
Science of Computer Programming 78 (2012) 117–144

Contents lists available at SciVerse ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

An empirical study of aspect-oriented metrics
Eduardo Kessler Piveta a,∗, Ana Moreira b, Marcelo Soares Pimenta c, João Araújo b,
Pedro Guerreiro d, R. Tom Price c

a Depto. de Eletrônica e Computação, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, 97105-900, Santa Maria – RS, Brazil
b CITI/FCT - Departamento de Informática, Universidade Nova de Lisboa (UNL), Monte da Caparica, 2829-516, Caparica, Portugal
c Instituto de Informática, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, 91501-970, Porto Alegre – RS, Brazil
d Departamento de Eng. Electrónica e Informática, FCT, Universidade do Algarve (UAlg), Campus de Gambelas, 8005-117, Faro, Portugal

a r t i c l e i n f o

Article history:
Received 25 July 2010
Received in revised form 7 June 2011
Accepted 7 February 2012
Available online 26 February 2012

Keywords:
Metrics
Aspect-oriented software development
Empirical evaluation
AspectJ

a b s t r a c t

Metrics for aspect-oriented software have been proposed and used to investigate the
benefits and the disadvantages of crosscutting concerns modularisation. Some of these
metrics have not been rigorously defined nor analytically evaluated. Also, there are
few empirical data showing typical values of these metrics in aspect-oriented software.
In this paper, we provide rigorous definitions, usage guidelines, analytical evaluation,
and empirical data from ten open source projects, determining the value of six metrics
for aspect-oriented software (lines of code, weighted operations in module, depth of
inheritance tree, number of children, crosscutting degree of an aspect, and coupling
on advice execution). We discuss how each of these metrics can be used to identify
shortcomings in existing aspect-oriented software.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Aspect-Oriented Software Development (AOSD) aims at providing abstraction and composition mechanisms to better
modularise crosscutting concerns [17,10]. These concerns often cannot be clearly decomposed from the rest of the software
artefacts, and their modularisation using object-oriented techniques usually results in either scattering or tangling in the
resulting software application.

The use of software metrics can help to evaluate various quality attributes of aspect-oriented software, such as
modularity, reusability, and size. For example, size metrics can support the identification of modularisation problems: large
modules can be broken into smaller ones with fewer responsibilities or have their features merged into other modules.

Metrics adapted from widely known and used metrics for object-oriented software [9] have already been used in
experimental studies on AOSD [5,7,15], where the original object-oriented metrics were extended to be paradigm-
independent, generating comparable results [6]. Up to date, these metrics have been informally described [8], their
properties have not been analysed, and typical values of these metrics for actual and practical software are not available
in the literature.

We complement these previous works by providing, for a sub-set of those metrics, rigorous definitions, analytical
evaluation, empirical data collected from a set of widely available aspect-oriented (AO) projects, detailed discussion about
these obtained values, and also a set of usage guidelines. In summary, the main contributions of this paper are:

∗ Corresponding author.
E-mail addresses: piveta@inf.ufsm.br, piveta@gmail.com (E.K. Piveta), amm@di.fct.unl.pt (A. Moreira), mpimenta@inf.ufrgs.br (M.S. Pimenta),

ja@di.fct.unl.pt (J. Araújo), pjguerreiro@ualg.pt (P. Guerreiro), tomprice@terra.com.br (R.T. Price).

0167-6423/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2012.02.003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82730414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.scico.2012.02.003
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:piveta@inf.ufsm.br
mailto:piveta@gmail.com
mailto:amm@di.fct.unl.pt
mailto:mpimenta@inf.ufrgs.br
mailto:ja@di.fct.unl.pt
mailto:pjguerreiro@ualg.pt
mailto:tomprice@terra.com.br
http://dx.doi.org/10.1016/j.scico.2012.02.003

118 E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144

• Rigorous definitions and usage scenarios for a set of selected metrics. These definitions can be used to improve the
accuracy of quantitative assessment of aspect-oriented software by reducing the ambiguity normally present in informal
descriptions. The usage scenarios can show the relation of the metrics with quality attributes.

