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Abstract

We give counterexamples to the Brown–Colbourn conjecture on reliability polynomials, in

both its univariate and multivariate forms. The multivariate Brown–Colbourn conjecture is

false already for the complete graph K4: The univariate Brown–Colbourn conjecture is false

for certain simple planar graphs obtained from K4 by parallel and series expansion of edges.

We show, in fact, that a graph has the multivariate Brown–Colbourn property if and only

if it is series–parallel.
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1. Introduction

Let us consider a connected (multi)graph1 G ¼ ðV ;EÞ as a communications
network with unreliable communication channels, in which edge e is operational
with probability pe and failed with probability 1� pe; independently for each edge.
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Let RGðpÞ be the probability that every node is capable of communicating with every
other node (this is the so-called all-terminal reliability). Clearly we have

RGðpÞ ¼
X
ADE

ðV;AÞ connected

Y
eAA

pe

Y
eAE\A

ð1� peÞ; ð1:1Þ

where the sum runs over all connected spanning subgraphs of G; and we have written
p ¼ fpegeAE : We call RGðpÞ the (multivariate) reliability polynomial [7] for the graph

G; it is a multiaffine polynomial, i.e. of degree at most 1 in each variable separately.
If the edge probabilities pe are all set to the same value p; we write the corresponding
univariate polynomial as RGðpÞ; and call it the univariate reliability polynomial. We
are interested in studying the zeros of these polynomials when the variables pe (or p)
are taken to be complex numbers.

Brown and Colbourn [5] studied a number of examples and made the following
conjecture:

Univariate Brown–Colbourn conjecture. For any graph G; the zeros of the
univariate reliability polynomial RGðpÞ all lie in the closed disc jp � 1jp1: In other
words, if jp � 1j41; then RGðpÞa0:

Subsequently, one of us [16] proposed a multivariate extension of the Brown–
Colbourn conjecture:

Multivariate Brown–Colbourn conjecture. For any graph G; if jpe � 1j41 for all
edges e; then RGðpÞa0:

Not long ago, Wagner [18] proved, using an ingenious and complicated
construction, that the univariate Brown–Colbourn conjecture holds for all series–
parallel graphs.2 Subsequently, one of us [16, Remark 3 in Section 4.1] showed, by a
two-line induction, that the multivariate Brown–Colbourn conjecture holds for all
series–parallel graphs.3 Both the univariate and multivariate conjectures remained
open for general graphs, but most workers in the field suspected that they would be
true. (At least the present authors did.)

In this short note we would like to report that both the univariate and multivariate
Brown–Colbourn conjectures are false! The multivariate conjecture is false already
for the simplest non series–parallel graph, namely the complete graph K4: As a
corollary we will deduce that the univariate conjecture is false for a 4-vertex, 16-edge
planar graph that can be obtained from K4 by adding parallel edges, and for a
1512-vertex, 3016-edge simple planar graph that can be obtained from K4 by adding
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plethora of slightly different definitions can be found in the literature [9,7,13,14,4]. So let us be completely

precise about our own usage: we shall call a loopless graph series–parallel if it can be obtained from a

forest by a finite sequence of series and parallel extensions of edges (i.e. replacing an edge by two edges in

series or two edges in parallel). We shall call a general graph (allowing loops) series–parallel if its

underlying loopless graph is series–parallel. Some authors write ‘‘obtained from a tree’’, ‘‘obtained from

K2’’ or ‘‘obtained from C2’’ in place of ‘‘obtained from a forest’’; in our terminology these definitions yield,

respectively, all connected series–parallel graphs, all connected series–parallel graphs whose blocks form a

path, or all 2-connected series–parallel graphs. See [4, Section 11.2] for a more extensive bibliography.
3This proof is reproduced here as Theorem 5.6(c) ) (a).
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parallel edges and then subdividing edges. So the Brown–Colbourn conjecture is not
true even for simple planar graphs.

