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Abstract

One of the main problems in discrete tomography is the reconstruction of binary matrices from their
projections in a small number of directions. In this paper we consider a new algorithmic approach for
reconstructing binary matrices from only two projections. This problem is usually underdetermined
and the number of solutions can be very large. We present an evolutionary algorithm for finding the
reconstruction which maximises an evaluation function, representing the “quality” of the reconstruc-
tion, and show that the algorithm can be successfully applied to a wide range of evaluation functions.
We discuss the necessity of a problem-specific representation and tailored search-operators for ob-
taining satisfactory results. Our new search-operators can also be used in other discrete tomography
algorithms.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Discrete tomography (DT) is concerned with the reconstruction of a discrete image from
its projections. One of the key problems is the reconstruction of a binary (black-and-white)
image from only two projections, horizontal and vertical (seeFig. 1). In 1957 Ryser[23]
and Gale[11] independently derived necessary and sufficient conditions for the existence
of a solution. Ryser also provided a polynomial time algorithm for finding such a solution.
However, the problem is usually highly underdetermined and a large number of solutions
may exist[27].
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Fig. 1. A binary image with its horizontal and vertical projections.

Among the applications of discrete tomography are the reconstruction of crystal lattices
from projections obtained by electron microscopy[17,25]and the reconstruction of angio-
graphic images in medical imaging[22,26]. In such applications the projection data are the
result of measurements of a physical object and we are interested in finding a reconstruction
which resembles the original image as closely as possible, not just one that corresponds to
the given projections. Therefore it is necessary to use all available information about the
class of images to which the measured image belongs.

In this paper we assume that the given projection data are consistent (i.e., there is at
least one image which has the given projections). In practice the situation is often more
complicated, as noise and other errors may result in inconsistent data.

For certain classes of highly-structured images, such as hv-convex polyominoes (the
black pixels in each row and column are contiguous), polynomial-time reconstruction
algorithms exist (see, e.g.,[4,6]). On the other hand, there are classes of images, such
as the more general class of hv-convex images (which may consist of many separate poly-
ominoes), for which the reconstruction problem is NP-hard (see[19]).

Instead of assuming specific properties of the image structure, we will focus on a more
general approach. Suppose that we are able to define an evaluation function, which assigns
a value to each of the solutions, reflecting how good a particular solution is in our context.
An algorithm that maximises the evaluation over the set of all solutions will then yield the
most desirable solution.

As an example, consider the class of hv-convex images. Suppose that the unknown original
image belongs to this class. In[8] it is shown that when we define the evaluation of an image
to be the number of neighbouring pairs of black pixels (either horizontal or vertical), the
evaluation function is maximised by a reconstruction that has the prescribed projections
if and only if the reconstruction is also hv-convex. Similarly, we can define an evaluation
function for the reconstruction of hv-convex polyominoes, where we subtract a large penalty
if the image consists of more than one polyomino.

Probably of greater practical relevance is the case where the measured object can be
considered to be a random variable, sampling from a certain known distribution. In this
case the evaluation function reflects the likelihood that the image is a random sample from
this distribution.

Finally we remark that the NP-hard problem of reconstructing binary images from more
than two projections, including the horizontal and vertical projections, fits in our model as
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well. Define theprojection deviationof an image to be the total difference (as a sum of
absolute values) between the image’s projections and the prescribed projections. Because
we only deal with maximisation problems, we use the negated projection deviation as the
evaluation function.

The flexibility of our model comes at a price. In general, the problem of maximising the
evaluation function over the set of all solutions is NP-hard, which follows directly from the
NP-hardness of the problem of reconstructing binary images from more than two projections
(see[12]). In order to deal with this intractability, we resort to the use of modern approx-
imation algorithms. Several preliminary experiments with different algorithms resulted in
the choice for an evolutionary algorithm.

