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Complexity of Langton’s ant
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Abstract

The virtual ant introduced by Langton [Physica D 22 (1986) 120] has an interesting behav-
ior, which has been studied in several contexts. Here we give a construction to calculate any
boolean circuit with the trajectory of a single ant. This proves the P-hardness of the system
and implies, through the simulation of one-dimensional cellular automata and Turing machines,
the universality of the ant and the undecidability of some problems associated to it. ? 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

The virtual ant is a system de=ned by Langton [14,8,11] on the two-dimensional
square lattice: each cell is in one of two states, to-left or to-right. The ant is an arrow
between two adjacent cells. It moves one cell forward at each time step, in the direction
it is heading. That direction is changed according to the state of the cell where the ant
arrives (it turns to the left or to the right); the state of the cell is changed after the ant’s
visit. The ant may be seen as a cellular automaton with von Neumann’s neighborhood,
or as the head of a two-dimensional Turing machine. Interesting behavior follows: a
single ant, starting with all cells in to-left state, has a more or less symmetric trajectory
in the =rst 500 steps; then it goes seemingly randomly for about 10,000 steps, until it
suddenly starts building an in=nite diagonal “highway” (a periodic motion with drift).
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The complex behavior of such a “simple” system motivated several studies, both
experimental and analytical, as well as some generalizations and variants. The rule has
been generalized to allow more than two states of the cell [1,3,5,9,10], and to consider
several ants [1,4]. It has also been adapted to diKerent regular lattices [12,14,19,6,7]
and to planar =nite graphs [15].
The ant has been studied as a paradigm for signal propagation in random media,

in particular, as a model of a particle in 2D Lorentz Lattice Gases when the particle
interacts with the scatterers that occupy the space and aKect its trajectory [13].

1.1. Concepts from Complexity Theory

A decision problem is one where the solution, for a given instance, is yes or no. It
is said to be decidable if there is an algorithm which answers the question in a =nite
time.
Decidable problems are classi=ed in complexity classes, which describe the amount

of work needed to solve them. An important class is P: problems whose solution can
be found in polynomial time. A problem to which any problem in P can be reduced
is called P-hard; if it also belongs to P, is called P-complete. Thus, to show that a
problem is P-hard, it is enough to reduce a P-complete problem to it. Here we say that
a problem A is reduced to a problem B (equivalently, that B reduces A), if there is
a function R computable using a logarithmic amount of space in the size of the input,
such that x is a positive instance of A iK R(x) is one of B.
We say that a system is universal if it may simulate a universal Turing machine.

This notion of universality implies, in particular, the existence of undecidable problems.
The complexity and undecidability of problems associated to a dynamical system,

as well as the existence of some kind of universality in it, are ways to measure the
unpredictability of the system. For de=nitions and results from Complexity Theory, we
refer to [16].

1.2. Previous results

There are very few results concerning the dynamics of the ant. The main one says
that for any initial con6guration, the trajectory of the ant is unbounded [2]. This has
been generalized to the following: the set of cell that are visited in=nitely often by
the ant (for a given initial con=guration) has no corners [18]. A corner of a set is a
cell where at least two neighbors are not in the set, and these are not opposite to each
other.
Unfortunately, it does not tell us anything else about the behavior of the ant in

the long term. The experiments, however, suggest that the long-term behavior of the
ant, although unbounded, is unbounded in a highly repetitive way. Speci=cally, it is
conjectured: For any initial con6guration with 6nite support, the ant eventually starts
building the periodic highway, in some unobstructed direction. (Here, a con=guration
is said to have =nite support if all but a =nite number of cells are in the same state.) If
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the conjecture is true, then any problem associated to the ant, whose input is an initial
con=guration with =nite support, is decidable, for in that case, it suNces to iterate on
the con=guration until the highway appears. The question may be answered at that
point, since the future dynamics is easily predicted.

1.3. Results

We will present a construction that will allow the representation of any boolean
circuit as a =nite con=guration in the lattice. The input variables are represented with
the states of certain cells, the calculation of the circuit is performed by the trajectory
of a single ant, and the result is written, again, as the states of certain cells. The =rst
consequence of this construction is a lower bound for the complexity of the system:

There exists a problem (“does the ant ever visit this given cell?”) which reduces
a P-complete problem (the calculation of a boolean circuit) and therefore is
P-hard.

