L(Σ+ ⊗ W)L′L(s̃ ⊗ W)L′, for s, s̃ ∈ Sp.

Using the commutationmatrix, the properties of the Kronecker product and Lemma 2.1, the following

lemma is easily proved.

Lemma 2.2. Let ΣY ∈ Nnp, Σ ∈ Np and W ∈ Sn. Then for s, s̃ ∈ Sp,

ΣY [W ⊗ (sΣ s̃ + s̃Σs)]ΣY = G(s, s̃,Σ , W,ΣY ) + G(s̃, s,Σ , W,ΣY )

is equivalent to

L[(sΣ s̃ + s̃Σs) ⊗ W]L′ = Γ (s, s̃,Σ , W, L) + Γ (s, s̃,Σ , W, L),

where ΣY ′ = L′L, L = [L1, L2, . . . , Lp], q = rank(ΣY ) and Li ∈ Mq×n, i = 1, 2, . . . , p.

When we decompose ΣY ′ as ΣY ′ = L′L, L = [L1, L2, . . . , Lp] with Li ∈ Mq×n (i = 1, 2, . . . , p) and
r(ΣY ′) � q� np, we assume q = npwithout loss of the generality in our discussion. If q < np, we just

replace L′ by [L′, 0] ∈ Mnp×np.

Suppose that σ1, σ2, . . . , σr are positive real numbers. Let Bij = (LiWL′j + LjWL′i)/2
√

σiσj , i, j � r.

Assume that LiWL′i /= 0, i.e. Bii /= 0, (i � r) also without loss of generality.

For convenience, the following conditions (A1)–(A5) are called A-conditions.

(A1) L[(tΛt̃ + t̃Λt) ⊗ W]L′ = Γ (t, t̃,Λ, W, L) + Γ (t̃, t,Λ, W, L);
(A2) L(Λ+ ⊗ W)L′L(t ⊗ W)L′ = L(t ⊗ W)L′L(Λ+ ⊗ W)L′;
(A3) {t : L(t ⊗ W)L′ = 0} = {t : ΛtΛ = 0};
(A4) tr(L(Λ+ ⊗ W)L′L(t ⊗ W)L′) + tr(L(t ⊗ W)L′) = 2m1tr(Λt); and
(A5) tr(L(Λ+ ⊗ W)L′L(t ⊗ W)L′) − tr(L(t ⊗ W)L′) = 2m2tr(Λt).

The following conditions (C1)–(C6) are called C-conditions.

(C1) LiWL′j + LjWL′i = 0 for i or j > r;

(C2) B3ii = Bii, tr(Bii) = m1 − m2, tr(B
2
ii) = m1 + m2;

(C3) BiiBjj = 0, i /= j;

(C4) 4B2ij = B2ii + B2jj , i /= j;

(C5) BiiBij = BijBjj , i /= j; and

(C6) 2(Bii + Bjj)(BikBjk + BjkBik) = Bij for all distinct i, j, k.

If A = X′X , where X ∼ Nm×p(�, Im ⊗ Σ) with Σ ∈ Np, then A is said to have the noncentral

Wishart distribution with m degrees of freedom, covariance matrix Σ and noncentrality matrix

� = �′�. Write A ∼ Wp(m,Σ , �). When � = 0, A is said to have the Wishart distribution with m de-

grees of freedom and covariance matrix Σ , denoted by A ∼ Wp(m,Σ). See Muirhead

[14, Chapter 3].
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For a symmetric matrix W , Y ′WY is called the matrix quadratic form in a normal random matrix

Y . Y ′WY ∼ Wp(m1,Σ , �1) − Wp(m2,Σ , �2) means that Y ′WY is distributed as a difference of two

independentnoncentralWishart randommatrices (witha commoncovarianceΣ), implying thatY ′WY

has the noncentral generalized Laplacianness. Similarly, Y ′WY ∼ Wp(m1,Σ) − Wp(m2,Σ) means

that Y ′WY is distributed as a difference of two independentWishart randommatrices (with a common

covariance Σ), implying that Y ′WY has the generalized Laplacianness.

The moment generating function M(s) of Y ′WY is defined as M(s) = E(e〈s,Y ′WY〉), s ∈ Sp. The

following lemma is due to Wong et al. [23].

Lemma 2.3. Let Y ∼ Nn×p(�,ΣY ) and Wi’s be symmetric. Then the joint moment generating function

M(s) of Y ′WiY’s is given by

M(s) = |Inp − 2Σ∗|−1/2exp
{
〈s, �〉 + 2

〈
�∗,Σ1/2

Y (Inp − 2Σ∗)−1Σ
1/2
Y �∗〉}

,

where S = Sp × Sp × · · · × Sp (l times), s = (si) ∈ S , Σ∗ = Σ
1/2
Y [∑l

i=1(Wi ⊗ si)]Σ1/2
Y ,

�∗ = ∑l
i=1 vec(Wi�si), �i = �′Wi� ∈ Sp, � = (�i) ∈ S and Sr(Σ∗) < 1/2.