• An interpretation of collected empirical data, discussing the scope of values (minimum, maximum, etc.), comparing the
values in aspects and in classes, and examining variations between the metric values of the selected projects. We show
and discuss a set of examples of high and low values for each of the selectedmetrics, illustrating the value of thesemetrics
on practical applications. The correlation between metrics is also shown and discussed.

• An analytical evaluation of the selectedmetrics against established criteria for validity.We show that the aspect-oriented
adapted metrics also satisfy the criteria originally satisfied by the Chidamber and Kemerer [9] object-oriented metrics,
recommending that they can be used to assess aspect-oriented software.

Two sets of metrics are considered:

1. Metrics adapted from Chidamber and Kemerer [9] by Zakaria and Hosny [32], Santanna et al. [26], Ceccato and Tonella
[8]: lines of code (locc), weighted operations in module (wom), depth of inheritance tree (dit), and number of children
(noc);

2. Metrics specifically defined for aspect-oriented software: crosscutting degree of an aspect (cda) and coupling on advice
execution (cae) [8].

This paper is organised as follows. Section 2 presents a brief summary of AOSD and the AspectJ language.1 Section 3
describes the selected metrics, the selected projects, the computed statistics, the data collection process, and the evaluation
criteria for the selectedmetrics. Section 4 describes a rigorous definition of themetrics, usage scenarios, analytical evaluation
of the metrics, and empirical data. Section 5 presents an interpretation of the empirical data, discusses the correlation
between the metrics, and provides some lessons learned. Section 6 presents related work, and Section 7 concludes the
paper.

2. Aspect-oriented software development

Traditional software development methods are unable to effectively modularise crosscutting concerns. The implementa-
tion of these concerns is usually scattered among several base modules [17], making the final result difficult to understand,
to reuse, and to maintain. AOSD aims at providing means for their systematic identification, modularisation, and composi-
tion. AOSD modularises crosscutting concerns in separated modules, called aspects, and uses composition mechanisms to
later compose them with the base modules.

Aspects definewhich points in the software applicationwill be affected andwhat happenswith the application execution
whenever these points are reached. Although themain ideas of this paper can be adapted to other aspect-oriented languages,
we focus on the AspectJ language, as our set of cases is based on this language.

AspectJ is a widely used aspect-oriented language, based on the Java programming language. In AspectJ, aspects are
similar to classes in several ways: they may contain fields, methods, and implement interfaces. However, unlike classes,
they cannot be instantiated, and their inheritance mechanism is more limited (only classes or abstract aspects can be
extended). Aspects encapsulate join points, pointcuts, pieces of advice, and inter-type declarations in a single abstraction
mechanism.

Join points are well-defined points in the execution flow of a program. Examples of join points are: method and
constructor calls and execution, field access, and initialisations. Consider, for example, an Account class, containing a
method named withdraw (representing the withdrawal of money) and a field named balance (to store the balance of the
account).

1 public class Account {
2 double balance ;
3 public void withdraw(double value) {
4 setBalance (getBalance () − value) ;
5 }
6 public s ta t i c void main () {
7 Account c = new Account () ;
8 c . setBalance (100) ;
9 c . withdraw(50) ;

10 }
11 . . .
12 }

In this context, join points would be, for instance, the execution of the withdraw method (line 4), its call on line 9, the
Account object instantiation (line 7), among others. In AspectJ, there are syntactic elements that allow the developer to
describe join points representing the points in the code that are affected by the aspects.

1 http://www.eclipse.org/aspectj/.

http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/

E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144 119

Pointcuts group join points by the definition of a predicate that, whenever satisfied, causes the actions associated to it
to be executed. These join points can be composed through the logical operators and, or and not (&&, || and !, respectively).
Pointcuts can be named and may receive parameters. These represent the arguments that are received by the pointcut, for
example, the object that receives themessage, the current object, and the actual message parameters. These parameters can
be inspected and modified according to the semantic of the given aspect.

