ENUMERATION OF INTERSECTING FAMILIES

P. ERDÖS

Hungarian Academy of Sciences, Budapest, Hungary
N. HINDMAN*

Howard University, Washington, DC 20059, USA
Received 20 April 1982
Revised 18 February 1983
It is shown that the logarithm to the base 2 of the number of maximal intersecting families on m elements is asymptotically equal to $\binom{m-1}{n-1}$ where $n=\left[\frac{1}{2} m\right]$.

1. Introduction

For a natural number m, let $\boldsymbol{m}=\{1,2, \ldots, m\}$. An intersecting family on \boldsymbol{m} is a set \mathscr{A} of sets such that $\bigcup \mathscr{A} \subseteq \boldsymbol{m}$ and any two members of \mathscr{A} have non-empty intersection. We let \mathscr{I}_{m} be the set of all maximal intersecting families on \boldsymbol{m}. We are concerned with estimating $\left|\mathscr{I}_{m}\right|$.

In Section 2 we obtain a lower bound by elementary counting methods. In Section 3 we obtain an upper bound using a result of Kleitman and Markowsky on the number of monotone Boolean functions.

Notice that if in the definition of intersecting families, the requirement that any two members of A have non-empty intersection is raised to any three members, the problem becomes trivial. Indeed, by [1, Remark 7.5] any maximal intersecting family would be an ultrafilter; that is it would consist of all subsets of m containing some singleton.

2. A lower bound and statistical remarks

We observe that an intersecting family \mathscr{A} on \boldsymbol{m} is maximal if and only if for every $A \subseteq m$, either $A \in \mathscr{A}$ or $\boldsymbol{m} \backslash A \in \mathscr{A}$. Observe also that if \mathscr{A} is an intersecting family on $m, A \in \mathscr{A}$, and $A \subseteq B \subseteq m$, then $B \in \mathscr{A}$.
2.1. Definition. A subset \mathscr{B} of $\mathscr{P}(\boldsymbol{m})$ is a free choice family on \boldsymbol{m} if and only if whenever $\mathscr{C} \subseteq \mathscr{B}, \mathscr{C} \cup\{\boldsymbol{m} \backslash B: B \in \mathscr{B} \backslash \mathscr{C}\}$ is an intersecting family.

We denote by $[A]^{k}$ the set of k-element subsets of A.

[^0]2.2. Lemma. Let $n=\left[\frac{1}{2} m\right]$ and let $\mathscr{B}=\left\{A \in[m]^{n}: 1 \in A\right\}$. Then \mathscr{B} is a free choice family on \boldsymbol{m} with largest possible cardinality.

Proof. Trivially any two members of \mathscr{B} have non-empty intersection. Distinct members of $\{\boldsymbol{m} \backslash B ; B \in \mathscr{B}\}$ must meet because of their size. Likewise, if $B, C \in \mathscr{B}$ and $B \cap(m \backslash C)=\emptyset$, then $B=C$. Thus \mathscr{B} is a free choice family on m with cardinality $\binom{m-1}{n-1}$.

By Theorem 1 of [1], if \mathscr{C} is an intersecting family on \boldsymbol{m}, each $A \in \mathscr{C}$ has $|A| \leqslant n$, and whenever A and B are distinct members of \mathscr{C} neither $A \subseteq B$ nor $B \subseteq A$, then $|\mathscr{C}| \leqslant\binom{ m-1}{n-1}$. Given a free choice family \mathscr{D} on \boldsymbol{m}, let $\mathscr{C}=$ $\{A \in \mathscr{D}:|A| \leqslant n\} \cup\{m \backslash A: A \in \mathscr{D}$ and $|A|>n\}$. Then \mathscr{C} satisfies the conditions above, so \mathscr{C} (and hence \mathscr{D}) has at most ($\left.\begin{array}{c}m-1 \\ n-1\end{array}\right)$ elements.

Lemma 2.2 yields immediately a lower bound of $2^{(m-1)}$ for $\left|\mathscr{I}_{m}\right|$. As we shall see this is an asymptotically correct value in the exponent. However we do manage to raise the lower bound somewhat by considering free choices which remain given a particular choice from \mathscr{B}.
2.3. Theorem. Let $n=\left[\frac{1}{2} m\right]$.
(a) If $m=2 n$, then $\left|\mathscr{I}_{m}\right| \geqslant 2^{(m-1)+\left({ }_{n-1}^{m}\right) / 2^{n+1}}$
(b) If $m=2 n+1$, then $\left|\mathscr{\Phi}_{m}\right| \geqslant 2^{(m-1} n=\binom{m-2}{n-2} / 2^{n}$.