In Section 3 we discuss the choices that we made in designing the algorithm. Because
the problem at hand has a natural binary encoding it seems attractive to apply a classical
genetic algorithm (GA) (see[21]), using the bitstring representation. For several reasons
however, this does not lead to good results. We will discuss the problem features that cause
the application of classical GA’s to be inadequate and introduce new problem-specific
mutation and crossover operators. We discuss the necessity of using a hillclimb operator as
a post-mutation and post-crossover operator for improving the solution quality.

Section 4 presents our experimental results. The results suggest that our algorithm can
be successfully applied to a wide range of evaluation functions, making it very versatile.

2. Preliminaries

We will now introduce some notation and define the DT problem mathematically. Parts
of our algorithm are based on well-known theoretical results, which we will summarise (see
[15] for details). We assume that the reader is familiar with the theory of network flows and
the basic principles of evolutionary algorithms.

Throughout this paper we will assume that all binary matrices are of sizem × n. We
consider the problem of reconstructing a binary matrix from its horizontal and vertical
projections.

Definition 1. Let R = (r1, . . . , rm) andS = (s1, . . . , sn) be nonnegative integral vectors.
We denote the class of all binary matricesA = (aij ) satisfying

n∑
j=1

aij = ri, i = 1, . . . , m,

m∑
i=1

aij = sj , j = 1, . . . , n,

byA(R, S). The vectorsRandSare called the row and column projections of any matrix
A ∈ A(R, S).

Because DT is strongly related to digital image processing we often refer to binary
matrices asimagesand call the matrix entriespixelswith valuesblack(1) andwhite(0).



K.J. Batenburg / Discrete Applied Mathematics 151 (2005) 36–54 39

From this point on we assume that the row and column projections areconsistent, meaning
thatA(R, S) is nonempty. In particular, this implies that

∑m
i=1ri = ∑n

j=1sj . Necessary
and sufficient conditions for the nonemptiness ofA(R, S) are given in[18].

One of the basic problems in DT is thereconstruction problem:

Problem 2. LetRandSbe given integral vectors. Construct a binary matrixA ∈ A(R, S).

Because the number of possible solutions of the reconstruction problem can be very large
it is necessary to impose additional properties on the solution being sought. In this paper
we consider the following problem:

Problem 3 (MAXEVAL). LetRandSbe given integral vectors and letf : A(R, S) → Z

be a given evaluation function. Find a binary matrixA ∈ A(R, S) such thatf (A) is
maximal.

Although in Problem 3 the domain off is restricted to the classA(R, S), f is usually
defined on the entire set{0,1}m×n.

The notion ofswitching componentsplays an important role in the characterisation of
the classA(R, S).

Definition 4. Let A ∈ A(R, S). A switching component ofA is a 2× 2 submatrix of the
form (

1 0
0 1

)
or

(
0 1
1 0

)
.

Switching components have the property that if we interchange the 0’s and 1’s, the pro-
jections do not change. We call such an interchange operation anelementary switching
operation. An important theorem of Ryser[24] describes how the classA(R, S) is charac-
terised by a single element of this class and the set of switching components:

Theorem 5. LetA ∈ A(R, S).There existsB ∈ A(R, S),B �= A, if and only if A contains
a switching component. Moreover, if such a matrix B exists, then A can be transformed into
B by a sequence of elementary switching operations.

We remark that every matrixB that is the result of applying a sequence of elementary
switching operations toA is also inA(R, S). The fact that we can transform a matrix
in A(R, S) into any other matrix having the same projections by means of elementary
switching operations, makes the use of elementary switching operations very suitable for
local search procedures. In our evolutionary algorithm, we make extensive use of these
operations.

An important operation in our algorithm is the computation of matrices inA(R, S), given
R andS. We use a network flow approach for computing these matrices, which was first
introduced by Gale[11]. First, we construct a directed graphN. The setV of nodes consists
of a source nodeS, a sink nodeT, one layerV1, . . . , Vm of nodes that correspond to the
image rows (row nodes) and one layerW1, . . . ,Wn of nodes that correspond to the image
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Fig. 2. A 3× 3 image instance and its corresponding network flow.

columns (column nodes). The setA of arcs consists of arcs(S, Vi) for i = 1, . . . , m, arcs
(Vi,Wj ) for i = 1, . . . , m, j = 1 . . . , n, and arcs(Wj , T ) for j = 1, . . . , n. We remark that
the two layers of row nodes and column nodes form a complete bipartite graph.