For example, to define an aspect that performs some actions whenever a call to the Account.withdraw method is made,
a pointcut can be defined as follows: call(void Account.withdraw(double)). To define that the aspect affects the creation of
new objects one could use: initialization(public Account.new(..)). The AspectJ pointcut language is powerful, and enables us
to describe join points both in static and in dynamic structures.

An advice is an action usually associated with a pointcut. It may occur before, after or around a join point. The after advice
can still have two variations: it may be executed after the successful run of the code associated to the pointcut, or in cases
where an exception occurs while executing the code associated with the current join point.

3. Empirical metric data collection and evaluation criteria

When measuring aspects, the developer can focus on the relation of the aspect with other modules (aspects, classes, or
interfaces) in terms of use of inheritance (number of children, depth of inheritance tree), associations (coupling metrics),
affected modules (crosscutting degree of an aspect), etc. Also, the developer can measure aspects members (pieces of
advice, pointcuts, inter-type declarations). Pointcuts can be measured to evaluate the size and the complexity of pointcut
expressions and also to determine the number of join points the expression affects. Inter-type declarations can be used as a
part of the measurements to express the complexity of an aspect (such as the weighted operations in module metric).

In this section, we discuss the metrics selected for this study, the projects used to collect empirical data, the computed
statistics, the data collection process properties, and the evaluation criteria for the metrics.

3.1. Selected metrics

For this study, we selected six metrics for aspect-oriented software [8]: lines of code (locc), weighted operations in
module (wom), depth of inheritance tree (dit), number of children (noc), crosscutting degree of an aspect (cda), and coupling
on advice execution (cae). The reasons behind these particular metrics are two-fold:

• The four complexity/size metrics (locc, wom, dit, and noc) allow us to compare them with the classical object-oriented
metrics presented by Chidamber andKemerer [9], in terms of how large are the aspects and the classes of a given software
system, and how the modules are related regarding inheritance.

• The two coupling metrics (cda and cae) provide overall estimates regarding the effects of aspects in other modules (both
classes, or other aspects), in terms of howmany modules an aspect affects and howmany aspects affect a given module.

To help in the comparison between aspects and classes, we also use the ratio between the mean value of a µ metric for
aspects and the mean value of the same metric for classes. Values of this metric higher than one indicate that the mean
value of theµmetric is higher in the aspects than in the classes. On the other hand, values below one denote that themetric
values are higher in the classes. A ratio value of one indicates that the mean values for this metric are equal in aspects and
classes. This metric is used to compare the values of the metric in aspects and in classes (which projects have a higher value
of a chosen metric for aspects than for classes or which ones have lower values for aspects). Such a ratio can be defined as
follows:

Let x(µ(aspects)) be the mean value for a metric µ for all the aspects and x(µ(classes)) be the mean value for a metric µ for all
the classes, the ratio between the mean value of the metric µ for aspects and the mean value of the metric µ for classes (denoted
by x rat.) is: x(µ(aspects))/x(µ(classes)).

Other metrics would be also useful for drawing a comparison between aspects and classes in aspect-oriented software
systems, such as the ones provided by Castor Filho et al. [7], and Ceccato and Tonella [8]. The suite of Castor Filho et al.
[7] has already been used in some experimental studies [5,7,15]. Further research is needed to assess and evaluate these
metric suites. Given that it is not feasible to analyse all these metrics in one paper, we consider these metrics as being the
focus for futurework,more specificallymetrics for coupling and cohesion, including: coupling on interceptedmodules (cim),
coupling on method call (cmc), coupling on field access (cfa), response for a module (rfm) and lack of cohesion in operations
(lco). Related work 6 discusses some of these metrics in more detail.

3.2. Selected projects

We selected ten projects from open source repositories to provide empirical data used as examples in Section 4. We
considered the number of users and the variety of the domain, aiming to select projects that are reasonably stable and that
have a significant user base. Table 1 shows summary information (name, description, version, size, and URL) of the selected
projects.

120 E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144

Table 1
Summary of selected projects.