Let Y ∼ Nm×p(�, Im ⊗ Σ), thenM(s) of Y ′Y , i.e. themoment generating function of the noncentral

Wishart distribution Wp(m,Σ , �), is equal to

M(s) = |Ip − 2Σ∗|−m/2exp{〈s, �〉 + 2〈�, sΣ1/2(Ip − 2Σ∗)−1Σ1/2s〉} (2.1)

for all s ∈ Sp such that Sr(Σ∗) < 1/2 with � = �′�, where Σ∗ = Σ1/2sΣ1/2. And if Y ′WY ∼
Wp(m1,Σ , �1) − Wp(m2,Σ , �2), the moment generating functionM(s) of Y ′WY can be expressed as

M(s) = |Ip − 2Σ∗|−m1/2|Ip + 2Σ∗|−m2/2exp{〈s, �1 − �2〉 + 2Φ1 + 2Φ2} (2.2)

for all s ∈ Sp such that Sr(Σ∗) < 1/2, where Φ1 = 〈�1, sΣ
1/2(Ip − 2Σ∗)−1Σ1/2s〉 and Φ2 = 〈�2,

sΣ1/2(Ip + 2Σ∗)−1Σ1/2s〉.
We can extend (2.2) so that the casem1 = 0 orm2 = 0 or Σ = 0 is included.

The following result is useful for us to discuss the independence of randommatrices, see Hu [6,7].

Lemma 2.4. Let Y ∼ Nn×p(�,ΣY ), and Wi’s be a family of symmetric matrices in Sn. Then a family of

matrix quadratic form Y ′WiY’s is independent if and only if for any distinct i, j ∈ {1, 2, . . . , l} and any t, t̃

in the basic base Bp,

(1) ΣY (Wi ⊗ t)ΣY (Wj ⊗ t̃)ΣY = 0;
(2) ΣY (Wi ⊗ t)ΣY (Wj ⊗ t̃)vec(�) = 0; and
(3) vec(�)′(Wi ⊗ t)ΣY (Wj ⊗ t̃)vec(�) = 0.

3. Algebraic conditions for the GL of a matrix quadratic form

In this section aswell as next section, Y is an n × pmultivariate normal randommatrixwithmean 0

and general covariance ΣY .

Our investigationbeginswith the followingmain theorem.Weshall establishaclassof sufficientand

necessary algebraic conditions to characterize the GL of amatrix quadratic form, i.e. amatrix quadratic

form Y ′WY being distributed as the difference of two independentWishart randommatrices. The two

Wishart distribution have a common covariance Σ .

First letus consider thespecial casewhich thecommoncovariance is adiagonalnonnegativedefinite

matrix, written Λ.

Theorem 3.1. Let Y ∼ Nn×p(0,ΣY ) with ΣY ∈ Nnp and W be symmetric. Then Y ′WY ∼ Wp(m1,Λ) −
Wp(m2,Λ) with m1, m2 ∈ {0, 1, 2, . . .} and Λ = diag[σ1, σ2, . . . , σr , 0] ∈ Np if and only if there exist

positive real numbers σ1, σ2, . . . , σr (r � p) such that, for any elements t, t̃ in the basic base Bp,
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ΣY [W ⊗ (tΛt̃ + t̃Λt)]ΣY = G(t, t̃,Λ, W,ΣY ) + G(t̃, t,Λ, W,ΣY ) (3.1)

such that

ΣY (W ⊗ Λ+)ΣY (W ⊗ t)ΣY = ΣY (W ⊗ t)ΣY (W ⊗ Λ+)ΣY , (3.2)

{t : ΣY (W ⊗ t)ΣY = 0} = {t : ΛtΛ = 0}, (3.3)

tr(ΣY (W ⊗ Λ+)ΣY (W ⊗ t)) + tr(ΣY (W ⊗ t)) = 2m1tr(Λt) (3.4)

and

tr(ΣY (W ⊗ Λ+)ΣY (W ⊗ t)) − tr(ΣY (W ⊗ t)) = 2m2tr(Λt). (3.5)

Proof. Exactly as in the proof of Lemma 2.2, we easily derive the equivalence between A-conditions

and (3.1)–(3.5). Then by Lemma 7.3, see Appendix, we only show that A-conditions are equivalent to

C-conditions.

Suppose that C-conditions hold. We shall show that A-conditions hold.

Let B = ∑r
i=1 Bii. Use (ij, i′j′) to represent combination (t, t̃) from the basic base Bp. Then by

(C1) we only consider these combinations (ij, i′j′), 1� i � j � r, 1� i′ � j′ � r. Write Ω = {(ij, i′j′) :
1� i � j � r, 1� i′ � j′ � r}. Divide the index set Ω into the following seven index subsets:

D1 = {(ii, ii) : 1� i � r};
D2 = {(ij, ij) : 1� i < j � r};
D3 = {(ii, jj) : 1� i, j � r; i /= j};
D4 = {(ii, ij) ∪ (ij, ii) : 1� i < j � r};
D5 = {(ik, jk) : 1� i, j < k � r; i, j distinct};
D6 = {(ii, i′j′) ∪ (i′j′, ii) : 1� i, i′, j′ � r; i, i′, j′ distinct, i′ < j′}; and

D7 = {(ij, i′j′) : 1� i < j � r, 1� i′ < j′ � r; i, j, i′, j′ distinct}.
Note that by (C3), (C4) and Lemma 2.1,

BijBkk = 0 for distinct i, j, k. (3.6)

For (ij, i′j′) ∈ D1, (A1) reduces to σiσj(Bii + Bjj) = σ 2
i BiiBBii, which follows from (C2) and (C3).

For (ij, i′j′) ∈ D2, (A1) reduces toσiσj(Bii + Bjj) = 4σiσjBijBBij , which is derived from (C5) and (3.6).

For (ij, i′j′) ∈ D3, (A1) reduces to σiσj(BiiBBjj + BjjBBii) = 0, which is obtained from (C3).

