Discrete Mathematics 48 (1984) 61-65 North-Holland

ENUMERATION OF INTERSECTING FAMILIES

P. ERDÖS

Í

Hungarian Academy of Sciences, Budapest, Hungary

N. HINDMAN*

Howard University, Washington, DC 20059, USA

Received 20 April 1982 Revised 18 February 1983

It is shown that the logarithm to the base 2 of the number of maximal intersecting families on m elements is asymptotically equal to $\binom{m-1}{n-1}$ where $n = \lfloor \frac{1}{2}m \rfloor$.

1. Introduction

For a natural number m, let $m = \{1, 2, ..., m\}$. An intersecting family on m is a set \mathscr{A} of sets such that $\bigcup \mathscr{A} \subseteq m$ and any two members of \mathscr{A} have non-empty intersection. We let \mathscr{I}_m be the set of all maximal intersecting families on m. We are concerned with estimating $|\mathscr{I}_m|$.

In Section 2 we obtain a lower bound by elementary counting methods. In Section 3 we obtain an upper bound using a result of Kleitman and Markowsky on the number of monotone Boolean functions.

Notice that if in the definition of intersecting families, the requirement that any two members of A have non-empty intersection is raised to any three members, the problem becomes trivial. Indeed, by [1, Remark 7.5] any maximal intersecting family would be an ultrafilter; that is it would consist of all subsets of m containing some singleton.

2. A lower bound and statistical remarks

We observe that an intersecting family \mathcal{A} on m is maximal if and only if for every $A \subseteq m$, either $A \in \mathcal{A}$ or $m \setminus A \in \mathcal{A}$. Observe also that if \mathcal{A} is an intersecting family on m, $A \in \mathcal{A}$, and $A \subseteq B \subseteq m$, then $B \in \mathcal{A}$.

2.1. Definition. A subset \mathfrak{B} of $\mathfrak{P}(\mathfrak{m})$ is a free choice family on \mathfrak{m} if and only if whenever $\mathscr{C} \subseteq \mathfrak{B}, \mathscr{C} \cup \{\mathfrak{m} \setminus B : B \in \mathfrak{B} \setminus \mathscr{C}\}$ is an intersecting family.

We denote by $[A]^k$ the set of k-element subsets of A.

* This author gratefully acknowledges support from the National Science Foundation (USA) under grant MCS 81-00733.

0012-365X/84/\$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)

2.2. Lemma. Let $n = \lfloor \frac{1}{2}m \rfloor$ and let $\mathfrak{B} = \{A \in [m]^n : 1 \in A\}$. Then \mathfrak{B} is a free choice family on m with largest possible cardinality.

Proof. Trivially any two members of \mathfrak{B} have non-empty intersection. Distinct members of $\{\mathfrak{m} \setminus B; B \in \mathfrak{B}\}$ must meet because of their size. Likewise, if $B, C \in \mathfrak{B}$ and $B \cap (\mathfrak{m} \setminus C) = \emptyset$, then B = C. Thus \mathfrak{B} is a free choice family on \mathfrak{m} with cardinality $\binom{m-1}{n-1}$.

By Theorem 1 of [1], if \mathscr{C} is an intersecting family on m, each $A \in \mathscr{C}$ has $|A| \leq n$, and whenever A and B are distinct members of \mathscr{C} neither $A \subseteq B$ nor $B \subseteq A$, then $|\mathscr{C}| \leq \binom{m-1}{n-1}$. Given a free choice family \mathscr{D} on m, let $\mathscr{C} = \{A \in \mathscr{D}: |A| \leq n\} \cup \{m \setminus A: A \in \mathscr{D} \text{ and } |A| > n\}$. Then \mathscr{C} satisfies the conditions above, so \mathscr{C} (and hence \mathscr{D}) has at most $\binom{m-1}{n-1}$ elements. \Box

Lemma 2.2 yields immediately a lower bound of $2^{\binom{m-1}{n-1}}$ for $|\mathscr{I}_m|$. As we shall see this is an asymptotically correct value in the exponent. However we do manage to raise the lower bound somewhat by considering free choices which remain given a particular choice from \mathfrak{B} .