Name Description Version (locc)

1. AspectJ Design Patterns Implementation of the GoF Patterns. v1.1 (2344)
URL: http://www.cs.ubc.ca/∼jan/AODPs/

2. AspectJ Examples Examples of the AspectJ distribution. AJ5 (2878)
URL: http://www.eclipse.org/aspectj/

3. AspectJ Hot Draw An aspect-oriented version of the JHotDraw graphics
framework.

v0.3 (23,051)

URL: http://sourceforge.net/projects/ajhotdraw/

4. aTrack Bug Tracking Application. CVSHead (2221)
URL: https://atrack.dev.java.net/

5. Jakarta Cactus Test framework for server-side java code. v1.3 (5244)
URL: http://jakarta.apache.org/cactus/

6. Glassbox Troubleshooting agent for Java applications. v1.0a2 (1562)
URL: http://www.glassbox.com/

7. GTalkWap GoogleTalk access fromWAP-enabled devices. v1.0b (1013)
URL: http://sourceforge.net/projects/gtalkwap

8. Infra Red Performance Monitoring Tool for Java/J2EE. v2.3 (13,888)
URL: http://sourceforge.net/projects/infrared

9. My SQL Connector J MySQL Native Java driver. v5.0 (40,755)
URL: http://www.mysql.com/products/connector/j/

10. Surrogate Unit testing framework. v1.0RC1 (806)
URL: http://sourceforge.net/projects/surrogate

3.3. Computed statistics

We used a third-party open source tool named aopmetrics2 to collect the metric values for the selected projects.
AopMetrics is a tool that provides the implementation of metrics for both aspect-oriented and object-oriented software
written in Java/AspectJ, including the implementation for the following suites ofmetrics: Chidamber andKemerer [9],Martin
[19], and Li and Henry [18].

For each metric, we selected the mean as a measure of central tendency and the standard deviation as a measure of
dispersion. We grouped the values by project and by module type (aspect or class). For each metric we created histograms
for the values for aspects and for classes. As the sample data is different for each histogram, the Shimazaki [27] method was
used to select the bin size.3

3.4. Data collection properties

We considered the following properties for the data collection process: accuracy, precision, replicability, correctness, and
consistency. These properties were defined by Fenton and Pfleeger [11] and are described as follows:

• Accuracy: is related to the notion that there can be differences between the actual data and themeasured data. The smaller
the difference, the higher is the accuracy.

• Precision: deals with the number of decimal places used to express data. More decimal places usually indicate a higher
accuracy.

• Replicability:means that the experiments can be performed by different people, at different times, using the same setting
provided in the experiment (data, equipment, etc.).

• Correctness:means that the data was collected accordingly to the metrics definition.
• Consistency: deals with differences with the metric values when collected by different people using different tools. To be

replicable, the consistency property of a process must be high.

The accuracy property is satisfied, as there are no differences between the collected data and the real data. The precision
property is satisfied because the metrics are of integer domain and we use Java Integer objects to represent them. The

2 Available at http://aopmetrics.tigris.org.
3 The bin size of an histogram represents the size of each category in the histogram.

http://www.cs.ubc.ca/~jan/AODPs/
http://www.cs.ubc.ca/~jan/AODPs/
http://www.cs.ubc.ca/~jan/AODPs/
http://www.cs.ubc.ca/~jan/AODPs/
http://www.cs.ubc.ca/~jan/AODPs/
http://www.cs.ubc.ca/~jan/AODPs/
http://www.cs.ubc.ca/~jan/AODPs/
http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/
http://sourceforge.net/projects/ajhotdraw/
http://sourceforge.net/projects/ajhotdraw/
http://sourceforge.net/projects/ajhotdraw/
http://sourceforge.net/projects/ajhotdraw/
http://sourceforge.net/projects/ajhotdraw/
https://atrack.dev.java.net/
https://atrack.dev.java.net/
https://atrack.dev.java.net/
https://atrack.dev.java.net/
https://atrack.dev.java.net/
http://jakarta.apache.org/cactus/
http://jakarta.apache.org/cactus/
http://jakarta.apache.org/cactus/
http://jakarta.apache.org/cactus/
http://jakarta.apache.org/cactus/
http://www.glassbox.com/
http://www.glassbox.com/
http://www.glassbox.com/
http://www.glassbox.com/
http://sourceforge.net/projects/gtalkwap
http://sourceforge.net/projects/gtalkwap
http://sourceforge.net/projects/gtalkwap
http://sourceforge.net/projects/gtalkwap
http://sourceforge.net/projects/gtalkwap
http://sourceforge.net/projects/infrared
http://sourceforge.net/projects/infrared
http://sourceforge.net/projects/infrared
http://sourceforge.net/projects/infrared
http://sourceforge.net/projects/infrared
http://www.mysql.com/products/connector/j/
http://www.mysql.com/products/connector/j/
http://www.mysql.com/products/connector/j/
http://www.mysql.com/products/connector/j/
http://www.mysql.com/products/connector/j/
http://www.mysql.com/products/connector/j/
http://www.mysql.com/products/connector/j/
http://sourceforge.net/projects/surrogate
http://sourceforge.net/projects/surrogate
http://sourceforge.net/projects/surrogate
http://sourceforge.net/projects/surrogate
http://sourceforge.net/projects/surrogate
http://aopmetrics.tigris.org
http://aopmetrics.tigris.org
http://aopmetrics.tigris.org
http://aopmetrics.tigris.org