We also define acapacity functionC : A → N0 which assigns an integral capacity to
every arc. All arcs between a row node and a column node are assigned capacity 1. We will
denote these arcs aspixel-arcs, because each of them corresponds to a single, unique pixel
of the image (determined by the row and column). The prescribed projections determine the
capacities of the arcs from the source node and the arcs to the sink node. Every arc(S, Vi)

has capacityri and every arc(Wj , T ) has capacitysj . Fig. 2 shows the networkN for an
example 3× 3 image.

It is well-known that a maximum flow fromStoTcan be found in polynomial time. From
the theory of linear programming we know that there is a maximum flow which is integral.
Suppose that this maximum flow fully saturates all outgoing arcs from the source (and all
incoming arcs towards the sink). Every pixel-arc carries a flow of either 0 or 1. Assign a 1
to pixel (i, j) if arc (Vi,Wj ) carries a flow of 1 and assign 0 otherwise. It is easy to verify
that the resulting image has the prescribed projections in both directions. Conversely, if the
horizontal and vertical projections are consistent, i.e., there is an image that satisfies them,
the network must have a maximal flow that saturates all outgoing arcs from the source.
We see that the problem of finding a maximum integral flow inN is equivalent to the
reconstruction problem.

We can use algorithms for solving the max flow problem to compute solutions of the
DT reconstruction problem. In our case we want to impose additional requirements on the
resulting image. In particular, given a binary imageM ∈ {0,1}m×n, we want to find the
binary imageA ∈ A(R, S) that differs fromM in as few pixels as possible. We will refer
toM as themodel image.
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Problem 6 (BESTMATCH). LetRandSbe given integral vectors and letM = (mij ) be a
given binary matrix. FindA = (aij ) ∈ A(R, S) such that

m∑
i=1

n∑
j=1

|mij − aij |

is minimal.

Problem 6 can be solved efficiently using an extension of the network flow model, incor-
porating a cost function. We assign a costcij = −mij to every arc(Vi,Wj ). The remaining
arcs are all assigned a cost of 0. The process of finding a maximum flow of minimal cost now
comes down to finding an integral flow that saturates the maximum number of pixel-arcs for
which the corresponding model image pixel has value 1. In other words, ifA is the image
that corresponds to the maximal flow of minimal cost, thenA has as many 1’s in common
with M as possible.

For any matrixB=(bij ) ∈ {0,1}m×n, denote the number of 1’s inBbynB . nM is defined
analogously. Suppose thatB ∈ A(R, S). Clearly, we havenB = ∑m

i=1ri = ∑n
j=1sj . Put

vB = |{(i, j) : bij = 1 ∧ mij = 1}|.
Then

|{(i, j) : bij �= mij }| = (nB − vB) + (nM − vB) = nB + nM − 2vB ,

so

|{(i, j) : bij = mij }| = mn − (nB + nM − 2vB),

which shows that maximising the number of common 1’s betweenB andM is equivalent
to solving Problem 6, becausemn, nB andnM are constant forB ∈ A(R, S). Numerous
standard algorithms are available for solving the min cost max flow problem in polynomial
time. We can use any of these algorithms for solving Problem 6, see, e.g.,[2].

3. Algorithmic approach

3.1. Overview of the approach

In this section we will describe a heuristic algorithm for solving Problem 3 (MAXEVAL).
Because finding a reconstruction that maximises the evaluation function is an NP-hard prob-
lem, we have to resort to approximation algorithms. In our approach we make extensive use
of the fact that Problem 6 (BESTMATCH) can be solved in polynomial time. In preliminary
experiments we implemented and tested several approaches, based on simulated annealing
[1], tabu search[13] and evolutionary algorithms[3]. On the basis of these preliminary
experiments, we believe that simulated annealing and tabu search, which only use local
search operators, are not well suited for this task. The main reason for this is that the DT
problem usually has a great number of local optima and moving between different optima
may require a large number of “uphill” steps.
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Evolutionary algorithms can handle this problem in two ways. Firstly, the algorithm
uses a diverse population of candidate solutions, instead of a single solution. Secondly, the
crossover operator is capable of performing large steps in the search space.