For (ij, i′j′) ∈ D4, (A1) reduces to 2
√

σiσjσiBij = 2
√

σiσjσi(BiiBBij + BijBBii), which follows from

(C5), (C6) and (3.6).

For (ij, i′j′) ∈ D5, (A1) reduces to2
√

σiσjσkBij = 4
√

σiσjσk(BikBBjk + BjkBBik),which is gotten from

(C5), (C6) and (3.6).

For (ij, i′j′) ∈ D6 ∪ D7, (A1) reduces to 4
√

σiσjσi′σj′(BijBBi′j′ + Bi′j′BBij) = 0, which follows from

(3.6). So (A1) holds.

For (ij, i′j′) ∈ Ω , (A2) or BBij = BijB follows from (3.6) and (C5).

(C1) tells us the fact that {t : ΛtΛ = 0} = {tij ∈ Bp : i > r or j > r} ⊆ {t : L(t ⊗ W)L′ = 0}. For
tij ∈ Bp, 1� i � j � r, L(tij ⊗ W)L′ = √

σiσjBij /= 0 from (C2), (C4) and Lemma2.1. So {t : ΛtΛ = 0} =
{t : L(t ⊗ W)L′ = 0} = {tij ∈ Bp : i > r or j > r}, which proves (A3).

Finally, for Eii ∈ Bp, i = 1, 2, . . . , r, with simple calculation, (A4) and (A5) hold by (C2) and (C3).

For Bij i, j > r, it is a trivial thing. For Bij i /= j, i, j � r, the right side values of (A4) and (A5) always are

zero. We only need to calculate the left side values (LSVs) of both (A4) and (A5). By (A.1) and (A.2) in

Lemma 7.2, we have
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LSVs = tr(L(Λ+ ⊗ W)L′L(Bij ⊗ W)L′) ± tr(L(Bij ⊗ W)L′)
= 2

√
σiσj[tr(BBij) ± tr(Bij)] = 2

√
σiσjtr((Bii + Bjj ± I)Bij)

= √
σiσjtr[(eii ⊗ Aii + ejj ⊗ Ajj ± I)(eij ⊗ Aij + eji ⊗ Aji)] = 0,

which proves (A4) and (A5). Hence A-conditions hold.

Conversely, suppose A-conditions hold. We must prove that C-conditions hold.

(C1) follows from (A3), i.e. L(Bij ⊗ W)L′ = 0, for i or j > 0. Fixing (1� i < j � r) and taking t =
t̃ = Eii in (A1) and (A2), we have

Bii = BiiBBii, BiiB = BBii (3.7)

and

tr(Bii) = m1 − m2, tr(BBii) = m1 + m2. (3.8)

Taking t = Eii and t̃ = Ejj in (A1) gives

BiiBBjj + BjjBBii = 0. (3.9)

By (3.7) and (3.9), we get ||BiiBjj ± BjjBii||2 = 0, i.e. BiiBjj = 0, which proves (C3). Further, we have

B3 = B, then B3ii = Bii and tr(B2ii) = tr(BiiBiiBBii) = tr(B3iiB) = tr(BiiB) = m1 + m2, which, with (3.8),

proves (C2).

Taking t = Eii and t̃ = Bij in (A1) gives Bij = BiiBBij + BijBBii. Taking t = Bij and t̃ = Ejj in (A1) and

(A2) gives

Bij = BijBBjj + BjjBBij, BBij = BijB. (3.10)

So BiiBij = BiiBijBBjj and BijBjj = BiiBBijBjj , which proves (C5).

Taking t = t̃ = Bij in (A1) gives

4BijBBij = Bii + Bjj. (3.11)

From (C3), (C5) and (3.10)–(3.11), we obtain 4B2ij = B2ii + B2jj , which proves (C4).

From (3.10), (C3) and (C5), we obtain, for distinct i, j, k,

BijBkk = 0. (3.12)

Taking t = Eik and t̃ = Ejk for distinct i, j, k in (A1) gives

Bij = 2BikBBjk + 2BjkBBik. (3.13)

So from (3.13), (3.12) and (C5), we get Bij = 2(Bii + Bjj)(BikBjk + 2BjkBik), which proves (C6). Thus the

desired result is proved. �

In Theorem 3.1, condition (3.1) reveals the most important inherent property for the GL of a matrix

quadratic form. Condition (3.2) tells us that matrix Σ
1/2
Y (W ⊗ Λ+)Σ

1/2
Y is commutative with any

matrix Σ
1/2
Y (W ⊗ t)Σ

1/2
Y for any t in the basic base Bp. Condition (3.3) says that two different linear

transformations ΣY (W ⊗ t)ΣY and ΛtΛ have the same kernel or null space. Conditions (3.4) and

(3.5), respectively, determines the degrees m1,m2 of freedom of two Wishart random matrices.

Next we shall extend Theorem 3.1 to the general case which the common covariance is a general

nonnegativedefinitematrixΣ . A set of the corresponding sufficient andnecessary algebraic conditions

is summarized in the following theorem.