E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144 121

experiment can be replicated, as the metrics can be collected from the same projects using the version numbers provided in
this paper.

We did our best to come out with clear and unambiguous definitions, that are the basis for correctness and consistency,
but these properties can only be satisfied through formalisation and proof that the software application used to collect
the metrics is derived from the formal specification (which is outside the scope of this paper). We partially assessed the
correctness property through test cases. Although the use of test cases does not ensure correctness, it provides a certain
degree of confidence in the results. In the aopmetric tool, there are JUnit test cases covering each kind of module that can
be targeted by the metric. The tests for all the selected metrics are described in five test classes and 42 test cases to explore
different combinations of modules.

3.5. Evaluation criteria

Chidamber and Kemerer [9] state that several researchers recommend properties that software metrics should possess
to increase their usefulness. They choose theWeyuker [31] criteria, to evaluate a set of size and coupling metrics for object-
oriented software because Weyuker’s criteria is a widely known formal analytical approach and also because her formal
analytical approach subsumes most of the earlier, less well-defined and informal properties.

Since this research is evaluating metrics adapted from Chidamber and Kemerer [9], the same criteria to evaluate the
original metrics are used. Note that the criteria are paradigm-independent [31] and can be used to evaluate both object-
oriented and aspect-oriented software. The two additional metrics (crosscutting degree of an aspect (cda) and coupling on
advice execution (cae)) are also evaluated using the same criteria. As Weyuker’s criteria are also used to evaluate coupling
and cohesion object-oriented metrics, there are no issues associated with the use of the criteria to evaluate these additional
coupling metrics.

The Weyuker [31] criteria are summarised and expressed using predicate logic as follows. For all the properties, let us
consider the modules4 A, B and C and the metric µ:

• Non-coarseness (property 1): This property verifies that the metric value can be different among modules, otherwise the
metric is not meaningful. Given A and B, the predicate ∀A ∃ B µ(A) ≠ µ(B) must hold.

• Non-uniqueness (property 2): This property expresses that two different modules can have the same value for the metric
(i.e. the modules are equally complex). Given A and B, the predicate ∃ A ∃ B µ(A) = µ(B) must hold.

• Design details are important (property 3): This property leads to the notion that different design alternatives can produce
different values for the metrics. Given A and B providing the same functionality, the predicate µ(A) = µ(B) is not
necessarily true.

• Monotonicity (property 4): This property states that the value of the metric for the composition of twomodules can never
be less than themetric values of each individualmodule. Thepredicate∀A, B (µ(A) ≤ µ(A+B))∧(µ(B) ≤ µ(A+B))
must hold, where A + B denotes the composition between A and B.

• Non-equivalence of interaction (property 5): This property considers that the composition of A and B can result in
different values for the same metric that the composition of A and C. In this case, µ(A) = µ(B) does not imply that
µ(A + C) = µ(B + C).