2.3. Theorem. Let $n = \lfloor \frac{1}{2}m \rfloor$.

- (a) If m = 2n, then $|\mathcal{I}_m| \ge 2^{\binom{m-1}{n-1} + \binom{m}{n-1}/2^{n+1}}$
- (b) If m = 2n + 1, then $|\mathcal{I}_m| \ge 2^{\binom{m-1}{n-1} + \binom{m-2}{n-1}/2^n}$.

Proof. Let $\mathfrak{B} = \{A \in [m]^n : 1 \in A\}$. Given $\mathfrak{F} \subseteq \mathfrak{B}$, let $\mathscr{C}(\mathfrak{F}) = \mathfrak{F} \cup \{m \setminus B : B \in \mathfrak{B} \setminus \mathfrak{F}\}$ (so that $\mathscr{C}(\mathfrak{F})$ is the choice induced by \mathfrak{F}). If $\mathfrak{F} \subseteq \mathfrak{B}$ and m = 2n, let

 $\mathcal{D}(\mathcal{F}) = \{ A \in [m]^{n+1}: \text{ for all } B \in \mathscr{C}(\mathcal{F}), B \setminus A \neq \emptyset \}.$

If $\mathcal{F} \subseteq \mathcal{B}$ and m = 2n + 1, let

 $\mathcal{D}(\mathcal{F}) = \{ A \in [m]^{n+1} \colon \{1, 2\} \subseteq A \text{ and for all } B \in \mathscr{C}(\mathcal{F}), B \setminus A \neq \emptyset \}.$

For any $\mathscr{F} \subseteq \mathscr{B}$, let $d(\mathscr{F}) = |\mathscr{D}(\mathscr{F})|$. We claim that

(*) If $\mathscr{F} \subseteq \mathscr{B}$ and $\mathscr{G} \subseteq \mathscr{D}(\mathscr{F})$, then $\mathscr{C}(\mathscr{F}) \cup \mathscr{G} \cup \{\mathfrak{m} \setminus A : A \in \mathscr{D}(\mathscr{F}) \setminus \mathscr{G}\}$ is an intersecting family.

To see (*) note that $\mathfrak{D}(\mathscr{F})$ was defined so that whenever $B \in \mathscr{C}(\mathscr{F})$ and $A \in \mathfrak{D}(\mathscr{F})$, both $B \cap A$ and $B \cap (\mathfrak{m} \setminus A)$ are non-empty. Also if $A, B \in \mathfrak{D}(\mathscr{F})$ and $A \neq B$, then $B \cap A$ and $B \cap (\mathfrak{m} \setminus A)$ are non-empty by virtue of their sizes. (If one had $B \cap (\mathfrak{m} \setminus A) = \emptyset$ one would have B = A). Consequently we need only show that if $A, B \in \mathfrak{D}(\mathscr{F})$ and $A \neq B$, then $(\mathfrak{m} \setminus A) \cap (\mathfrak{m} \setminus B) \neq \emptyset$. If m = 2n + 1, then $\{1, 2\} \subseteq A \cap B$ and hence $|A \cup B| \leq 2n$ so we can assume m = 2n. Suppose $(\mathfrak{m} \setminus A) \cap (\mathfrak{m} \setminus B) = \emptyset$. Then $A \cup B = \mathfrak{m}$ so $|A \cap B| = 2$. Pick $x, y \in \mathfrak{m}$ such that $A \cap B = \{x, y\}$. Then either $\{x\} \cup (A \setminus B)$ or $\{y\} \cup (B \setminus A)$ is in $\mathscr{C}(\mathscr{F})$ and we may assume the former. Then since $\{x\} \cup (A \setminus B) \subseteq A$ we have $A \notin \mathfrak{D}(\mathscr{F})$, a contradiction.

Since (*) holds, we have $|\mathcal{I}_m| \ge \sum_{\mathcal{F} \subseteq \mathcal{B}} 2^{d(\mathcal{F})}$