Theorem 3.2. Suppose that Y ∼ Nn×p(0,ΣY ) with ΣY ∈ Nnp and W is symmetric. Then Y ′WY ∼
Wp(m1,Σ) − Wp(m2,Σ) with m1, m2 ∈ {0, 1, 2, . . .} and Σ ∈ Np if and only if there exists some Σ ∈
Np such that, for any elements h, h̃ in the similar base Hp associated with Σ ,

ΣY [W ⊗ (hΣ h̃ + h̃Σh)]ΣY = G(h, h̃,Σ , W,ΣY ) + G(h̃, h,Σ , W,ΣY ) (3.14)
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such that

ΣY (W ⊗ Σ+)ΣY (W ⊗ h)ΣY = ΣY (W ⊗ h)ΣY (W ⊗ Σ+)ΣY , (3.15)

{h : ΣY (W ⊗ h)ΣY = 0} = {h : ΣhΣ = 0}, (3.16)

tr(ΣY (W ⊗ Σ+)ΣY (W ⊗ h)) + tr(ΣY (W ⊗ h)) = 2m1tr(Σh) (3.17)

and

tr(ΣY (W ⊗ Σ+)ΣY (W ⊗ h)) − tr(ΣY (W ⊗ h)) = 2m2tr(Σh). (3.18)

Proof. If Σ ∈ Np, there is an orthogonal matrix H of order p such that

H′ΣH = diag[σ1, σ2, . . . , σr , 0] ≡ Λ, r = r(Σ), σi > 0, i = 1, 2, . . . , r (3.19)

and YH ∼ Nn×p(0,ΣYH) where ΣYH = (I ⊗ H′)ΣY (I ⊗ H).

Assumethat thereexistsΣ ∈ Np such that (3.14)–(3.18)hold. Let t = H′hH, then function t = H′hH
is a 1 − 1 map from the similar base Hp associated with Σ onto the basic base Bp. By replacing h,

h̃ and Σ , respectively, with HtH′, Ht̃H′ and HΛH′ in (3.14)–(3.18), with necessary Kronecker product

operations, (3.14)–(3.18) are equivalent to the following equations, for t, t̃ ∈ Bp,

ΣYH

[
W ⊗ (tΛt̃ + t̃Λ)

]
ΣYH = G(t, t̃,Λ, Wi,ΣYH) + G(t̃, t,Λ, Wi,ΣYH),

ΣYH(W ⊗ Λ+)ΣYH(W ⊗ t)ΣYH = ΣYH(W ⊗ t)ΣYH(W ⊗ Λ+)ΣYH,

{t : ΣYH(W ⊗ t)ΣYH = 0} = {t : ΛtΛ = 0},
tr(ΣYH(W ⊗ Λ+)ΣYH(W ⊗ t)) + tr(ΣYH(W ⊗ t)) = 2m1tr(Λt)

and

tr(ΣYH(W ⊗ Λ+)ΣYH(W ⊗ t)) − tr(ΣYH(W ⊗ t)) = 2m2tr(Λt),

where Λ is determined by (3.19).

By Theorem 3.1, H′Y ′WYH ∼ Wp(m1,Λ) − Wp(m2,Λ). Hence Y ′WY ∼ Wp(m1,Σ) − Wp(m2,Σ)
by Theorem 3.2.4 of Muirhead (1982). The converse can be shown by following the above steps

backwards. �

Conditions (3.14)–(3.18) are same as the conditions (3.1)–(3.5) except for using the similar base Hp

associated with Σ to replace the basic base Bp of Sp.

WheneverY ′WY ∼ Wp(m1,Σ) − Wp(m2,Σ), then thedegreesm1,m2 of freedomaredeterminedby

m1 = [tr(ΣY (W ⊗ Σ+))2 + tr(ΣY (W ⊗ Σ+))]/2r(Σ) and

m2 = [tr(ΣY (W ⊗ Σ+))2 − tr(ΣY (W ⊗ Σ+))]/2r(Σ),
(3.20)

where r(A) denotes the rank of matrix A.

In Theorem 3.2, if y is an n × 1 randomnormal vectorwithmean vector 0 and covariance C of order

n, the conditions (3.14)–(3.18) reduce to the familiar algebraic conditions.

Corollary 3.3. Let y ∼ Nn(0, C) with C ∈ Nn and W be a symmetric matrix of order n. Then y′Wy ∼
χ2(m1) − χ2(m2), a difference of two independent chi-square random variables, with m1, m2 ∈
{0, 1, 2, . . .} if and only if

(1) CWC = CWCWCWC /= 0; and
(2) tr(CW)2 + tr(CW) = 2m1, tr(CW)2 − tr(CW) = 2m2.

If C = I in Corollary 3.3, statement (1) of Corollary 3.3 reduces to the well-known tripotent con-

dition, W3 = W , which is the necessary and sufficient condition to a quadratic form y′Wy being
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distributed as a difference of two independent chi-squared random variables, see Luther [9] and

Graybill [4].

4. Algebraic conditions for the GL and independence of a family of matrix quadratic forms

Based on Theorem 3.1 and (1) of Lemma 2.4, we shall establish the following result on the GL and

independence of a family of matrix quadratic forms. In other words, we shall provide an extension of

Cochran’s theorem concerning the GL and independence of a family of matrix quadratic forms.

Similar to the discussion in Section 3, first let us consider the simplest case where the common

covariance Λ of independent Wishart randommatrices is diagonal.

Theorem 4.1. Suppose that Y ∼ Nn×p(0,ΣY )withΣY ∈ Nnp andWi’s are symmetricmatrices of order n.