Furthermore, for the multivariate property we are able to obtain a complete
characterization: a graph has the multivariate Brown–Colbourn property if and only

if it is series–parallel.
It is convenient to restate the Brown–Colbourn conjectures in terms of the

generating polynomial for connected spanning subgraphs,

CGðvÞ ¼
X
ADE

ðV;AÞ connected

Y
eAA

ve; ð1:2Þ

where we have written v ¼ fvegeAE : This is clearly related to the reliability

polynomial by

RGðpÞ ¼
Y
eAE

ð1� peÞ
" #

CG

p

1� p

� �
; ð1:3Þ

CGðvÞ ¼
Y
eAE

ð1þ veÞ
" #

RG
v

1þ v

� �
; ð1:4Þ

where 1 denotes the vector with all entries 1, and division of vectors is understood
componentwise. The multivariate Brown–Colbourn conjecture then states that if G is
a loopless graph and j1þ vejo1 for all edges e; then CGðvÞa0: Loops must be
excluded because a loop e multiplies CG by a factor 1þ ve but leaves RG unaffected.
Some workers also prefer to use the failure probabilities qe ¼ 1� pe as the variables.

The plan of this paper is as follows: In Section 2, we show that the multivariate
Brown–Colbourn conjecture fails for the complete graph K4: In Section 3, we review
the series and parallel reduction formulae for the reliability polynomial. In Section 4,
we show that the univariate Brown–Colbourn conjecture fails for certain graphs that
are obtained from K4 by adding parallel edges and then optionally subdividing
edges. In Section 5, we complete these results by showing that a graph has the
multivariate Brown–Colbourn property if and only if it is series–parallel.

2. The multivariate Brown–Colbourn conjecture is false for K4

For the complete graph K4; the univariate polynomial CGðvÞ is
CK4

ðvÞ ¼ 16v3 þ 15v4 þ 6v5 þ v6: ð2:1Þ
The roots of this polynomial all lie outside the disc j1þ vjo1; so the univariate
Brown–Colbourn conjecture is true for K4:

Let us now consider the bivariate situation, in which the six edges receive two
different weights a and b: There are five cases:

(a) One edge receives weight a and the other five receive weight b:

CK4
ða; bÞ ¼ ð8b3 þ 5b4 þ b5Þ þ ð8b2 þ 10b3 þ 5b4 þ b5Þa: ð2:2Þ
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(b) A pair of nonintersecting edges receive weight a and the other four edges receive
weight b:

CK4
ða; bÞ ¼ ð4b3 þ b4Þ þ ð8b2 þ 8b3 þ 2b4Þa

þ ð4b þ 6b2 þ 4b3 þ b4Þa2: ð2:3Þ

(c) A pair of intersecting edges receive weight a and the other four edges receive
weight b:

CK4
ða; bÞ ¼ ð3b3 þ b4Þ þ ð10b2 þ 8b3 þ 2b4Þa

þ ð3b þ 6b2 þ 4b3 þ b4Þa2: ð2:4Þ

(d) A 3-star receives weight a and the complementary triangle receives weight b:

CK4
ða; bÞ ¼ ð9b2 þ 3b3Þa þ ð6b þ 9b2 þ 3b3Þa2

þ ð1þ 3b þ 3b2 þ b3Þa3: ð2:5Þ

(e) A three-edge path receives weight a and the complementary three-edge path
receives weight b:

CK4
ða; bÞ ¼ b3 þ ð7b2 þ 3b3Þa þ ð7b þ 9b2 þ 3b3Þa2

þ ð1þ 3b þ 3b2 þ b3Þa3: ð2:6Þ

We have plotted the roots a when b traces out the circle j1þ bj ¼ 1; and
vice versa. In cases (b) and (d) it turns out that the roots can enter the
‘‘forbidden discs’’ j1þ ajo1 and j1þ bjo1: This is shown in Fig. 1 for case
(b); blow-ups of the crucial regions are shown in Fig. 2 both for case (b) and for
case (d). As a result, counterexamples to the multivariate Brown–Colbourn
conjecture can be obtained in these two cases: indeed, for any a lying in the
region Aþ (resp. A�), there exists bAB� (resp. Bþ) such that CK4

ða; bÞ ¼ 0; and

conversely.
Let us note for future reference that the endpoint of the region A7 (resp. B7) lies

at a ¼ �1þ e72pia (resp. b ¼ �1þ e72pib), where aE0:120692 and bE0:164868 in
case (b), and aE0:110198 and bE0:030469 in case (d).