Let $G = \{(\mathcal{F}, A): \mathcal{F} \subseteq \mathfrak{B} \text{ and } A \in \mathfrak{D}(\mathcal{F})\}$. We count G in two ways. On the one hand $|G| = \sum_{\mathcal{F} \subseteq \mathfrak{B}} d(\mathcal{F})$. Given $A \in [m]^{n+1}$ (with $\{1, 2\} \subseteq A$ if m = 2n+1) and $\mathcal{F} \subseteq \mathfrak{B}$, we have $A \in \mathfrak{D}(\mathcal{F})$ if and only if no subset of A is in $\mathscr{C}(\mathcal{F})$. Assume now m = 2n and $A \in [m]^{n+1}$. There are n+1 *n*-element subsets of A and $\binom{m-1}{n-1}$ elements of \mathfrak{B} so $|\{\mathcal{F} \subseteq \mathfrak{B}: A \in \mathfrak{D}(\mathcal{F})\}| = 2^{\binom{m-1}{n-1}-n-1}$. Since $|[m]^{n+1}| = \binom{m}{n+1} = \binom{m}{n-1}$ we have

$$|G| = {\binom{m}{n-1}} \cdot 2^{\binom{m-1}{n-1}-n-1}$$

Now assume m = 2n + 1 and $A \in [m]^{n+1}$ with $\{1, 2\} \subseteq A$. Any subset B of A which is in $\mathscr{C}(\mathscr{F})$ must in fact be in \mathscr{F} and hence must have $1 \in B$. There are n such n-elements subsets so $|\{\mathscr{F} \subseteq \mathscr{B}: A \in \mathscr{D}(\mathscr{F})\}| = 2^{\binom{m-1}{n-1}-n}$. Since $|\{A \in [m]^{n+1}: \{1, 2\} \subseteq A\}| = \binom{m-2}{n-1}$ we have

$$|G| = {\binom{m-2}{n-1}} \cdot 2^{\binom{m-1}{n-1}-n}.$$

Let $\overline{d} = (\sum_{\mathscr{F} \subseteq \mathscr{B}} d(\mathscr{F}))/|\mathscr{P}(\mathscr{B})|$. (Thus \overline{d} is the mean value of the $d(\mathscr{F})$'s.) We have then

$$|\mathcal{I}_{m}| \geq \sum_{\mathcal{F} \subseteq \mathfrak{B}} 2^{d(\mathcal{F})} \geq \sum_{\mathcal{F} \subseteq \mathfrak{B}} 2^{\bar{d}} = 2^{\binom{m-1}{n-1} + \bar{d}}$$

Inserting the value for \overline{d} obtained by our double counting of G we have the desired result. \Box

We now restrict our attention to the simpler case when m = 2n and discuss the distribution of $\{d(\mathcal{F}): \mathcal{F} \subseteq \mathcal{B}\}$. We obtained above the value $\binom{m}{n-1}/2^{n+1}$ for the mean by counting twice the set $\{(\mathcal{F}, A): \mathcal{F} \subseteq \mathcal{B} \text{ and } A \in \mathcal{D}(\mathcal{F})\}$, we can also compute the variance by counting twice the set

$$\{(\mathcal{F}, A, B): \mathcal{F} \subseteq \mathcal{B}, A \in \mathcal{D}(\mathcal{F}), \text{ and } B \in \mathcal{D}(\mathcal{F})\}.$$

(In this computation we consider separately pairs (A, B) where A = B, $|A \cap B| = n$, and $3 \le |A \cap B| \le n-1$. As we saw earlier if $|A \cap B| = 2$, then for no $\mathscr{F} \subseteq \mathscr{B}$ do we have $A \in \mathscr{D}(\mathscr{F})$ and $B \in \mathscr{D}(\mathscr{F})$.) This computation yields the result (for $n \ge 3$)

$$\sum_{\mathscr{F}\subseteq\mathscr{B}} (d(\mathscr{F}) - \bar{d})^2 = \binom{m}{n-1} 2^{\binom{m-1}{n-1}-n-1} (1 + (n^2 - n - 4)2^{-n-2})$$

so that the variance is $\binom{m}{n-1}/2^{n+1} \cdot (1+o(1))$.

3. An upper bound

Let \mathscr{G}_m be the set of antichains in $\mathscr{P}(\mathbf{m})$. (A set $\mathscr{A} \subseteq \mathscr{P}(\mathbf{m})$ is an anti-chain provided that whenever $A, B \in \mathscr{A}$ with $A \subseteq B$ one has A = B). It was shown in [3], improving an earlier result [2], that there is a constant c such that $|\mathscr{G}_m| < 2^{(1+c \log m/m) \binom{m}{m}}$ where $n = [\frac{1}{2}m]$. We show in this section that $|\mathscr{G}_m| \leq |\mathscr{G}_{m-1}|$.