Proof. Let $\mathscr{B}=\left\{A \in[\boldsymbol{m}]^{n}: 1 \in A\right\}$. Given $\mathscr{F} \subseteq \mathscr{B}$, let $\mathscr{C}(\mathscr{F})=\mathscr{F} \cup\{\boldsymbol{m} \backslash B$: $B \in \mathscr{B} \backslash \mathscr{F}\}$ (so that $\mathscr{C}(\mathscr{F})$ is the choice induced by \mathscr{F}). If $\mathscr{F} \subseteq \mathscr{B}$ and $m=2 n$, let

$$
\mathscr{D}(\mathscr{F})=\left\{A \in[m]^{n+1}: \text { for all } B \in \mathscr{C}(\mathscr{F}), B \backslash A \neq \emptyset\right\} .
$$

If $\mathscr{F} \subseteq \mathscr{B}$ and $m=2 n+1$, let

$$
\mathscr{D}(\mathscr{F})=\left\{A \in[m]^{n+1}:\{1,2\} \subseteq A \text { and for all } B \in \mathscr{C}(\mathscr{F}), B \backslash A \neq \emptyset\right\}
$$

For any $\mathscr{F} \subseteq \mathscr{B}$, let $d(\mathscr{F})=|\mathscr{D}(\mathscr{F})|$. We claim that
(*) If $\mathscr{F} \subseteq \mathscr{B}$ and $\mathscr{G} \subseteq \mathscr{D}(\mathscr{F})$, then $\mathscr{C}(\mathscr{F}) \cup \mathscr{G} \cup\{\boldsymbol{m} \backslash A: A \in \mathscr{D}(\mathscr{F}) \backslash \mathscr{G}\}$ is an intersecting family.

To see $(*)$ note that $\mathscr{D}(\mathscr{F})$ was defined so that whenever $B \in \mathscr{C}(\mathscr{F})$ and $A \in \mathscr{D}(\mathscr{F})$, both $B \cap A$ and $B \cap(m \backslash A)$ are non-empty. Also if $A, B \in \mathscr{D}(\mathscr{F})$ and $A \neq B$, then $B \cap A$ and $B \cap(m \backslash A)$ are non-empty by virtue of their sizes. (If one had $B \cap(m \backslash A)=\emptyset$ one would have $B=A)$. Consequently we need only show that if $A, B \in \mathscr{D}(\mathscr{F})$ and $A \neq B$, then $(m \backslash A) \cap(m \backslash B) \neq \emptyset$. If $m=2 n+1$, then $\{1,2\} \subseteq A \cap B$ and hence $|A \cup B| \leqslant 2 n$ so we can assume $m=2 n$. Suppose $(\boldsymbol{m} \backslash A) \cap(\boldsymbol{m} \backslash B)=\emptyset$. Then $A \cup B=\boldsymbol{m}$ so $|A \cap B|=2$. Pick $x, y \in m$ such that $A \cap B=\{x, y\}$. Then either $\{x\} \cup(A \backslash B)$ or $\{y\} \cup(B \backslash A)$ is in $\mathscr{C}(\mathscr{F})$ and we may assume the former. Then since $\{x\} \cup(A \backslash B) \subseteq A$ we have $A \notin \mathscr{D}(\mathscr{F})$, a contradiction.

Since (*) holds, we have $\left|\mathscr{I}_{m}\right| \geqslant \sum_{\mathscr{F} \leq \mathscr{G}} 2^{d(\mathscr{F})}$

Let $G=\{(\mathscr{F}, A): \mathscr{F} \subseteq \mathscr{B}$ and $A \in \mathscr{D}(\mathscr{F})\}$. We count G in two ways. On the one hand $|G|=\sum_{\mathscr{F} \leq \boldsymbol{x}} d(\mathscr{F})$. Given $A \in[m]^{n+1}$ (with $\{1,2\} \subseteq A$ if $m=2 n+1$) and $\mathscr{F} \subseteq \mathscr{B}$, we have $A \in \mathscr{D}(\mathscr{F})$ if and only if no subset of A is in $\mathscr{C}(\mathscr{F})$. Assume now $m=2 n$ and $A \in[m]^{n+1}$. There are $n+1 \quad n$-element subsets of A and $\binom{m-1}{n-1}$ elements of \mathscr{B} so $|\{\mathscr{F} \subseteq \mathscr{B}: A \in \mathscr{D}(\mathscr{F})\}|=2^{(m-1)-n-1}$. Since $\left|[\boldsymbol{m}]^{n+1}\right|=\binom{m}{n+1}=\binom{m}{n-1}$ we have

