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It is shown that the logarithm to the base 2 of the number of maximal intersecting families on 
m elements is asymptotically equal to ('~-~) where n = [½m]. 

1. Introduction 

For  a natural  n u m b e r  m, let m = {1, 2 . . . . .  m}. A n  intersecting family on m is a 

set .~ of  sets such that  I..J .~/_ m and any two member s  of  a¢ have n o n - e m p t y  

intersection. W e  let 3t,, be  the  set of  all maximal  intersecting families on m. W e  

are conce rned  with est imating [#,,I- 
In Section 2 we obta in  a lower  b o u n d  by e lementa ry  count ing  methods .  In  

Section 3 we obta in  an upper  b o u n d  using a result  of  Klei tman and Markowsky  

on the  n u m b e r  of  m o n o t o n e  Boo lean  functions.  
Not ice  tha t  if in the definition of  intersecting families, the  requ i rement  that  any 

two member s  of  A have  n o n - e m p t y  intersection is raised t o  any three  members ,  

the  p rob lem becomes  trivial. Indeed ,  by  [1, R e m a r k  7.5] any maximal  intersecting 

family would  be an ultrafilter; tha t  is it would  consist  of  all subsets of  m 

containing some  singleton. 

2. A lower bound and statistical remarks 

W e  observe  that  an intersecting family .~ on m is maximal  if and only if fo r  
every  A ~_ m, ei ther  A ~ ~ or  m \ A ~ ~ .  Obse rve  also that  if a¢ is an intersecting 

family on m, A ~ .~, and A ~_ B _~ m, then B ~ M. 

2.1.  Dt t in i f ion .  A subset ~ of  ~ ( m )  is a f ree  choice family on m if and only if 

wheneve r  c a _ G ,  c ¢ O { m \ B :  B e ~ \ c ¢ }  is an intersecting family. 

W e  deno te  by [ A ]  k the  set of  k -e l emen t  subsets of  A.  
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2.2. 1,emma. Let n : [ ~ m ]  and let ~ = { A e [ m ] " :  l e A } .  Then ~ is a free choice 
family on m with largest possible cardinality. 

Proof.  Trivially any two members of ~ have non-empty intersection. Distinct 
members of {m \ B ; B E ~} must meet because of their size. Likewise, if B, C e 
and B O ( m \ C ) = ¢ ,  then B = C. Thus ~ is a free choice family on m with 

(,-1). cardinality "-~ 
By Theorem 1 of [1], if c¢ is an intersecting family on m, each A e c0 has 

IAI ~< n, and whenever  A and B are distinct members of c¢ neither A _ B  nor 
- -  ~ m - - 1  B ~ A ,  then [c¢1~(~_~). Given a free choice family fl~ on m, let c¢= 

{ A e ~ :  [A[<~n}O{m\A: Aefl~ and IAl>n}. Then c¢ satisfies the conditions 
r r l - - 1  above, so c¢ (and hence ~) has at most ( , -1)  elements. [ ]  

Lemma 2.2 yields immediately a lower bound of 2 (7--') for I.gml. As we shall see 
this is an asymptotically correct value in the exponent.  However  we do manage to 
raise the lower bound somewhat by considering free choices which remain given a 
particular choice from ~1. 

2.3. Theorem.  Let n = ~m].  
(a) I f  m = 2n, then I~ml ~2("--1)+('~-')/2"" 
(b) If  m = 2n + 1, then I~¢ml ~ 2 (z:~)+(~'-~)/2". 

Proot .  Let  ~ = { A e [ m ] " :  l e A } .  Given ~;~_~, let c ¢ ( ~ : ) = ~ L l { m \ B :  
B e ~ \ ~ : }  (so that c¢(~;) is the choice induced by ~:). If ~ : ~  and m = 2n, let 

fl~(~) = {A e [m]"+l: for all B e ~¢(~), B \ A  ~ 0}- 

If ~ : ~  and m = 2 n + 1 ,  let 

fl~(~:) = {A e [m]"+l: {1, 2} _ A and for all B e c¢(~), B \ A  ~ 0}- 

For any ~:___~, let d(~F)= I~(~)1. We claim that 

(*) If ~ 1  and ~_fl~(~F), then c¢(~)Uq2 U { m \ A :  Aefl~(~:)\qd} is an in- 
tersecting family. 

To see (*) note that fl~(~) was defined so that whenever  B e c¢(~ r) and 
A e~(~: ) ,  both B O A  and B n ( m \ A )  are non-empty. Also if A, B efl~(~) and 
A ~ B, then B n A and B n (m \ A) are non-empty by virtue of their sizes. (If one 
had B n ( m \ A ) = O  one would have B = A ) .  Consequently we need only show 
that if A, Befl~(~;:) and A t : B ,  then ( m \ A ) n ( m \ B ) ¢ : O .  If m = 2 n + l ,  then 
{ 1 , 2 } ~ A O B  and hence ]AUBI<~2n so we can assume m = 2 n .  Suppose 
( m \ A ) n ( m \ B ) = O .  Then A U B = m  so [ A N B [ = 2 .  Pick x, y e m  such that 
A A B  ={x, y}. Then either { x } U ( A \ B )  or { y } U ( B \ A )  is in c¢(~:) and we may 
assume the former. Then since {x} U (A \ B) _ A we have A ¢ fl~(~), a contradic- 
tion. 