Then Y ′W1Y, Y
′W2Y, . . . , Y

′WlY are independent and, for any i ∈ {1, 2, . . . , l}, Y ′WiY ∼ Wp(m1i,Λ) −
Wp(m2i,Λ) with m1i, m2i ∈ {0, 1, 2, . . .} and Λ = diag[σ1, σ2, . . . , σr , 0] ∈ Np if and only if there exist

positive real numbers σ1, σ2, . . . , σr (r � p) such that, for any distinct i, j ∈ {1, 2, . . . , l} and any t, t̃ in the

basic base Bp,

(a) ΣY [Wi ⊗ (tΛt̃ + t̃Λt)]ΣY = G(t, t̃,Λ, Wi,ΣY ) + G(t̃, t,Λ, Wi,ΣY );
(b) ΣY (Wi ⊗ Λ+)ΣY (Wi ⊗ t)ΣY = ΣY (Wi ⊗ t)ΣY (Wi ⊗ Λ+)ΣY ;
(c) {t : ΣY (Wi ⊗ t)ΣY = 0} = {t : ΛtΛ = 0};
(d) tr(ΣY (Wi ⊗ Λ+)ΣY (Wi ⊗ t)) + tr(ΣY (Wi ⊗ t)) = 2m1itr(Λt),

tr(ΣY (Wi ⊗ Λ+)ΣY (Wi ⊗ t)) − tr(ΣY (Wi ⊗ t)) = 2m2itr(Λt); and
(e) ΣY (Wi ⊗ Λ+)ΣY (Wj ⊗ Λ+)ΣY = 0.

Proof. Let {Y ′WiY}li=1 be an independent family of random matrices and Y ′WiY ∼ Wp(m1i,Λ) −
Wp(m2i,Λ) with m1i, m2i ∈ {0, 1, 2, . . .} and Λ = diag[σ1, σ2, . . . , σr , 0] ∈ Np, i = 1, 2, . . . , l. Then
(a)–(e) follow from Theorem 3.1 and (1) of Lemma 2.4.

Conversely, suppose that there exist positive real numbers σ1, σ2, . . . , σr (r � p) such that (a)–(e)

hold. For each i, from Theorem 3.1, Y ′WiY ∼ Wp(m1i,Λ) − Wp(m2i,Λ) with m1i, m2i ∈ {0, 1, 2, . . .}
andΛ = diag[σ1, σ2, . . . , σr , 0] ∈ Np. Toprove the independenceof a familyofmatrixquadratic forms,

by Lemma 2.4, it suffices to show (a) of Lemma 2.4, or equivalently,

ΣY (Wi ⊗ si)ΣY (Wj ⊗ sj)ΣY = 0, for si, sj ∈ Sp, (4.1)

from conditions (a)–(e).

Exactly as in the proof of Lemma 2.2, (4.1) is equivalent to

L(si ⊗ Wi)L
′L(sj ⊗ Wj)L

′ = 0, where L′L = ΣY ′ , si, sj ∈ Sp (4.2)

and condition (e) amounts to

L(Λ+ ⊗ Wi)L
′L(Λ+ ⊗ Wj)L

′ = 0. (4.3)

Then we only need to obtain (4.2) from statements (a)–(e).

For matrix si in set Sp, si can be written as

si =
[
a ∗
∗ ∗

]
p×p

where a ∈ Sr .

Write

s∗i =
[
a 0

0 0

]
p×p

where a ∈ Sr .

By (c), for any si, sj ∈ Sp,

L(si ⊗ Wi)L
′L(sj ⊗ Wj)L

′ = L(s∗i ⊗ Wi)L
′L(s∗j ⊗ Wj)L

′. (4.4)

Since, by (a) and (b),
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2L(s∗i ⊗ Wi)L
′ = L[(Λ+Λs∗i + s∗i ΛΛ+) ⊗ Wi]L′

= [L(Λ+ ⊗ Wi)L
′]2L(s∗i ⊗ Wi)L

′ + L(s∗i ⊗ Wi)L
′[L(Λ+ ⊗ Wi)L

′]2
= 2L(s∗i ⊗ Wi)L

′[L(Λ+ ⊗ Wi)L
′]2,

(4.5)

similarly,

L(s∗j ⊗ Wj)L
′ = [L(Λ+ ⊗ Wj)L

′]2L(s∗j ⊗ Wj)L
′, (4.6)

we obtain (4.2) from (4.3)–(4.6). So, we have completed the proof. �

In Theorem 4.1, condition (e) tells us that one equation can be used to reveal the independence of

a set of matrix quadratic forms if these matrix quadratic forms have the GL.

Next, we will consider the general case where the common covariance Σ of theseWishart random

matrices is nonnegative definite. Exactly as in the proof of Theorem 3.2, we can easily derive the

following theorem, an extension of Cochran’s theorem concerning the GL and independence of a set

of matrix quadratic forms, from Theorem 4.1 and (1) of Lemma 2.4 with an appropriate modification

by replacing Hp with Bp. See Hu [6, Chapter 4].

Theorem 4.2. Suppose that Y ∼ Nn×p(0,ΣY ) with ΣY ∈ Nnp andWi’s are symmetric matrix of order n.

Then Y ′W1Y, Y
′W2Y, . . . , Y

′WlY are independent and, for any i ∈ {1, 2, . . . , l}, Y ′WiY ∼ Wp(m1i,Σ) −
Wp(m2i,Σ) with m1i, m2i ∈ {0, 1, 2, . . .} and Σ ∈ Np if and only if there exists some Σ ∈ Np such that,

for any distinct i, j ∈ {1, 2, . . . , l} and any h, h̃ in the similar base Hp associated with Σ ,

(a) ΣY [Wi ⊗ (hΣ h̃ + h̃Σh)]ΣY = G(h, h̃,Σ , Wi,ΣY ) + G(h̃, h,Σ , Wi,ΣY );
(b) ΣY (Wi ⊗ Σ+)Σ(Wi ⊗ h)ΣY = ΣY (Wi ⊗ h)ΣY (Wi ⊗ �+)ΣY ;
(c) {h : ΣY (Wi ⊗ h)ΣY = 0} = {h : ΣhΣ = 0};
(d) tr(ΣY (Wi ⊗ Σ+)ΣY (Wi ⊗ h)) + tr(ΣY (Wi ⊗ h)) = 2m1itr(Σh),

tr(ΣY (Wi ⊗ Σ+)ΣY (Wi ⊗ h)) − tr(ΣY (Wi ⊗ h)) = 2m2itr(Σh); and
(e) ΣY (Wi ⊗ Σ+)ΣY (Wj ⊗ Σ+)ΣY = 0.