$$
|G|=\binom{m}{n-1} \cdot 2^{(m-1)-n-1} .
$$

Now assume $m=2 n+1$ and $A \in[m]^{n+1}$ with $\{1,2\} \subseteq A$. Any subset B of A which is in $\mathscr{C}(\mathscr{F})$ must in fact be in \mathscr{F} and hence must have $1 \in B$. There are n such n-elements subsets so $|\{\mathscr{F} \subseteq \mathscr{B}: A \in \mathscr{D}(\mathscr{F})\}|=2^{(m-1)-n}$. Since $\mid\left\{A \in[m]^{n+1}\right.$: $\{1,2\} \subseteq A\} \left\lvert\,=\binom{m-2}{n-1}\right.$ we have

$$
|G|=\binom{m-2}{n-1} \cdot 2^{(m-1)-1} .
$$

Let $\bar{d}=\left(\sum_{\mathscr{F} \leq \mathscr{F}} d(\mathscr{F})\right) /|\mathscr{P}(\mathscr{B})|$. (Thus \bar{d} is the mean value of the $d(\mathscr{F})$'s.) We have then

$$
\left|\mathscr{F}_{m}\right| \geqslant \sum_{\mathscr{F} \leq \boldsymbol{\mathscr { P }}} 2^{d(\mathcal{F})} \geqslant \sum_{\mathscr{F} \leq \boldsymbol{\mathscr { P }}} 2^{\bar{d}}=2^{(m-i)+\bar{d}} .
$$

Inserting the value for \bar{d} obtained by our double counting of G we have the desired result.

We now restrict our attention to the simpler case when $m=2 n$ and discuss the distribution of $\{d(\mathscr{F}): \mathscr{F} \subseteq \mathscr{B}\}$. We obtained above the value $\left({ }_{n-1}^{m}\right) / 2^{n+1}$ for the mean by counting twice the set $\{(\mathscr{F}, A): \mathscr{F} \subseteq \mathscr{B}$ and $A \in \mathscr{D}(\mathscr{F})\}$, we can also compute the variance by counting twice the set

$$
\{(\mathscr{F}, A, B): \mathscr{F} \subseteq \mathscr{B}, A \in \mathscr{D}(\mathscr{F}), \text { and } B \in \mathscr{D}(\mathscr{F})\}
$$

(In this computation we consider separately pairs (A, B) where $A=B,|A \cap B|=$ n, and $3 \leqslant|A \cap B| \leqslant n-1$. As we saw earlier if $|A \cap B|=2$, then for no $\mathscr{F} \subseteq \mathscr{B}$ do we have $A \in \mathscr{D}(\mathscr{F})$ and $B \in \mathscr{D}(\mathscr{F})$.) This computation yields the result (for $n \geqslant 3$)

$$
\sum_{\mathscr{F} \leq \mathscr{F}}(d(\mathscr{F})-\bar{d})^{2}=\binom{m}{n-1} 2^{(m-1)-n-1}\left(1+\left(n^{2}-n-4\right) 2^{-n-2}\right)
$$

so that the variance is $\left({ }_{n-1}^{m}\right) / 2^{n+1} \cdot(1+o(1))$.

3. An upper bound

Let $\mathscr{S}_{\boldsymbol{m}}$ be the set of antichains in $\mathscr{P}(\boldsymbol{m})$. (A set $\mathscr{A} \subseteq \mathscr{P}(\boldsymbol{m})$ is an anti-chain provided that whenever $A, B \in \mathscr{A}$ with $A \subseteq B$ one has $A=B$). It was shown in [3], improving an earlier result [2], that there is a constant c such that $\left|\mathscr{S}_{m}\right|<$ $2^{1+1+\operatorname{logmmm}\left(m_{n}\right)}$ where $n=\left[\frac{1}{2} m\right]$. We show in this section that $\left|\mathscr{S}_{m}\right| \leqslant\left|\mathscr{S}_{m-1}\right|$.
3.1. Definition. Define a function g on \mathscr{I}_{m} by $g(\mathscr{A})=\{A \subseteq m-1$: $A=B \cap m-1$ for some $B \in \mathscr{A}$ and there does not exist $C \in \mathscr{A}$ such that $C \cap m-1 \varsubsetneqq A\}$.
3.2. Lemma. Let $\mathscr{A} \in \mathscr{F}_{m}$ and let $A \subseteq m-1$.
(a) $A \cup\{m\} \in \mathscr{A}$ if and only if there exists $B \in g(\mathscr{A})$ such that $B \subseteq A$.
(b) $A \in \mathscr{A}$ if and only if there exists $B \in g(\mathscr{A})$ such that $B \subseteq A$ and there does not exist $C \in g(\mathscr{A})$ such that $C \cap A=\emptyset$.