On the other hand, the construction allows us to simulate any linear cellular automaton
for con=gurations where only a =nite number of cells change their states at each time.
The consequences are two:

The system is capable of universal computation, since it is able to simulate the
dynamics of a universal Turing machine.
There are undecidable problems associated to the behavior of the ant.

2. Construction of circuits

Given any boolean circuit, we will show how to build a con=guration, where the
input variables are represented by states at certain locations, and the result is calcu-
lated by the trajectory of a single ant (and is written in a predetermined location).
For technical reasons, each of our one-bit input and output registers consist of two
horizontally adjacent cells rather than one; this makes it possible for the ant to visit a
register without visiting any other nearby cells in that row, and will be seen later to
facilitate the re-use of the output register of one logic gate as an input register to a
later gate. We construct logical gates with the form described in Fig. 1.
At the top of the gate, we have some cells whose states represent the input. At the

bottom, some cells represent the output; at the beginning, all output cells are in the
to-left state which will represent the logical value false. The ant enters the gate from
the left, follows some path inside of the gate, and exits the gate heading to the right.
While being in the gate, the ant visits the input cells, and visits (and switches) the
correct output cells, according to the function which the gate represents. The changes
are done from inside, thus allowing the output cell to be used as the input cell for
another gate.
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Fig. 1. A sketch of a gate. The ant computes the logical gate and changes the states of the output cells. At
the beginning the output cells are in the to-left state, representing the logical value false.

Fig. 2. The XOR function, built upon AND, NOT, Cross, Copy and Duplicate gates. The ant computes the
logical circuit (∼ (i1 ∧ i2)∧ ∼ (∼ i1∧ ∼ i2)) row by row. The circuit is satis=ed iK the ant visits the output
cell, for the given input.

To compute a boolean circuit we just put the input variables in some cells at the
top of the con=guration (see Fig. 2), and for the consecutive stages of evaluation we
put consecutive rows of logical gates. The ant will go through every row, starting with
the upper one. After going through the last row, the state of the last output cell will
contain the evaluation of the circuit for the given input (to change from one row to
the next we must construct right-to-left versions of the gates, thus allowing the ant to
compute alternate rows in diKerent directions). After that, we assure that the ant will
never return to this cell by leading it to a “highway seed” (see Fig. 3).
To write a boolean circuit it is enough to have the NOT and the AND functions.

To construct the circuit we also use gates that allow us to duplicate, cross and copy
variables.
The way to design the gates is represented in Fig. 4. Let us describe how the NOT

gate works. The ant visits the input cell, and depending on its state the ant will follow
diKerent paths. If the input cell is in the to-left state (logical value false), the ant
goes to the output cell and changes its state from false to true, and then exits. If the



A. Gajardo et al. / Discrete Applied Mathematics 117 (2002) 41–50 45

Fig. 3. Highway seed. After entering at the indicated point, the ant never crosses the bold lines again, and
starts building a highway in the direction of the diagonal arrow. White stands for the to-left state, black for
to-right.

Fig. 4. A simpli=ed scheme of the gates. The ant follows one of the paths in each gate.

input cell is in the to-right state (logical value true), the ant goes directly to the exit.
This is the general scheme of the gates: Some of the allowed trajectories pass through
the output register(s) and some do not, before they rejoin. The ant chooses its path
through the gate in accordance with the input registers, either passes through the output
register(s) (changing the states) or not, and then exits the gate.
Now, let us see how the gates can be embedded in the lattice. Fig. 5 shows the

con=gurations for three kinds of crossings (A, B, C), the junction (J), and the paths.
• A: if the ant =rst enters at 1, it exits at 2. If afterwards it enters at 3, it exits at 4
(see Fig. 5).

• B: if the ant =rst enters at 1, it exits at 2. If afterwards it enters at 3, it exits at 4.
But if it enters =rst at 3, it also exits at 4.
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Fig. 5. Three kinds of crossings, a junction and a path.

Fig. 6. AND and NOT gates.

• C: it works as B, but with diKerent relative positions of the input cells.
• J: if the ant enters by 1 or by 2, it exits by 3.
• path: is the con=guration that forces the ant to follow a determined trajectory, al-
lowing it to visit the input and the output cells in the required way. A double line
with a free extremity may be used as a bent path, since the ant will use both sides,
turning around the extremity.