3.1. Definition. Define a function g on \mathscr{I}_m by $g(\mathscr{A}) = \{A \subseteq m - 1: A = B \cap m - 1 \text{ for some } B \in \mathscr{A} \text{ and there does not exist } C \in \mathscr{A} \text{ such that } C \cap m - 1 \subseteq A\}.$

3.2. Lemma. Let $\mathcal{A} \in \mathcal{I}_m$ and let $A \subseteq m-1$.

(a) $A \cup \{m\} \in \mathcal{A}$ if and only if there exists $B \in g(\mathcal{A})$ such that $B \subseteq A$.

(b) $A \in \mathcal{A}$ if and only if there exists $B \in g(\mathcal{A})$ such that $B \subseteq A$ and there does not exist $C \in g(\mathcal{A})$ such that $C \cap A = \emptyset$.

Proof. (a) Assume $A \cup \{m\} \in \mathcal{A}$. Pick $D \in \mathcal{A}$ such that $D \subseteq A \cup \{m\}$ and $|D \cap m - 1|$ is minimal among all such members of \mathcal{A} . Let $B = D \cap m - 1$. Then $B \in g(\mathcal{A})$ and $B \subseteq A$.

Now assume we have $B \in g(\mathcal{A})$ such that $B \subseteq A$. Pick $D \in \mathcal{A}$ such that $D \cap m - 1 = B$. Then $D \subseteq A \cup \{m\}$ so $A \cup \{m\} \in \mathcal{A}$.

(b) Assume $A \in \mathcal{A}$. Then $A \cup \{m\} \in \mathcal{A}$ so by (a) we have some $B \in g(\mathcal{A})$ such that $B \subseteq A$. Suppose we have $C \in g(\mathcal{A})$ such that $C \cap A = \emptyset$. Pick $D \in \mathcal{A}$ such that $D \cap m - 1 = C$. Then $D \cap A = \emptyset$, a contradiction.

Finally assume we have some $B \in g(\mathscr{A})$ such that $B \subseteq A$ and have no $C \in g(\mathscr{A})$ such that $C \cap A = \emptyset$. By (a) we have $A \cup \{m\} \in \mathscr{A}$. Suppose that $A \notin \mathscr{A}$ so that $m \setminus A \in \mathscr{A}$. Again by (a) pick $C \in g(\mathscr{A})$ such that $C \subseteq m \setminus A$. Then $C \cap A \notin \emptyset$, a contradiction. \Box

3.3. Theorem. The function g is one-to-one and takes \mathscr{I}_m to \mathscr{I}_{m-1} .

Proof. By Lemma 3.2, \mathscr{A} is completely determined by $g(\mathscr{A})$ so g is one-to-one. Let $\mathscr{A} \in \mathscr{I}_m$. To see that $g(\mathscr{A}) \in \mathscr{S}_{m-1}$ suppose instead we have $B, C \in g(\mathscr{A})$ with $C \subsetneq B$. Pick $D, F \in \mathscr{A}$ such that $D \cap m - 1 = B$ and $E \cap m - 1 = C$. Then $E \cap m - 1 \subsetneq B$ so $B \notin g(\mathscr{A})$. \Box

3.4. Corollary. Let $n = \begin{bmatrix} \frac{1}{2}m \end{bmatrix}$. There is a constant c such that:

(a) If m = 2n, then $|\mathscr{I}_{m}| \leq 2^{(1+c\log m/m)\binom{m-1}{n-1}}$. (b) If m = 2n + 1, then $|\mathscr{I}_{m}| \leq 2^{(1+c\log m/m)\binom{m-1}{n}}$.

Proof. By Theorem 3.3, $|\mathscr{I}_m| \leq |\mathscr{I}_{m-1}|$ so the theorem of Kleitman and Markowsky cited above applies. \Box

3.5. Corollary. $\log_2 |\mathscr{I}_m|$ is asymptotically equal to $\binom{m-1}{n}$ where $n = \lfloor \frac{1}{2}m \rfloor$.

Proof. Theorem 2.3 and Corollary 3.4.

References

- P. Erdös, Chao Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 12 (1961) 313-20.
- [2] D. Kleitman, On Dedekind's problem: the number of monotone Boolean functions, Proc. Amer. Math. Soc. 21 (1969) 677-682.
- [3] D. Kleitman and G. Markowsky, On Dedekind's problem: the number of isotone Boolean functions II, Trans. Amer. Math. Soc. 213 (1975) 373-390.