Because the problem at hand allows for a natural bitstring representation of candidate
solutions it fits directly into the framework of classical genetic algorithms on bitstrings.
Simply use{0,1}mn as the candidate solution space. We now have two optimisation criteria,
the evaluation function and the deviation from the prescribed projections.

We found this approach to be inadequate for several reasons. In the first place, the
crossover operator usually results in candidate solutions that deviate greatly from the pre-
scribed projections. This is particularly common when the two parent solutions have many
differences. This behaviour makes the crossover operator hardly effective at all, reducing
the algorithm to a simple hillclimb procedure that only uses mutation to improve upon the
solutions. In addition, the most common crossover operators, single-point crossover and
uniform crossover, do not take into account the two-dimensional spatial structure of the
candidate solutions. Intuitively, building blocks for this problem are made up of regions of
pixels, not necessarily horizontally or vertically aligned. A problem-specific operator could
benefit from this structure.

We have designed a problem-specific evolutionary algorithm to overcome the disadvan-
tages of the classical GA. Instead of optimising over all bitstrings in{0,1}mn, the algorithm
optimises exclusively overA(R, S). At the end of each generation all candidate solutions
have the prescribed horizontal and vertical projections. This requires a new crossover oper-
ator, that is not only capable of mixing features from both parents, but also of ensuring that
the produced children adhere to the prescribed projections. Similar requirements apply to
the mutation operator.

Our algorithm is amemetic algorithm(see[7]): after every crossover or mutation op-
eration a stochastic hillclimb is performed until the solution has reached a local opti-
mum. In this way, individuals always represent local optima in the search space. We
chose this approach, because although the proposed crossover operator generates chil-
dren that have the prescribed projections, the children are often of inferior quality with
respect to the evaluation function (when compared to the parents). In order to fully ex-
ploit the explorative power of the crossover operator, the hillclimb procedure increases
the solution quality while still remaining quite close to the solution that resulted from the
crossover operation. Another reason for choosing this approach is that our crossover and
mutation operators are computationally expensive operations. Memetic algorithms typi-
cally require only a small number of generations (while performing a lot of work for each
generation).

Fig. 3summarises our algorithm. The parameters� and� are the population size and the
number of children that are created in each generation, respectively. In the next sections we
will describe the various operators in more detail.

3.2. A new crossover operator

The crossover operator is one of the main parts of our algorithm. The input of the operator
consists of twoparent images. The output is achild image, which has certain features from
both parents. Because all images in the population are members ofA(R, S), the resulting
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Fig. 3. Outline of the evolutionary algorithm.

Fig. 4. Main loop of the procedure that generates the crossover mask.

image should have the prescribed projections. In order to enforce this constraint, we use the
network flow formulation of the DT problem.

First, acrossover maskX = (xij ) ∈ {0,1}m×n is computed, which determines for each
pixel from which parent image it inherits. In the following description,assigning cell(i, j)
to the first parentmeans settingxij =0 andassigning cell(i, j) to the second parentmeans
settingxij =1. Byneighbouring cellsof a cell(i, j)we mean the four horizontal and vertical
neighbours. As discussed in Section 3.1 we want the crossover operator to take the spacial
structure of our image into account. Therefore the crossover mask should assignareasof
the image to each of the parents. We use the following procedure for realising this. First,
one random cell is selected in each of the four quadrants (where the origin is considered to
be in the center of the image). Two (randomly chosen) of those cells are assigned to the first
parent, the other two are assigned to the second parent. The four cells are marked asborder
cells. Next, the algorithm enters a loop, shown inFig. 4. Because the first four border cells
are each in a different quadrant, this procedure results in a crossover mask that roughly
assigns the same number of cells to both parents.