We can understand this behavior analytically as follows: For each of the five cases,
let us solve the equation CK4

ða; bÞ ¼ 0 for a in terms of b; expanding in power series

for b near 0. We obtain:

(a) a ¼ �b þ 5
8

b2 þ Oðb3Þ;
(b) a ¼ �b71

2
b3=2 þ Oðb2Þ;

(c) a ¼ � 1
3

b þ 1
8

b2 þ Oðb3Þ and a ¼ �3b þ 31
8

b2 þ Oðb3Þ;
(d) a ¼ �3b7i

ffiffiffi
3

p
b3=2 þ Oðb2Þ and a ¼ 0;

(e) a ¼ �b þ 3
4

b2 þ Oðb3Þ and a ¼ ð�372
ffiffiffi
2

p
Þb þ 9

16
ð1087

ffiffiffi
2

p
Þb2 þ Oðb3Þ:
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Fig. 1. Curves for case (b). First plot shows the a-plane; second plot shows the b-plane. Dashed magenta

curve is the circle j1þ vj ¼ 1; solid blue curve is the locus of root a; solid red curve is the locus of root b:
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Fig. 2. Blow-up of curves to show more clearly the ‘‘sliver’’ regions Aþ and B�: Top row shows the a- and

b-planes for case (b); bottom row shows the a- and b-planes for case (d).
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The behavior is thus different in cases (a,c,e) on the one hand, and cases (b,d) on
the other:

Cases (a,c,e): Here the solution is of the form

a ¼ g1b þ g2b
2 þ Oðb3Þ ð2:7Þ

with g1; g2 real. Therefore, if we set b ¼ �1þ eiy and expand in powers of y; we
obtain

j1þ aj2 ¼ 1þ ðg21 � g1 � 2g2Þy2 þ Oðy4Þ: ð2:8Þ

Provided that g21 � g1 � 2g240—as indeed holds for all the roots in cases (a,c,e)—we

have j1þ ajX1 for small y; so no counterexample is found (at least for small y).
Cases (b,d): Here, by contrast, the solution is of the form

a ¼ d1b þ d2b3=2 þ Oðb2Þ; ð2:9Þ

with d1o0 and d2a0: Therefore, if we set b ¼ �1þ eiy and expand as before, we
obtain

a ¼ id1yþ e73pi=4d2y
3=2 þ Oðy2Þ: ð2:10Þ

Since Reðe73pi=4d2Þo0 for at least one of the roots, we have Re ap� jIm aj3=2 for
small y; in particular, we have j1þ ajo1 for small ya0:

In fact, more can be said: suppose that we fix any l40 and set b ¼ lð�1þ eiyÞ:
Then we have

a ¼ id1lyþ e73pi=4d2l
3=2y3=2 þ Oðy2Þ; ð2:11Þ

so that once again Re ap� jIm aj3=2 for small y: In particular, we will have
jlþ ajol for small ya0; irrespective of how small l was chosen. This observation
will play a crucial role in Section 5 (see Proposition 5.5).

3. Series and parallel reduction formulae

Suppose that G contains edges e1;y; en (with corresponding weights v1;y; vn) in
parallel between the same pair of vertices x; y: Then it is easy to see that the edges
e1;y; en can be replaced by a single edge of weight

v1jjv2jj?jjvn �
Yn

i¼1

ð1þ viÞ � 1 ð3:1Þ

without changing the value of CGðvÞ: (Reason: x is connected to y via this ‘‘super-
edge’’ if and only if x is connected to y by at least one of the edges e1;y; en:)

Suppose next that G contains edges e1;y; en (with corresponding weights
v1;y; vn) in series between the pair of vertices x; y: this means that the edges
e1;y; en form a path in which all the vertices except possibly the endvertices x and y

have degree 2 in G: Let G0 be the graph in which the edges e1;y; en are replaced by a
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single edge e from x to y: Then it is not hard to see that

CGðvÞ ¼
Xn

j¼1

Y
iaj

vi

 !
CG0 ðv0Þ; ð3:2Þ

where the edge e is given weight

v
0 ¼ v1tv2t?tvn � 1Pn

i¼1 1=vi

ð3:3Þ

and all edges other than e1;y; en; e are given weight ve
0 ¼ ve: (Reason: a connected

spanning subgraph of G can omit at most one of the edges e1;y; en; for otherwise at
least one of the internal vertices of the path would be disconnected from both x and
y: Moreover, x is connected to y via the ‘‘super-edge’’ e if and only if none of the
edges e1;y; en are omitted. The relative weight of the cases with and without x

connected to y via e is thus ð
Qn

i¼1 viÞ=ð
Pn

j¼1

Q
iaj viÞ ¼ v; and there is an overall

normalization factor
Pn

j¼1

Q
iaj vi: See also [7, p. 35] for an equivalent formula.)