In Theorem 4.2, if we replace covariance ΣY of Y with the sum of special Kronecker products, we

have the following corollary, an application of Theorem 4.2 on a special case. See Hu [6, Chapter 4].

Corollary 4.3. Let Y ∼ Nn×p(0,ΣY ) with ΣY = ∑r
a=1 Aa ⊗ Eaa, r � p, Aa ∈ Nn, and Wi’s are symmet-

ric matrices of order n. Then Y ′W1Y, Y
′W2Y, . . . , Y

′WlY are independent and, for any i ∈ {1, 2, . . . , l},
Y ′WiY ∼ Wp(m1i,Σ) − Wp(m2i,Σ) with m1i, m2i ∈ {0, 1, 2, . . .} and Σ = ∑r

b=1 σbEbb if and only if

there exist positive real numbers σ1, σ2, . . . , σr (r � p) such that, for all a, b, c ∈ {1, 2, . . . , r} and any

distinct i, j ∈ {1, 2, . . . , l},
(1) AaWiAcWiAcWiAb = σ 2

c AaWiAb /= 0;
(2) σbAaWiAaWiAb = σaAaWiAbWiAb;
(3) AaWiAaWjAa = 0;
(4) tr(AaWi)

2/σ 2
a + tr(AaWi)/σ

2
a = 2m1i; and

(5) tr(AaWi)
2/σ 2

a − tr(AaWi)/σ
2
a = 2m2i.

5. Conditions for the noncentral GL of a matrix quadratic form

In this section and next section, Y is an n × p multivariate normal random matrix with nonzero

mean � and general covariance ΣY .

We shall use themoment generating functionM(s) of Y ′WY to extend Theorem 3.2 to the case of Y

having nonzero mean. The following theorem summarizes a set of sufficient and necessary algebraic

conditions for the noncentral GL of a matrix quadratic form.
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Theorem 5.1. Suppose Y ∼ Nn×p(�,ΣY ) with ΣY ∈ Nnp and W is a symmetric matrix. Then Y ′WY ∼
Wp(m1,Σ , �1) − Wp(m2,Σ , �2) with m1, m2 ∈ {0, 1, 2, . . .}, Σ ∈ Np and �1, �2 ∈ Mp×p if and only if

there exists some Σ ∈ Np such that, in addition to (3.14)–(3.18), for any s in a neighborhood N0 of 0 in Sp

and k = 1, 2, . . . ,

tr((�1 + �2)s(Σs)2k−1) = tr(
(W ⊗ s)[ΣY (W ⊗ s)]2k−1) (5.1)

and

tr((�1 − �2)s(Σs)2k) = tr(
(W ⊗ s)[ΣY (W ⊗ s)]2k) (5.2)

with

�1 − �2 = �′W� (5.3)

where 
 = vec(�)vec(�)′.

Proof. By Lemma 2.3, the moment generating functionM(s) of Y ′WY is expressed as

M(s) =
∣∣∣I − 2Σ

1/2
Y (W ⊗ s)Σ

1/2
Y

∣∣∣−1/2
exp{〈s, �′W�〉 + 2Φ0}, (5.4)

where Φ0 = 〈
, (W ⊗ s)Σ
1/2
Y [I − 2Σ

1/2
Y (W ⊗ s)Σ

1/2
Y ]−1Σ

1/2
Y (W ⊗ s)〉 and the spectral radius

of square matrix Σ
1/2
Y (W ⊗ s)Σ

1/2
Y is less than 1/2. So, Y ′WY ∼ Wp(m1,Σ , �1) − Wp(m2,Σ , �2)

is equivalent to Y ′WY = D1 − D2, where D1, D2 are independent and D1 ∼ Wp(m1,Σ , �1), D2 ∼
Wp(m2,Σ , �2). By (2.1),M1(s) of D1 andM2(s) of −D2 are given, respectively, by

M1(s) = |I − 2Σ∗|−m1/2exp{〈s, �1〉 + 2Φ1} (5.5)

and

M2(s) = |I + 2Σ∗|−m2/2exp{〈−s, �2〉 + 2Φ2}, (5.6)

where Σ∗ = Σ1/2sΣ1/2 for s ∈ Sp such that Sr(Σ∗) < 1/2 and Φi’s are defined in (2.2).

The independence of D1 and D2 and (5.4)–(5.6) imply that there exists a neighborhood N0 of 0 in

Sp such thatM(s) = M1(s)M2(s) for s ∈ N0. Using (5.4)–(5.6) and comparing the same items in both

sides of M(s) = M1(s)M2(s), we obtain the following conditions:

(i) |I − 2Σ
1/2
Y (W ⊗ s)Σ

1/2
Y |−1/2 = |I − 2Σ∗|−m1/2|I + 2Σ∗|−m2/2;

(ii) for any s ∈ N0, Φ0 = Φ1 + Φ2; and

(iii) �1 − �2 = �′W�,

which proves (5.3) as required.