Figs. 6–8 show the =nal version of the logical gates.

3. Discussion

The following problem is known to be P-complete [17]:
(B) Given a boolean circuit (BC) and a truth assignment. Does the truth assignment

satisfy (BC)?
In the previous section we established a function that transforms an instance of (B)

into an instance of the following problem:
(P) Given a =nite initial con=guration of Z2, a given initial position of the ant and

a cell �. Does the ant ever visit �?
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Fig. 7. Cross gate.

Fig. 8. Copy and Duplicate gates. The location of the output in the Copy gate can be changed in the
horizontal axis, allowing us to =t the positions of the output variables of a row into the inputs of the
following row.

Since an instance of (B) is positive if and only if its image in (P) is positive, the
transformation is a reduction from (B) to (P). This reduction is polynomial: the number
of rows in the gate is bounded by two times the height (H) of the BC plus the number
of crossings, i.e., 2H +W 2H , where W is the width of the BC. The number of gates
in each row is bounded by W . That implies that the number of to-right cells necessary
to simulate an H ×W BC is bounded by 2SWH (W 2 + 1) = o(W 3H), where S is the
maximum number of to-right cells in a single logical state. The algorithm that de=nes
the simulating con=guration in Z2 needs only logarithmic space; all it has to do is to
read and translate the boolean circuit. For this purpose, it has to memorize numbers
such as the position of the symbol that is being translated and the current height of
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Fig. 9. The ant simulates each iteration of the CA in a row of gates, crosses the repetitions of the outputs
(preparing the next input) and goes to the next row. R stands for the circuit that calculates the rule.

the circuit; these numbers are bounded by the size of the input, and can be recorded
in logarithmic space. The output of this “drawing” algorithm is the list of coordinates
of cells in the to-right state, and is polynomial in the length of the input. This is all
we need to legitimate the reduction, and we conclude that (P) is P-hard.
In a cellular automata (CA), a quiescent state is de=ned by the following property:

if a cell and all its neighbors are in the quiescent state, the cell remains in it at
the next iteration. Hence, all the dynamics of the system takes place at the cells in
non-quiescent states and their neighbors. An initial con=guration with a =nite support
(number of non-quiescent states) will keep this property through the iterations of the
CA.
Remember that the CA transition rule can be calculated with a multi-output =nite

boolean circuit. So, for a given linear CA with quiescent state, we can de=ne an initial
con=guration on the lattice consisting of in=nitely many copies of this circuit, arranged
in an in=nite trapezoidal array with top row of length L, as shown in Fig. 9. Any
initial con=guration of the CA whose support has width less than L can be written as
the input of the =rst row, and the ant simulates the CA. For widths bigger than L,
just put the initial con=guration in a lower row, and let the ant start running from the
appropriate cell.
It follows that the undecidability of some CA problems is inherited by the ant system.

For instance, the problem of knowing whether a given (=nite) word v will ever appear
in the evolution of a given linear CA, for a given initial con=guration with (=nite)
support u, is reduced to the problem of deciding whether a given (=nite) block ever
appears in the evolution of the ant, for a given (in=nite) initial con=guration of the
lattice. Since a Turing machine can be simulated by a linear CA with quiescent state,
the ant is also universal.
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4. Conclusions

The construction given here leads us to the following results about the dynamics of
a single Langton’s ant:
• The system is P-hard, in the sense that it admits a P-hard problem. The P-hard
problem that was shown is associated with initial con=gurations with =nite support.

• The system is capable of universal computation. In spite of being a rather weak
notion of universality (which requires an in=nite – but =nitely described – con=gu-
ration), it shows that the dynamics of the system is highly unpredictable.

• A direct consequence of the previous point is the existence of undecidable problems.
We notice that this result refers to problems associated with initial con=gurations
with in=nite support.

There are some open issues related to these results. One of them relates to the complex-
ity; the existence of universal computation suggest that P-hardness is far from being a
tight lower bound, and it would be interesting to reduce some NP-complete problem
to a problem of our system.
On the other hand, the decidability of problems whose input is a con=guration with

=nite support remains an open question. A positive answer would be given if the
conjecture stated in Section 1.2 is found to be true.
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