The formula for series reduction can be applied immediately to handle arbitrary
subdivisions of a graph G: Given a finite graph G ¼ ðV ;EÞ and a family of integers
s ¼ fsegeAEX1; we define Gts to be the graph in which each edge e of G is

subdivided into se edges in series. If sX1 is an integer, we define Gts to be the graph
in which each edge of G is subdivided into s edges in series. All the edges in Gts or
Gts obtained by subdividing the edge eAE are assigned the same weight ve as was
assigned to e in the original graph G: It follows immediately from (3.2)/(3.3) that

CGtsðvÞ ¼
Y
eAE

sevse�1
e

 !
CGðv=sÞ; ð3:4Þ

where ðv=sÞe � ve=se:

Remarks. 1. Series and parallel reduction formulae can be derived in the more
general context of the q-state Potts model (also known as the multivariate Tutte
polynomial): see e.g. [17, Section 2]. Parallel reduction is always given by (3.1)
independently of the value of the parameter q: Series reduction is given by

v1tv2t?tvn ¼ qQn
i¼1 ð1þ q=viÞ � 1

: ð3:5Þ

Please note that (3.5) reduces to (3.3) when q-0; which is precisely the limit in which
the multivariate Tutte polynomial ZGðq; vÞ tends (after division by q) to CGðvÞ:

2. If one takes in CGðvÞ the further limit of v infinitesimal, one obtains the
generating polynomial of minimal connected spanning subgraphs, i.e. spanning trees.
Now, spanning trees are intimately related to linear electrical circuits, as was noticed
by Kirchhoff in 1847 [10,12]. For v infinitesimal, the parallel reduction formula (3.1)
becomes

v1jjv2jj?jjvn � v1 þ v2 þ?þ vn; ð3:6Þ
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which is precisely the law for putting electrical conductances in parallel. And the
series reduction formula (3.3) is precisely the law for putting electrical conductances
in series!

4. The univariate Brown–Colbourn conjecture is false as well

Let K
ða;p1;p2Þ
4 be the graph obtained from K4 by replacing one edge by p1 parallel

edges and replacing each of the other five edges by p2 parallel edges. Let K
ðb;p1;p2Þ
4 be

the graph obtained from K4 by replacing each of two nonintersecting edges by p1

parallel edges and replacing each of the remaining four edges by p2 parallel edges.

Define in a similar manner K
ðc;p1;p2Þ
4 ; K

ðd;p1;p2Þ
4 and K

ðe;p1;p2Þ
4 for the cases (c), (d) and

(e) discussed in Section 2.
We saw in Section 2 that in cases (b) and (d) one can obtain a counterexample to

the multivariate Brown–Colbourn conjecture by choosing the weight a to lie
anywhere in the region Aþ; this leads to a root b lying in the region B� (see Figs. 1
and 2). Note now that the pth power of the region 1þ Aþ will overlap the region
1þ B� whenever p4ð1� bÞ=a (just choose any point bAB� close enough to the

endpoint �1þ e�2pib ¼ �1þ e2pið1�bÞ; then one of the pth roots of 1þ b will lie in
the region 1þ Aþ). And (3.1) tells us that p edges in parallel, each with weight v;

are equivalent to a single edge with weight veff satisfying 1þ veff ¼ ð1þ vÞp:
This reasoning suggests that counterexamples to the univariate Brown–Colbourn

conjecture might be found for the graphs K
ðb;1;pÞ
4 and K

ðd;1;pÞ
4 : for all p4ð1� bÞ=a

they should have a root vAAþ:
4 Likewise, the graphs K

ðb;p;1Þ
4 and K

ðd;p;1Þ
4 are

expected to have, for all p4ð1� aÞ=b; a root vABþ: These guesses are in fact correct,
and we find the following counterexamples to the univariate Brown–Colbourn
conjecture:

* G ¼ K
ðb;1;7Þ
4 ; 30 edges: vE� 0:26925370:682304i; j1þ vjE0:999765;

* G ¼ K
ðb;6;1Þ
4 ; 16 edges: vE� 0:40501570:801589i; j1þ vjE0:998274;

* G ¼ K
ðd;1;9Þ
4 ; 30 edges: vE� 0:22075970:626655i; j1þ vjE0:999956;

* G ¼ K
ðd;30;1Þ
4 ; 93 edges: vE� 0:01747670:185846i; j1þ vjE0:999946:

Counterexamples are also obtained for each larger p; some typical numbers are
shown in Table 1. Please note that all these counterexample graphs are planar.