By Lemma 7.1, the condition (i) is equivalent to (Y − �)′W(Y − �) ∼ Wp(m1,Σ) − Wp(m2,Σ).
Thus (3.14)–(3.18) follow from Theorem 3.2.

For any symmetric matrix s ∈ N0, we have

Φ1 = tr
(
�1[sΣs + 2s(Σs)2 + 22s(Σs)3 + · · ·]

)
, (5.7)

Φ2 = tr
(
�2[sΣs − 2s(Σs)2 + 22s(Σs)3 − · · ·]

)
(5.8)

and

Φ0 = tr
(

[(W ⊗ s)Υ + 2(W ⊗ s)Υ 2 + 22(W ⊗ s)Υ 3 + · · ·]

)
, (5.9)

where Υ = ΣY (W ⊗ s). Putting (5.7)–(5.9) into the equation Φ0 = Φ1 + Φ2 and then comparing its

both sides, with the arbitrariness of s close to 0, we obtain (5.1) and (5.2). Thus we have completed the

proof of the desired result. �
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The nonzero mean of Y results in conditions (5.1) and (5.2). In fact, we have obtained the following

relation between Y ′WY and (Y − �)′W(Y − �) in the proof of Theorem 5.1.

Corollary 5.2. Let Y ∼ Nn×p(�,ΣY )withΣY ∈ Nnp andW be symmetric.ThenY ′WY ∼ Wp(m1,Σ , �1)− Wp(m2,Σ , �2)withm1, m2 ∈ {0, 1, 2, . . .},Σ ∈ Np and�1,�2 ∈ Mp×p if and only if there exists some

Σ ∈ Np such that,

(a) (Y − �)′W(Y − �) ∼ Wp(m1,Σ) − Wp(m2,Σ); and
(b) for any s in a neighborhood N0 of 0 ∈ Sp and k = 1, 2, . . . ,

tr
(
(�1 + �2)s(Σs)2k−1

)
= tr

(

(W ⊗ s)[ΣY (W ⊗ s)]2k−1

)
,

tr
(
(�1 − �2)s(Σs)2k

)
= tr

(

(W ⊗ s)[ΣY (W ⊗ s)]2k

)

with �1 − �2 = �′W�.

6. Conditions for the noncentral GL and independence of a family of matrix quadratic forms

In this section, we shall use the moment generating functionM(s) of Y ′WY to extend Theorem 4.2

to the nonzero mean case of Y .

Based on Theorem5.1,we obtain the following extension of Cochran’s theoremconcerning the non-

central GL and independence of a family of matrix quadratic forms by putting Theorem 4.2, Theorem

5.1 and Lemma 2.4 together with an appropriate modification.

Theorem 6.1. Let Y ∼ Nn×p(�,ΣY ) with ΣY ∈ Nnp and Wi’s be symmetric matrices of order n. Then

Y ′WiY ∼ Wp(m1i,Σ , �1i) − Wp(m2i,Σ , �2i)withm1i, m2i ∈{0, 1, 2, . . .},Σ ∈ Np and �1i, �2i ∈ Mp×p

if and only if there exists some Σ ∈ Np such that, in addition to conditions (a)–(e) of Theorem 4.2, the

following statements (f) and (g) also hold.

(f) For any distinct i, j ∈ {1, 2, . . . , l} and t, t̃ ∈ Bp,

ΣY (Wi ⊗ t)ΣY (Wj ⊗ t̃)vec(�) = 0 and

vec(�)′(Wi ⊗ t)ΣY (Wj ⊗ t̃)vec(�) = 0; and

(g) for any s in a neighborhood N0 of 0 in Sp, i = 1, 2, . . . , l and k = 1, 2, . . . ,

tr
(
(�1i + �2i)s(Σs)2k−1

)
= tr

(

(Wi ⊗ s)[ΣY (Wi ⊗ s)]2k−1

)
and

tr
(
(�1i − �2i)s(Σs)2k

)
= tr

(

(Wi ⊗ s)[ΣY (Wi ⊗ s)]2k

)

with �1i − �2i = �′Wi�.

Finally, let us look at a special case ΣY = A ⊗ Σ of Theorem 6.1 investigated by Tan [21].

Corollary 6.2. In Theorem 6.1, suppose that ΣY = A ⊗ Σ for some A ∈ Nn and Σ ∈ Np. Then Y ′W1Y,

Y ′W2Y, . . . , Y
′WlY are independent and, for each i, Y ′WiY ∼ Wp(m1i,Σ , �1i) − Wp(m2i,Σ , �2i) with

m1i, m2i ∈ {0, 1, 2, . . .}, Σ ∈ Np and �1i, �2i ∈ Mp×p if and only if for any distinct i, j ∈ {1, 2, . . . , l},
(1) AWiAWiAWiA = AWiA /= 0;
(2) tr(AWi)

2 + tr(AWi) = 2m1i, tr(AWi)
2 − tr(AWi) = 2m2i;

(3) �1i + �2i = �′WiAWi� = �′WiAWiAWiAWi�, �1i − �2i = �′Wi� = �′WiAWiAWi�;
(4) AWiAWjA = 0;
(5) AWiAWj� = 0; and
(6) �′WiAWj� = 0.
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7. Concluding remarks

In this article, we obtain a set of the sufficient and necessary conditions under which a matrix

quadratic form Y ′WY with a symmetric W and a general ΣY is distributed as a difference of two

independent (noncentral)Wishart randommatrices, namely, having the (noncentral) GL. Based on the

results, we then establish some general extensions of Cochran’s theorem concerning the (noncentral)

GL and independence of a set of matrix quadratic forms.