From the crossover mask and both parent imagesP = (pij ) andQ= (qij ), amodel image
M = (mij ) is computed, as follows:

mij =
{
pij if xij = 0,
qij if xij = 1.
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Fig. 5. The crossover operator combines two parent images into a child image.

Subsequently, we construct the child imageC by solving Problem 6, usingM as the model
image. This will result in a child image that is inA(R, S), resembles the first parent in a
certain part and resembles the other parent in the rest of the image.Fig. 5shows two parent
images (having the same projections), a crossover mask, the corresponding model image
and the resulting child image. In this example, we use the number of neighbouring pairs of
black pixels as the evaluation function. Although the child image resembles both parents in
their corresponding parts, it is clear that the child image is far from a local optimum with
respect to the evaluation function. To ensure that the child image has sufficient quality, we
apply a local hillclimb operator after the crossover operation, which we describe in the next
section.

3.3. The hillclimb operator

The hillclimb operator applies a sequence of small modifications, all of which increase
the evaluation function, until a local optimum is reached. Because we want the resulting
image to be inA(R, S), we use elementary switching operations as local steps. The outline
of the procedure is shown inFig. 6. It is of great importance that the switching component
in each step is chosen randomly among all those yielding an increase of the evaluation
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Fig. 6. Outline of the hillclimb procedure.
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Fig. 7. The hash table of switching components is extended to allow binary search for an indexed element.

function. We have performed experiments with implementations for which this was not the
case: the search for switching components always started in the topleft corner and proceeded
from left to right, top to bottom. However, this introduces a bias in the hillclimb process,
resulting in “skew images”, clearly showing the consequences of the biased operator.

Although the hillclimb operation can be easily described, its implementation offers several
computational challenges. Finding allapplicable switching components(switching compo-
nents that are present in the image) is anO((mn)2) operation, making it computationally
expensive. Although thenumberof applicable switching components is alsoO((mn)2),
it is usually much smaller. We store all applicable switching components in a hash table.
Switching components are stored as two integer-pairs: (top–left, bottom–right). We can use
the hash table to iterate over all applicable switching components. The search efficiency
of hash tables is required to update the datastructure after a switching operation has been
applied by first removing all switching components containing any of the four pixels in-
volved and subsequently adding all new switching components that contain any of those
four pixels. If the hash table is large enough we can perform this update operation inO(mn)

time.
A second operation that our datastructure must support is efficient selection of a randomly

chosen element. Each hash table entry points to a linked list of switching components. In
a separate array, we store the number of switching components that reside in each list. In
another array, we compute the accumulated number of switching components, up to and
including that entry. Using this information, we can efficiently find theith element in the
hash table, given any indexi: first perform a binary search to find the right table entry and
then perform a (tiny) linear search to find the actual switching component.Fig. 7illustrates
the approach.
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Fig. 8. The hillclimb procedure.

Fig. 8 shows a more precise formulation of the hillclimb operator. In every iteration of
the outer loop the evaluation of the image is increased. If the evaluation function is bounded
from above and from below (as is the case for the evaluation functions we consider in more
detail later), these bounds yield a bound on the number of iterations of the outer loop. Note
that the evaluation function of Problem 3 is discrete.

As the evaluation of the solution increases, the number of iterations in the inner loop
until an improvement is found will generally increase. Because the efficiency of the inner
loop contributes greatly to the efficiency of the hillclimb procedure we want to make the
inner loop as efficient as possible. To improve efficiency, we can use the fact that for many
evaluation functions the evaluation function after application of a switching component
does not have to be computed from scratch, but can be derived from the previous evaluation
(delta updating). It is essential to exploit this feature, because the inner loop is executed so
often. Despite the performance optimisations that we proposed, the hillclimb procedure is
still the bottle-neck for the runtime of our algorithm.