The graphs G ¼ K
ðb=d;p1;p2Þ
4 are, of course, nonsimple (except when p1 ¼ p2 ¼ 1); so

one might cling to the hope that the univariate Brown–Colbourn conjecture is true at
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least for simple graphs (or, weaker yet, for simple planar graphs). But these hopes too
are false. To see why this is the case, consider the following procedure:

(1) Choose p1; p2 so that the graph K
ðb;p1;p2Þ
4 has a root v1 satisfying j1þ v1jo1:

(2) Choose any integer sX2:

(3) Find an integer k large enough so that vk � �1þ ð1þ v1Þ1=k—defined using the

root with jarg½ð1þ v1Þ1=k�jpp=k—lies in the disc j1=s þ vkjo1=s: (It is always
possible to find such a k; because the points vk lie on a logarithmic spiral
that approaches the point v ¼ 0 making a nonzero angle with the imaginary
axis, while all the circles j1=s þ vj ¼ 1=s pass through v ¼ 0 tangent to the
imaginary axis.)

Then vk is a root for the graph K
ðb;kp1;kp2Þ
4 ; by the rules for parallel reduction; and svk

is a root for the graph ðK ðb;kp1;kp2Þ
4 Þts; by the rules for series reduction. And by

construction we have j1þ svkjo1: Therefore, the graph ðK ðb;kp1;kp2Þ
4 Þts; which is

simple and planar, is the desired counterexample.
For example, if we take ðp1; p2Þ ¼ ð11; 1Þ and s ¼ 2; counterexamples can be

obtained for kX58:

* v1E� 0:140 970 808 664þ 0:507 062 767 880i; j1þ v1jE0:997 518 822 949;
* v58E� 0:000 085 091 565þ 0:009 193 226 407i; j1þ 2v58jE0:999 998 862 173:

This shows that the graph ðK ðb;638;58Þ
4 Þt2; which has 1512 vertices and 3016 edges, is

a counterexample to the univariate Brown–Colbourn conjecture. Similarly, if we
take ðp1; p2Þ ¼ ð1; 12Þ and s ¼ 2; counterexamples can be obtained for kX36:

* v1E� 0:112 358 418 620þ 0:453 757 934 703i; j1þ v1jE0:996 897 106 175;
* v36E� 0:000 172 469 038þ 0:013 125 252 246i; j1þ 2v36jE0:999 999 665 908:

ARTICLE IN PRESS

Table 1

Minimum value of j1þ vj for a zero of CGðvÞ for selected graphs G ¼ K
ðb=d;p1 ;p2Þ
4

Value of p

Graph 6 7 8 9 10 11 12 13 14 15

K
ðb;1;pÞ
4

1 0.999765 0.997818 0.996996 0.996734 0.996749 0.996897 0.997102 0.997326 0.997547

K
ðb;p;1Þ
4

0.998274 0.997234 0.997001 0.997083 0.997284 0.997519 0.997753 0.997971 0.998169 0.998345

K
ðd;1;pÞ
4

1 1 1 0.999956 0.999813 0.999746 0.999718 0.999713 0.999718 0.999730

K
ðd;p;1Þ
4

1 1 1 1 1 1 1 1 1 1

For 1ppp5 the value equals 1. A value strictly less than 1 indicates a counterexample to the univariate

Brown–Colbourn conjecture. For K
ðd;p;1Þ
4 a counterexample can be found for pX30:
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Therefore, the graph ðKðb;36;432Þ
4 Þt2; which has 1804 vertices and 3600 edges, is a

counterexample to the univariate Brown–Colbourn conjecture.

Smaller counterexamples of the forms ðK ðb=d; p; 1Þ
4 Þtðs;1Þ or ðKðb=d; 1; pÞ

4 Þtð1;sÞ can

probably be found by direct search. But the foregoing construction has the advantage
that there is no need to compute the roots of extremely-high-degree polynomials; it

suffices to compute the roots for the base case K
ðb=d; p1; p2Þ
4 (for which the polynomials

are large but not huge) and then make simple manipulations on them.
Methodological remark: In this work, we needed to compute accurately the roots

of polynomials of fairly high degree (up to 93) with very large integer coefficients (up

to about 1027). To do this we used the package MPSolve 2.0 developed by Bini and
Fiorentino [2,3]. MPSolve is much faster than Mathematica’s NSolve for high-
degree polynomials (this is reported in [3], and we confirm it); it gives guaranteed
error bounds for the roots, based on rigorous theorems [3]; its algorithms are
publicly documented [3]; and its source code is freely available [2].