It should be noted that it is challenging research for us to obtain a set of sufficient and neces-

sary conditions under which a matrix quadratic form Y ′WY with symmetric matrix W and a gen-

eral covariance ΣY of Y is distributed as a linear combination of independent Wishart random

matrices.
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Appendix

Lemma 7.1. Let Y ∼ Nn×p(0,ΣY ) and Σ ∈ Np. Then the following statements are equivalent.

(a) Y ′WY ∼ Wp(m1,Σ) − Wp(m2,Σ);
(b) for any s ∈ Sp,∣∣∣Inp − 2Σ

1/2
Y (W ⊗ s)Σ

1/2
Y

∣∣∣ =
∣∣∣Ip − 2Σ1/2sΣ1/2

∣∣∣m1
∣∣∣Ip + 2Σ1/2sΣ1/2

∣∣∣m2 ;
(c) Σ

1/2
Y (W ⊗ s)Σ

1/2
Y and diag[Im1

⊗ Σ1/2sΣ1/2,−Im2
⊗ Σ1/2sΣ1/2, 0] have the same character-

istic polynomial for all s ∈ Sp; and
(d) for any positive integer k and any s ∈ Sp,

tr(ΣY (W ⊗ s))k =
(
m1 + (−1)km2

)
tr(Σs)k.

Proof. LetΣ∗ = Σ1/2sΣ1/2. From Lemma 2.3 and (2.2) with �1 = �2 = 0, (a) is equivalent to (a′) for
any s ∈ Sp such that Sr(Σ∗) < 1/2 and Sr(Σ

1/2
Y (W ⊗ s)Σ

1/2
Y ) < 1/2,

∣∣∣Inp − 2Σ
1/2
Y (W ⊗ s)Σ

1/2
Y

∣∣∣−1/2 = |Ip − 2Σ∗|−m1/2|Ip + 2Σ∗|−m2/2.

It’s obvious that (a′) follows from (b). And (b) is obtained from (a′) by analytic continuation. Thus (a)

and (b) are equivalent.

Replace s with s/2λ (nonzero λ ∈ �) in (b) and multiplying both sides of (b) by λnp. Then (b)

amounts to∣∣∣λInp − Σ
1/2
Y (W ⊗ s)Σ

1/2
Y

∣∣∣ = |λIp − Σ∗|m1 |λIp + Σ∗|m2 |λIp − 0|(n−m1−m2).

So (c) is equivalent to (b). (c) amounts to thatmatrixΣ
1/2
Y (W ⊗ s)Σ

1/2
Y anddiagonalmatrixdiag[Im1

⊗
Σ∗,−Im2

⊗ Σ∗, 0] in Snp have the same spectrum {λj}npj=1. Equivalently, for any positive integer k and

any s ∈ Sp, we have

tr
(
Σ

1/2
Y (W ⊗ s)Σ

1/2
Y

)k = tr
(
diag[Im1

⊗ Σ∗,−Im2
⊗ Σ∗, 0])k ,

which proves the equivalence between (c) and (d) via appropriate Kronecker operations. So the proof

is complete. �
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Lemma 7.2. Assume that C-conditions holds. Then there exists an orthogonal matrix H, not depending on

i, such that

Bii = H(eii ⊗ Aii)H
′, (A.1)

where Aii = diag[Uii, Vii, 0] ∈ Mn×n and Uii = Im1
, Vii = −Im2

and

Bij = H(eij ⊗ Aij + eji ⊗ Aji)H
′/2, (A.2)

where Aij = diag[Uij, Vij, 0] ∈ Mn×n, Uij ∈ Mm1×m1
, Vij ∈ Mm2×m2

and A′
ij = Aji, UijU

′
ij = Im1

,

VijV
′
ij = Im2

.

Proof. It follows from condition (C2) that

B
2k+1
ii = Bii, tr

(
B
2k+1
ii

)
= m1 − m2, tr

(
B2kii

)
= m1 + m2, k = 1, 2, . . . (A.3)

By (A.3) and (C3) we may choose an orthogonal matrix H, not depending on i, such that (A.1) holds.

Thus using (C3), (C4) and (A.3) it is easily shown that for i /= j, ||Bij − 4B3ij||2 = 0 and so

Bij = 4B3ij , i /= j. (A.4)

Combining (C4) with (A.4) we obtain, for i /= j, (B2ii + B2jj)Bij = 4B2ijBij = Bij . The symmetry of Bij
then yields

Bij = (B2ii + B2jj)Bij(B
2
ii + B2jj), i /= j. (A.5)

For i /= j, using eii ⊗ Aii, ejj ⊗ Ajj and H′BijH to replace Bii, Bjj and Bij , we get (A.2) from (A.5), which

completes the proof. �

The following lemma is due toMasaro andWong [11] and its proof is also found inHu [6], Appendix.

Lemma 7.3. Let Y ∼ Nn×p(0,ΣY )withΣY ∈ Nnp andW bea symmetricmatrix of order n. ThenY ′WY ∼
Wp(m1,Λ) − Wp(m2,Λ)withm1,m2 ∈ {0, 1, . . .}andΛ = diag[σ1, . . . , σr , 0] ∈ Np if andonly if there

exist positive real numbers σ1, σ2, . . . , σr (r � p) such that C-conditions hold.
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