• Interaction increases complexity (property 6): This property states that when twomodules are composed, the metric value
can increase. ∃ A, B such as: µ(A + B) > µ(A) + µ(B).

The composition considering both aspects and classes is primarily made by the use of:

1. Inheritance: an aspect can extend a class or an aspect (but not vice-versa).
2. Association: an aspect can hold a reference to an object of a class (through an attribute).
3. Type Binding: an aspect can have generic types which are composed with classes (or other aspects).
4. Inter-type declarations: an aspect can add state or behaviour to a class.
5. Pointcut expressions: aspects composed with classes through expressions that define a composition.

These properties (one to six) will be used for the analytical evaluation of each metric in the next section.

4. Rigorous definitions, empirical data and analytical evaluation

In this section, we provide a rigorous definition using set theory, a set of usage scenarios, empirical data, and an
analytical evaluation for each of the six selected metrics: lines of code (locc), weighted operations in module (wom), depth
of inheritance tree (dit), number of children (noc), crosscutting degree of an aspect (cda) and coupling on advice execution
(cae).

Table 2 summarizes the number of modules per selected project, presenting an overall feeling of the size of the selected
projects (in terms of modules). Section 5 provides a detailed interpretation for the values of each metric.

4 When applicable, we use the generic termmodule to denote a class or aspect.

122 E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144

Table 2
Modules in the project.

Project name #Classes #Aspects

AspectJ Design Patterns 104 40
AspectJ Examples 56 27
AspectJ Hot Draw 357 10
aTrack 53 28
Jakarta Cactus 93 1
Glassbox 28 24
GTalkWap 25 2
Infra Red 158 11
My SQL Connector J 149 1
Surrogate 19 3

Total 1092 147

Each metric is described using the following structure:

• Informal definition: In the introduction of each metric, an informal introduction is provided to describe the meaning of
the metric;

• Rigorous definition: Set theory is used to describe the metric in a rigorous way;
• Usage: The usage scenarios for the metric are discussed, together with scenarios for the combination with other metrics;
• Empirical data: A set of summary statistics for the values of the metric in the selected projects is provided. Also, a brief

discussion of the metric values in the selected projects is conducted;
• Analytical evaluation: An analytical evaluation, using predicate logic, of the metric according to the selected set of

evaluation criteria.

4.1. Lines of code

This metric counts the number of lines of code (locc). We used the Java and AspectJ grammars5 to define the components
needed to compute this metric. In AspectJ, aspects can be composed of several elements, including those that can be also
elements of classes. Aspects can contain declare constructions, pieces of advice, inter-typemethod/constructor declarations,
inter-type field declarations, inner classes/aspects/interfaces, enumerations, constructors, fields, and methods. The locc of a
module (aspect or class) can be computed as the sum of the locc of its components.

4.1.1. Rigorous definition
Let O be the set of declare constructions, inter-type field declarations, enumerations, and fields of a module, A be the set

of inner classes/aspects/interfaces of a module and MS be the set of pieces of advice, methods, constructors and inter-type
method/constructor declarations of a module. Consider that the set A is composed of several elements (a1, . . . , an) where
n = |A| and the MS set is composed of several elements (ms1, . . . ,msm) where m = |MS|. The locc(m) : Module → N of
a modulem can be computed by:

locc(m) = |O| +

n
i=0

locc(ai) +

m
j=0

locc(msj) (1)

Considering that an operation is composed of a set of statements (S = (s1, . . . , sw)), with its size denoted by w = |S|,
the locc of operations (MS) can be denoted as locc(o) : Operation → N, and can be computed by the locc of the individual
statements:

locc(o) =

w
k=0

locc(ak) (2)

In this case, declare constructions, inter-type field declarations, enumerations and fields are counted as one line of
code. Pieces of advice, inter-type method/constructor declarations, constructors and methods are composed of statements
(conditionals, loops, etc.6). The set of possible statements is version dependent and the individual locc computations are
left open. Roughly, considering each statement in a single line, the locc of such constructions can then be computed by the
number of carriage returns in the body of each construction.