Let us mention, finally, that counterexamples with smaller values of j1þ vj can be
found. Consider, for example, the complete graph K6 in which a pair of vertex-disjoint
triangles receives weight a and the remaining nine edges receive weight b: We have

CK6
ða; bÞ ¼ ð81b5 þ 78b6 þ 36b7 þ 9b8 þ b9Þ

þ ð324b4 þ 594b5 þ 480b6 þ 216b7 þ 54b8 þ 6b9Þa

þ ð486b3 þ 1314b4 þ 1665b5 þ 1224b6 þ 540b7 þ 135b8 þ 15b9Þa2

þ ð324b2 þ 1188b3 þ 2160b4 þ 2376b5 þ 1656b6 þ 720b7

þ 180b8 þ 20b9Þa3

þ ð81b þ 432b2 þ 1134b3 þ 1800b4 þ 1854b5 þ 1254b6 þ 540b7

þ 135b8 þ 15b9Þa4

þ ð54b þ 216b2 þ 504b3 þ 756b4 þ 756b5 þ 504b6 þ 216b7

þ 54b8 þ 6b9Þa5

þ ð9b þ 36b2 þ 84b3 þ 126b4 þ 126b5 þ 84b6 þ 36b7

þ 9b8 þ b9Þa6: ð4:1Þ

If we then substitute a ¼ ð1þ vÞp1 � 1 and b ¼ ð1þ vÞp2 � 1; counterexamples to the
univariate Brown–Colbourn conjecture can be found for many pairs ðp1; p2Þ: For
example, for ðp1; p2Þ ¼ ð1; 6Þ we obtain a 60-edge nonplanar graph whose roots
include vE� 0:35751470:713815 i; yielding j1þ vjE0:960375:

It would be interesting to know whether examples can be found in which j1þ vj is
arbitrarily small. More generally, one can ask:

Question 4.1. What is the closure of the set of all roots of the polynomials CGðvÞ as G

ranges over all graphs? Over all planar graphs? Over all simple planar graphs?
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Brown and Colbourn [5] pointed out that the graphs G ¼ C
ðpÞ
n (the n-cycle with each

edge replaced by p parallel edges) have roots that, taken together, are dense in the
region j1þ vjX1:We have shown here that roots can also enter the region j1þ vjo1:
But how far into this latter region can they penetrate? Might the roots actually be
dense in the whole complex plane? If this is indeed the case, it would mean that the
univariate Brown–Colbourn conjecture is as false as it can possibly be.

Note added (April 2004): Building on the examples constructed in this section,
Chang and Shrock [6, Sections 5.17 and 5.18] have recently devised families of strip
graphs in which the limiting curve of zeros of CGðvÞ; as the strip length tends to
infinity, penetrates into the ‘‘forbidden region’’ j1þ vjo1: Some of these families
consist of planar graphs.

5. Series–parallel is necessary and sufficient

In this section, we shall prove that a graph has the multivariate Brown–Colbourn
property if and only if it is series–parallel.

Let us begin by defining a weakened version of the Brown–Colbourn property:

Definition 5.1. Let G be a graph, and let l40: We say that G

* has the univariate property BCl if CGðvÞa0 whenever jlþ vjol;
* has the multivariate property BCl if CGðvÞa0 whenever jlþ vejol for all edges e:

Properties BC1 are, of course, the original univariate and multivariate Brown–
Colbourn properties; the properties BCl become increasingly weaker as l is
decreased.