3.4. The mutation operator

Besides the crossover operator, our algorithm also uses a mutation operator. This
operator “distorts” a region of the image, while still adhering to the prescribed projec-
tions. The mutation operator is composed of several algorithmic steps, very similar to the
crossover operator. Instead of the crossover mask, amutation maskX = (xij ) ∈ {0,1}m×n

is computed. First, a random numberk ∈ [kmin, kmax] and a random cell(i, j) are selected.
We assignxij = 1 and mark(i, j) as border cell. Subsequently, a similar procedure as in
Fig. 4is executed. In this case, however, the loop is only executedk times. All cells that are
still unassigned after the loop terminates are assigned 0 in the mutation mask.

From the mutation maskX and a parent imageP, a model imageM = (mij ) is computed
by assigningmij = pij if xij = 0 and assigningmij a random value (0 or 1) ifxij = 1. In
other words, the mutation mask determines which part of the parent image will be distorted
in the model image.



K.J. Batenburg / Discrete Applied Mathematics 151 (2005) 36–54 47

Fig. 9. The mutation operator transforms a parent image into a child image.

After the model image has been computed, the same steps are performed as for the
crossover operator: Problem 6 is solved using the weight mask asM. Subsequently, the
hillclimb operator is applied, yielding the child individual.Fig. 9shows the different steps
of the mutation operator.As the figure shows, there may be differences between the child and
the parent individual outside the distorted region, as a result of the projection constraints.

3.5. Algorithm details

In this section we address several details of our evolutionary algorithm that have not been
discussed in the preceding sections.

The initial population is generated by repeatedly solving Problem 6, each time using a
new random binary matrix as the weight maskM.Although this procedure does not generate
all matrices inA(R, S) with equal probability, it leads to sufficient diversity in the initial
population.

The algorithm is designed to work with a variety of evaluation functions. We use tour-
nament selection, because it is independent of the actual evaluation values (it only depends
on their ordering) and because the selective pressure can be adjusted easily, by changing
the tournament size.

Before applying the crossover operator, the two parents are randomly selected among
the current population. The same applies to parent selection for the mutation operator. The
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probabilities of crossover vs. mutation are adjusted dynamically after each generation. For
every generated child image, the algorithm keeps track of the operator that generated it. It
also counts the number of children generated by crossover (ac) and by mutation (am). After
the new population has been selected, the algorithm counts the number of individuals in
the new population that were created by crossover (bc) and by mutation (bm). From these
numbers the averagecrossover yieldyc=bc/(ac+1) and mutation yieldym =bm/(am +1)
are computed. (We add 1 to the denominator to avoid division by zero). The probability that
a child will be generated through crossover in the next generation is set toyc/(yc + ym). In
this way, the algorithm creates more children by crossover in the next generation when the
crossover operation in the current generation creates children of high quality. An explicit
lower- and upperbound foryc are used: 0.1<yc <0.9. If the computed value ofyc is outside
these bounds, it is adjusted.

According to Section 3.4, the mutation operation randomly selects an integerk in the
interval [kmin, kmax]. For all experiments in Section 4 we usedkmin = mn/64 andkmax =
5mn/64.

Because the algorithm can be used with many different evaluation functions, it is difficult
to design a universal termination condition. For some specific problems, such as the recon-
struction from three projections, an upper bound on the evaluation function value is known
in advance and the algorithm can terminate as soon as an individual having that evaluation
is found. For such problems, having solutions for which optimality can easily be checked,
separate termination procedures can be implemented in our system. In general, however,
the algorithm terminates when no improvement on the best solution so far has been found
in the last 20 generations.

As indicated inFig. 3the selection procedure selects individuals for the new population
from both the old population and the group of new children. Individuals are allowed to be
selected more than once for the new population. We performed experiments to find suitable
values for the population size� and the number of children� that is created in each gener-
ation. We found that our algorithm performs well when�>�, and with a large population.
For all the experiments in Section 4 we used� = 1000,� = 500 and a tournament size of
3. We remark that although we have chosen suitable values for the algorithm parameters,
other values may work well too.

4. Computational results

We have implemented our algorithm in C++, using the gcc compiler. The implementation
is fully object oriented. By using inheritance and virtual methods, different evaluation
functions can be used without modifying the algorithm code. The evolutionary algorithm
uses a base classIndividual to represent a member of the population (a single image). For
each evaluation function we implemented a derived class, which computes the evaluation
function and performs delta updating computations. In this way new evaluation functions
can be added with very little extra coding effort and without modifying existing code.