Since (*) holds, we have [.~,,l~>Y.s~_~ 2 d~s~) 
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Let G = {(~:, A):  ~___~1 and A ~ ( ~ ; ) } .  We count G in two ways. On the one 
hand [Gl=~___md(~) .  Given A ~ [ m ]  "÷1 (with { 1 , 2 } _ A  if m = 2 n + l )  and 

_ ~ ,  we have A ~ ~(~:) if and only if no subset of A is in c¢(~:). Assume now 
m = 2 n  and A~[m] "÷1. There  are n + l  n-element  subsets of A and (,-1)m-1 
elements of ~ so [{~:~ ~:  A ~ ~(~:)}[ = 2 (7-:)-"-1. Since I [ m ] " + l  I -- ( .T1) = (.~-1) we 
have 

( m ).2(:':;1-,-1" 
I l-- n - 1  

Now assume r n = 2 n + l  and A ~ [ m ]  ~÷1 with {1,2}__A. Any subset B of A 
which is in c¢(~;) must in fact be in ~ and hence must have 1 e B. There  are n 
such n-elements subsets so [{~;__q N: A e ~(~)}1 = 2(':;>"- Since I{A ~ [m]" ÷1: 
{1, 2}___ A}I = ('2-~) we have 

m - 2  
[G[= ( n _  1 ) • 2 (7-;)-". 

Let d =  (Y.~_~ d(~) ) / l~(N) l .  (Thus d is the mean value of the d(:~)'s.) We 
have then 

I&,l >~ E 2a'">~ E 2a=2(:-h'>a- 

Inserting the value for d obtained by our double counting of G we have the 
desired result. [ ]  

We now restrict our  attention to the simpler case when m = 2n and discuss the 
distribution of {d(~;): ~;G~I}. We obtained above the value (,~_1)/2 "+a for the 
mean by counting twice the set {(~:,A): ~ : G ~  and A~fl~(~;)}, we can also 
compute the variance by counting twice the set 

{(~:, A, B): $;~_~, A ~ ( ~ ) ,  and B ~ ( ~ ) } .  

(In this computation we consider separately pairs (A, B) where A = B, I A AB[ = 
n, and 3~<IA nBl<~n - 1. As we saw earlier if [A A B I = 2 ,  then for no ~r__~ do 
we have A e ~ ( ~ )  and B c~(~:) . )  This computation yields the result (for n/> 3) 

E (d(~:)-d)2=(nml)2('~:t)-"-l(l+(n2-n-4)2-"-2) 

so that the variance is (._~0/2 "÷1. (1+ o(1)). 

3. A n  upper bound 

Let ,9',, be the set of antichains in ~ (m) .  (A set ,~/__q~(m) is an anti-chain 
provided that whenever  A, B ~ ~ with A _~ B one has A = B). It was shown in [3], 
improving an earlier result [2], that there is a constant c such that 1,9',1[< 
2 . . . . . . . . . .  (-~) where n = [½m]. We show in this section that 1,9,,l~<l~em_d. 
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3.1. Definition. Define a function g on 3t,, by g(~)  = {A c at - 1 :  A = B O at - 1  
for some B e ~ and there does not exist C e ~ such that C O a t -  1 ~ A}. 

3.2. l e m m a .  Let  ~ ~ ~,, and let A ~ a t - 1 .  
(a) A U { m } ~  if and only if there exists B ~ g(~)  such that B c A .  
(b) A ~ ~ if and only if there exists B ~ g(~)  such that B c A and there does not 

exist C ~ g(~)  such that C O A = ¢. 

ProoL ( a ) A s s u m e  A U { m } ~ .  Pick D ~  such that D c _ A U { m }  and 
IDnat-lJ is minimal among all such members of ,~/. Let  B = D O a t - 1 .  Then 
B ~ g ( ~ )  and B ~ A .  

Now assume we have B ~ g ( ~ )  such that B ~ A .  Pick D ~ /  such that 
D n a t - l = B .  Then D ~ A U { m }  so A O { m } ~ .  

(b) Assume A ~ .  Then A U { m } ~  so by (a) we have some B ~ g ( ~ )  such 
that B _ A. Suppose we have C e g(~)  such that C n A = ~. Pick D ~ ~ such that 
D O at - 1 = C. Then D n A = ~, a contradiction. 

Finally assume we have some B e g(~)  such that B ___A and have no C ~  g(~)  
such that C N A = f ) .  By (a) we have A O { m } ~ .  Suppose that A ~  so that 
a t \ A ~ s 4 l .  Again by (a) pick C ~ g ( ~ )  such that C c a t \ A .  Then C A A ~ ,  a 
contradiction. [ ]  

3.3. Theorem.  The function g is one-to-one and takes J , ,  to 5e,,_~. 

Proot .  By Lemma 3.2, s~ is completely determined by g(~/) so g is one-to-one.  
Let  d e , 9 , , .  To  see that g(~t)~ ~ , , -1  suppose instead we have B, C e g(~)  with 
C ~ B .  Pick D, F e ~  such that D O m - I = B  and E O a t - l = C .  Then 
E n a t - l ~ B  so B~g(~) .  [] 

3.4. Corollary. Let n = [~m]. There is a constant c such that: 
(a) I [  m = 2n, then 

(b) I f  m = 2n + 1, then 

JJm J ~ 2(1+c tog m/m)('~'t). 

l~roof. By Theorem 3.3, [,J~ml~<l~m_l[ SO the theorem of Kleitman and Mar- 
kowsky cited above applies. [ ]  

3.5. Corollary. log2 [5~mJ is asymptotically equal to (raft1) where n =[~m]. 

15too|. Theorem 2.3 and Corollary 3.4. [ ]  
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