The properties BCl are intimately related to subdivisions:

Lemma 5.2. Let l40 and let s be a positive integer. Then the following are equivalent

for a graph G:

1. G has the univariate property BCl:
2. Gts has the univariate property BCsl:

Lemma 5.3. Let l40 and let s be a positive integer. Then the following are equivalent

for a graph G:

1. G has the multivariate property BCl:
2. Gts has the multivariate property BCsl:
3. Gts has the multivariate property BCsl for all vectors s satisfying seXs for all edges e:

Indeed, Lemmas 5.2 and 5.3 are an immediate consequence of the formula (3.4) for
subdivisions—which states that subdivision by s moves the nonzero roots from v to
sv—together with the fact that jslþ svjosl is equivalent to jlþ vjol:
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In the preceding section we have shown that not all graphs have the univariate
property BC1: It is nevertheless true—and virtually trivial—that every connected
graph has the univariate property BCl for some l40: (Since a nonidentically-
vanishing univariate polynomial has finitely many roots, it suffices to choose l small
enough so that none of the roots of CGðvÞ lie in the disc jlþ vjol:) By Lemma 5.2,
an equivalent assertion is that Gts has the univariate property BC1 for all
sufficiently large integers s:5

The situation is very different, however, when we consider the multivariate
property BCl: We begin with a simple but important lemma:

Lemma 5.4. Let l40; and suppose that the connected graph G has the multivariate

property BCl: Then every connected subgraph HDG also has the multivariate property

BCl:

Proof. Consider first the case in which H is a connected spanning subgraph (i.e. its
vertex set is the same as that of G). Let us write v ¼ ðv0; v00Þ where v0 ¼ fvegeAEðHÞ and

v00 ¼ fvegeAEðHÞ\EðGÞ: Then

CHðv0Þ ¼ CGðv0; 0Þ ¼ lim
v00-0

CGðv0; v00Þ: ð5:1Þ

By hypothesis, CGðv0; v00Þa0 whenever jlþ vejol for all eAEðGÞ: Now take v00-0

from within this product of discs (0 lies on its boundary). By Hurwitz’s theorem,6

either CHðv0Þ is nonvanishing whenever jlþ vejol for all eAEðHÞ; or else CH is
identically zero. But the latter is impossible since H is connected.

Now let H be an arbitrary connected subgraph of G (spanning or not).

Construct a connected spanning subgraph bHH of G by hanging trees off
some or all of the vertices of H without creating any new circuits.7 Let us write
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5Brown and Colbourn [5, Proposition 4.4 and Theorem 4.5] have proven a result also for nonuniform

subdivisions Gts: namely, for each graph G there exists an integer s such that Gts has the univariate

property BC1 whenever seXs for all e: This is significantly stronger than the just-mentioned trivial result,

and it would be worth trying to understand it better. Brown and Colbourn’s method looks very different

from ours, at least at first glance; it would be interesting to try to translate it into our language. In

particular, there may be a ‘‘partially multivariate’’ result hiding underneath their apparently univariate

proof.
6Hurwitz’s theorem states that if D is a domain in Cn and ðfkÞ are nonvanishing analytic functions on D

that converge to f uniformly on compact subsets of D; then f is either nonvanishing or else identically

zero. Hurwitz’s theorem for n ¼ 1 is proved in most standard texts on the theory of analytic functions of a

single complex variable (see e.g. [1, p. 176]). Surprisingly, we have been unable to find Hurwitz’s theorem

proven for general n in any standard text on several complex variables (but see [11, p. 306] and [15, p.

337]). So here, for completeness, is the sketch of a proof: Suppose that f ðcÞ ¼ 0 for some c ¼
ðc1;y; cnÞAD; and let D0CD be a small polydisc centered at c: Applying the single-variable Hurwitz

theorem, we conclude that f ðz1; c2;y; cnÞ ¼ 0 for all z1 such that ðz1; c2;y; cnÞAD0: Applying the same

argument repeatedly in the variables z2;y; zn; we conclude that f is identically vanishing on D0 and hence,

by analytic continuation, also on D:
7This can be done, for instance, by running breadth-first search with the vertices of H initially on the

queue.
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v ¼ fvegeAEðbHÞ ¼ ðv0; v00Þ where v0 ¼ fvegeAEðHÞ and v
00 ¼ fvegeAEðbHÞ\EðHÞ: Then

CbHðvÞ ¼ CHðv0Þ
Y

eAEðbHÞ\EðHÞ

ve: ð5:2Þ

Since bHH has multivariate property BCl; so does H: &

The following is the fundamental fact from which all else flows:

Proposition 5.5. The complete graph K4 does not have the multivariate property BCl

for any l40:

Proof. This is an almost immediate consequence of the observations made at the end
of Section 2. In cases (b) and (d), for any l40 there exists b with jlþ bj ¼ l for
which at least one of the solutions to CK4

ða; bÞ ¼ 0 satisfies jlþ ajol: By slightly

perturbing this pair, we can find a pair ða; bÞ with CK4
ða; bÞ ¼ 0 satisfying jlþ ajol

and jlþ bjol: So K4 does not even have the bivariate property BCl: &

We can deduce from Lemma 5.4 and Proposition 5.5 a necessary and sufficient
condition for G to have various forms of the multivariate Brown–Colbourn
property:

Theorem 5.6. Let G be a loopless connected graph. Then the following are equivalent:

(a) G has the multivariate property BC1:
(b) G has the multivariate property BCl for some l40:
(c) G is series–parallel.