For the implementation of the network flow algorithm we used theRelaxIV solver[5],
combined with theMCFClasslibrary [10]. The source code of our algorithm (except the
MCF library) is available from the author.
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Fig. 10. hv-convex test images.

Table 1
Reconstruction results for the set of hv-convex images

Image 1 2 3 4 5 6 7 8 9 10

#Perfect 9 5 8 8 9 6 6 6 6 9
Average time (min) 25.6 16.6 15.5 8.8 8.5 10.8 17.7 17.7 8.8 15.7
Average #generations 24.6 17.3 18.5 14.8 15.8 18.5 30.2 15.0 21.0 23.6

All our experiments were run on a Pentium IV 2800 MHz PC with 512 Mb of memory.
We performed experiments with several evaluation functions. The evaluation functions are
very different from each other, in order to demonstrate the versatility of the problem model
and the algorithm. The experimental results are intended to demonstrate the feasibility
and flexibility of our approach, not to provide extensive results on each of the individual
problems that we consider.

4.1. Reconstruction of hv-convex images

The first class of test images consists ofhv-conveximages. Using methods from[16]
we generated 10 hv-convex images of size 40× 40. Each image consists of three or four
hv-convex objects. There are no empty horizontal or vertical lines between the objects. The
test images are shown inFig. 10. For this image class, the evaluation function is the total
number of neighbouring black pixels (horizontal and vertical). We performed ten test runs
for each of the images.Table 1shows the results. We call a reconstructionperfectif it is
the same as the original image. The table shows the number of runs that achieved a perfect
reconstruction, the average runtime of the algorithm (in min) and the average number of
generations after which the best reconstruction was found. When the algorithm did not
find a perfect reconstruction, the reconstruction was always very different from the original
image. Therefore, we do not report solution quality for those cases.
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Fig. 11. Two locally optimal images having the same projections, yet being very dissimilar.

In the cases that the algorithm did not find the optimal solution, it converged to a local
optimum.Fig. 11 demonstrates the difficulties involved in this optimisation problem. It
shows the second test image, having 155 neighbouring black pixels, and another locally
optimal image having the same projections and 175 neighbouring black pixels. The images
are very dissimilar, except for the object in the center. This problem is due to the presence
of large blocks of switching components.

4.2. Reconstruction from three projections

The second group of test images arephantomimages from[9]. These images have been
used as test images in several publications[14,20]. In this case we reconstruct the images
from three projections: horizontal, vertical and diagonal (top left to bottom right). The
evaluation function to be maximised is the negated total deviation of the image’s diago-
nal projection from the prescribed projection (as a sum of absolute values). The three test
images and their reconstructions are shown inFig. 12. We performed a single test run for
each of the images. The first two images were reconstructed perfectly (the reconstruction
was equal to the original image) within 8 s. For the third image, however, the algorithm
did not find a reconstruction with the given diagonal projection. The resulting reconstruc-
tion has a total difference of 4 from the prescribed diagonal projection, and took 30 s to
compute.

The main strength of our algorithm is its flexibility. All test images are completely
4-connected and have no “holes” in them. When we assume this asa priori information,
we can incorporate it in the evaluation function.

For an imageA, put

f (A) = −c × d(A) + b(A),

whered(A) denotes the total difference between the diagonal projection ofA and the
prescribed projection,b(A) denotes the total number of pairs of neighbouring black pixels
in A andc is a very large constant. Maximisingf (A) will result in the reconstruction that
satisfies the prescribed diagonal projection which has as many neighbouring black pixels as
possible. Using this new evaluation function, the algorithm reconstructed the original images
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Fig. 12. Three phantom images and their reconstructions.

Fig. 13. The eight patterns having a nonzero local energy.

perfectly within 1 min, even the third image. This experiment shows that reconstructions
from three projections can be very accurate if appropriate a priori information is used and
that such information can easily be incorporated in our algorithm.