Proof. (a) Assume $A \cup\{m\} \in \mathscr{A}$. Pick $D \in \mathscr{A}$ such that $D \subseteq A \cup\{m\}$ and $|D \cap \boldsymbol{m}-\mathbf{1}|$ is minimal among all such members of \mathscr{A}. Let $B=D \cap m-1$. Then $B \in g(\mathscr{A})$ and $B \subseteq A$.

Now assume we have $B \in g(\mathscr{A})$ such that $B \subseteq A$. Pick $D \in \mathscr{A}$ such that $D \cap m-1=B$. Then $D \subseteq A \cup\{m\}$ so $A \cup\{m\} \in \mathscr{A}$.
(b) Assume $A \in \mathscr{A}$. Then $A \cup\{m\} \in \mathscr{A}$ so by (a) we have some $B \in g(\mathscr{A})$ such that $B \subseteq A$. Suppose we have $C \in g(\mathscr{A})$ such that $C \cap A=\emptyset$. Pick $D \in \mathscr{A}$ such that $D \cap \boldsymbol{m}-\mathbf{1}=C$. Then $D \cap A=\emptyset$, a contradiction.

Finally assume we have some $B \in g(\mathscr{A})$ such that $B \subseteq A$ and have no $C \in g(\mathscr{A})$ such that $C \cap A=\emptyset$. By (a) we have $A \cup\{m\} \in \mathscr{A}$. Suppose that $A \notin \mathscr{A}$ so that $\boldsymbol{m} \backslash A \in \mathscr{A}$. Again by (a) pick $C \in g(\mathscr{A})$ such that $C \subseteq m \backslash A$. Then $C \cap A=\emptyset$, a contradiction.
3.3. Theorem. The function g is one-to-one and takes \mathscr{I}_{m} to \mathscr{S}_{m-1}.

Proof. By Lemma 3.2, \mathscr{A} is completely determined by $g(\mathscr{A})$ so g is one-to-one. Let $\mathscr{A} \in \mathscr{I}_{m}$. To see that $g(\mathscr{A}) \in \mathscr{S}_{m-1}$ suppose instead we have $B, C \in g(\mathscr{A})$ with $C \varsubsetneqq B$. Pick $D, F \in \mathscr{A}$ such that $D \cap m-1=B$ and $E \cap m-1=C$. Then $E \cap m-1 \subsetneq B$ so $B \notin g(\mathscr{A})$.
3.4. Corollary. Let $n=\left[\frac{1}{2} m\right]$. There is a constant c such that:
(a) If $m=2 n$, then

$$
\left|\mathscr{I}_{m}\right| \leqslant 2^{(1+c \log m / m)(m-1)} .
$$

(b) If $m=2 n+1$, then

$$
\left|\mathscr{I}_{m}\right| \leqslant 2^{(1+c \log m / m)\left(m_{n}^{-1}\right)} .
$$

Proof. By Theorem 3.3, $\left|\mathscr{I}_{m}\right| \leqslant\left|\mathscr{S}_{m-1}\right|$ so the theorem of Kleitman and Markowsky cited above applies.
3.5. Corollary. $\log _{2}\left|\mathscr{I}_{m}\right|$ is asymptotically equal to $\binom{m-1}{n}$ where $n=\left[\frac{1}{2} m\right]$.

Proof. Theorem 2.3 and Corollary 3.4.

References

[1] P. Erdös, Chao Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 12 (1961) 313-20.
[2] D. Kleitman, On Dedekind's problem: the number of monotone Boolean functions, Proc. Amer. Math. Soc. 21 (1969) 677-682.
[3] D. Kleitman and G. Markowsky, On Dedekind's problem: the number of isotone Boolean functions II, Trans. Amer. Math. Soc. 213 (1975) 373-390.

[^0]: * This author gratefully acknowledges support from the National Science Foundation (USA) under grant MCS 81-00733.