Proof. (a) ) (b) is trivial.
(b) ) (c): Let G be a loopless connected graph that is not series–parallel. Then G

contains a subgraph H that is a subdivision of K4:
8 Suppose that H ¼ ðK4Þts with

s ¼ ðs1;y; s6Þ; and define s ¼ maxðs1;y; s6Þ: Now fix any l40; then, by
Proposition 5.5 we can find a vector v ¼ ðv1;y; v6Þ that is a zero of CK4

ðvÞ and

satisfies jl=s þ vijol=s for i ¼ 1;y; 6: It then follows that the vector v0 ¼
ðv10;y; v6

0Þ defined by vi
0 ¼ sivi satisfies CHðv0Þ ¼ 0 and jlþ vi

0jol for i ¼
1;y; 6: Therefore, H does not have the multivariate property BCl: By Lemma
5.4, G cannot have this property either.

(c) ) (a): This is proven in [16, Remark 3 in Section 4.1], but for the convenience
of the reader we repeat the proof here. Suppose that G is a loopless connected series–
parallel graph; this means that G can be obtained from a tree by a finite sequence of
series and parallel extensions of edges (i.e. replacing an edge by two edges in series or
two edges in parallel). We will prove that G has the multivariate property BC1; by
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8The relevant fact is the following [8, Exercise 8.16 and Proposition 1.7.2]: G is series–parallel 3 G has

no K4 minor3 G has no K4 topological minor. And the latter statement says precisely that G contains no

subgraph H that is a subdivision of K4: See also [9,13].
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induction on the length of this sequence of series and parallel extensions. The base
case is when G is a tree: then CGðvÞ ¼

Q
eAEðGÞ ve and G manifestly has the

multivariate property BC1: Now suppose that G is obtained from a smaller graph G0

by replacing an edge e of G0 by two parallel edges e1; e2: Use the parallel reduction
formula (3.1): since j1þ v1jo1 and j1þ v2jo1 imply j1þ vjo1; we deduce that G

has the multivariate property BC1 if G0 does. Suppose, finally, that G is obtained
from a smaller graph G0 by replacing an edge e of G0 by two edges e1; e2 in series.
Use the series reduction formula (3.2)/(3.3) and the fact that j1þ vjo1 is equivalent
to Reð1=vÞo� 1=2: then Reð1=viÞo� 1=2 for i ¼ 1; 2 implies that Reð1=vÞo�
1o� 1=2; and moreover the prefactor v1 þ v2 is nonzero; so we deduce that G has
the multivariate property BC1 if G0 does. &

For each graph G; let us define l%ðGÞ to be the maximum l for which G has the
multivariate property BCl: Then Theorem 5.6 states a surprising (at first sight)
dichotomy: either l%ðGÞ ¼ 0 [when G is not series–parallel] or else l%ðGÞX1 (when
G is series–parallel).

Some series–parallel graphs have l%ðGÞ ¼ 1 exactly: for example, the graphs K
ðnÞ
2

(a pair of vertices connected by n parallel edges) have C
K
ðnÞ
2

ðvÞ ¼ ð1þ vÞn � 1 and

hence even have univariate roots on the circle j1þ vj ¼ 1: On the other hand, some
series–parallel graphs have l%ðGÞ41: for example, the cycles Cn have l%ðGÞ ¼ n=2:
(Proof: We have

CCnðvÞ ¼
Yn

i¼1

vi

 !
1þ

Xn

i¼1

1

vi

 !
; ð5:3Þ

which is nonvanishing if Reð1=viÞo� 1=n for all i: But this is equivalent to
jn=2þ vijon=2:) It is an interesting open problem to characterize the graphs that
have l%ðGÞ ¼ 1 or, more ambitiously, to find a simple graph-theoretic formula for
l%ðGÞ:
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