4.3. Reconstruction using Gibbs priors

The third evaluation function involves a probability distribution, known as aGibbsdis-
tribution. A method for using Gibbs priors in the reconstruction process was presented in
[20]. We use similar definitions. We assume that the original image is a random sample
of a certain known probability distribution. Let� be such a probability distribution, on
the set{0,1}m×n, which determines for each matrix the probability that it is sampled. The
probability�(A) of a matrixA is given by

�(A) = 1

Z
e�

∑m
i=1

∑n
j=1Iij (A).

Here,Z is a normalising factor,� is a parameter defining the “peakedness” of the distribution
andIij (A) is thelocal energy functionof cell (i, j). The local energy function of a cell is
determined by the value of the cell and each of its eight neighbours. Border pixels, which
have less than eight neighbours, are treated as if the lacking neighbours are white.Fig. 13
shows the eight patterns that have nonzero local energy:homogeneous white and black,
horizontal and verticaledges, and fourcorners. The corresponding local energy values are
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Fig. 14. Three samples from Gibbs distributions.

Table 2
Reconstruction results for the Gibbs samples

Image 1 2 3

#Perfect 10 5 10
Average time (min) 16.4 19.5 14.4
Average #generations 17.3 36.8 20.1

kw,kb,keandkc respectively.We denote a Gibbs distribution by the 5-tuple(kw, kb, ke, kc,�),
which we call theparametersof the distribution. As we know that the original image is a
random sample from the given Gibbs distribution, we want to find a reconstruction that has
maximal likelihood. We remark that this reconstruction is not guaranteed to be equal to the
original image.

Maximising�(A) is equivalent to maximisingE(A) = ∑m
i=1

∑n
j=1Iij (A), since�(A)

is a monotonously increasing function ofE(A). ComputingE(A) involves only the known
five parameters of the distribution and the imageA, we do not need to computeZ.

We implemented aMetropolis algorithm, described in[20], for generating random sam-
ples from Gibbs distributions. Three such samples of size 30× 30 and their parameters are
shown inFig. 14. The reason that we selected three images, instead of showing results for a
large number of images, is that many generated images are not tomographically challeng-
ing. For example, many contain several lines that only consist of black or white pixels. The
fact that all three images consist of lines and blocks of four pixels is due to the selected
patterns inFig. 13. Different patterns lead to other types of images. As our goal here is to
illustrate the feasibility of our approach, we only show results for this set of patterns. We
performed ten test runs for each of the three images.Table 2shows the reconstruction results.
For the third image, the algorithm actually found a reconstruction that is slightly different
from the original image, but has higher likelihood. We still marked this reconstruction as
a perfect reconstruction. When the algorithm did not find a perfect reconstruction (image
2), the reconstruction was always very different from the original image. Therefore, we
do not report solution quality for those cases. The results show clearly that perfect recon-
struction from only two projections and a given Gibbs distribution is possible in nontrivial
cases.
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5. Conclusions

We have designed a new algorithm for finding a binary image that satisfies prescribed
horizontal and vertical projections and has an optimal or near-optimal evaluation func-
tion value. Our experimental results demonstrate that the algorithm is effective for several
different evaluation functions, corresponding to diverse reconstruction problems.

As demonstrated by the results in Section 4.2 a main feature of our approach is its ability
to incorporate various forms of a priori information in the evaluation function.

The bottleneck of the algorithm is the hillclimb operator. Because our hillclimb procedure
involves keeping track of all applicable switching components, our algorithm is limited to
images of size 50×50 or less. Perhaps making the hillclimb operation less exhaustive could
result in improved time complexity of the operation.

In our experiments we often observed that really finding the global optimum of the
evaluation function was necessary to find an image that resembled the unknown original
image, which was used to generate the projection data. Near-optimal solutions were usually
very different. In order to increase the stability of the search procedure, it is necessary to
incorporate as much information as possible in the evaluation function, in order to provide
proper gradients throughout the search space.

The various reconstruction results show that when sufficient information is incorporated,
our algorithm is capable of finding accurate reconstructions.
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