5 Java Grammar at https://javacc.dev.java.net/, AspectJ Grammar at http://abc.comlab.ox.ac.uk/documents/scanparse.pdf.
6 See the full Java grammar at https://javacc.dev.java.net/ for more details of all possible statements.

https://javacc.dev.java.net/
https://javacc.dev.java.net/
https://javacc.dev.java.net/
https://javacc.dev.java.net/
https://javacc.dev.java.net/
http://abc.comlab.ox.ac.uk/documents/scanparse.pdf
http://abc.comlab.ox.ac.uk/documents/scanparse.pdf
http://abc.comlab.ox.ac.uk/documents/scanparse.pdf
http://abc.comlab.ox.ac.uk/documents/scanparse.pdf
http://abc.comlab.ox.ac.uk/documents/scanparse.pdf
http://abc.comlab.ox.ac.uk/documents/scanparse.pdf
http://abc.comlab.ox.ac.uk/documents/scanparse.pdf
http://abc.comlab.ox.ac.uk/documents/scanparse.pdf
http://abc.comlab.ox.ac.uk/documents/scanparse.pdf
https://javacc.dev.java.net/
https://javacc.dev.java.net/
https://javacc.dev.java.net/
https://javacc.dev.java.net/
https://javacc.dev.java.net/

E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144 123

Fig. 1. Value of locc for aspects and for classes.

4.1.2. Usage
Metrics that count lines of code are usually used as indicators of effort, productivity, and cost [11]. In the measurement

of effort, the locc metric is used to allow comparisons between different projects or systems. This metric is also used in
productivity measurements (such as locc/hour) or costs (cost/locc), for example.

The following considerations can be made regarding locc , focusing on product metrics:

• The value of locc can be used as a rough indicator of howmuch effort was put into developing andmaintaining an aspect.
It is also used as an indicator of complexity [11].

• The locc metric can be also used to express rates regarding quality attributes, such as defects per locc [4].
• The locc is also used to measure the size of methods (mean locc per method), and the quantity of documentation of a

module (comments per locc) [11].
• Methodswith high values of locc are usually not so easily reusable, as methods that override their behaviourmay have to

redefine a lot of the original behaviour. If longmethods are broken into smaller ones, the developer may have to redefine
only one or a few small methods. In this case, the locc of a class with smaller methods can be higher, but the locc/method
is smaller.

• If flexibility is an important requirement of the system being developed (when developing a framework, for example),
the overall value of locc can be higher than a single system with few extension points. However, it does not mean that
the values of locc/method, locc/class or locc/aspect of a framework are necessarily higher than the values of locc for a
single system.

Considering the combination of the locc metric with the other metrics discussed in this paper, the following usage
guidelines are described:

• The combination of locc/wom can be used as an indicative of the size of operations. High locc values with low values of
wom can be a Large Method [12]. Modules with high locc values and highwom values can be a Large Aspect [21] or a Large
Class [12].

• Classes with high locc values andwith low cda values can denote that the aspect has state or behaviour that is not dealing
with crosscutting concerns. This state or behaviour can be moved to a new class or to an existing class. The aspect can
use association mechanisms to access these features.

• Another possible combination is in terms of cae values. Aspects or classes with low locc values and high cae values can
be used as an indicator of aspect interactions.

4.1.3. Empirical data
Table 3 summarizes the statistical data collected from the ten selected projects. The first two columns show the mean

and the standard deviation for aspects, the next two columns show the same information for classes, and the last one shows
the ratio between the mean value of locc for aspects and the mean value of locc for classes.

Fig. 1 shows the values of locc for aspects and for classes.7 The x-axis shows the values of locc and the y-axis shows
the relative frequency of each category in the projects. Each bar shows the relative frequency in the format [min,max[. For
example, in the value of locc for classes, the majority of the classes have a locc value in the interval [0, 50[. The relative
frequency states the percentage of the classes that have the size defined in the x-axis (value of locc).

In the selected projects, the core functionality is defined in classes. The aspects modularise concerns that would be
otherwise scattered over the classes. The computed mean value of locc for classes in the selected projects is 94.3 and the

7 The classes with a locc value higher than 200 (5% of the classes) are not shown to provide a better (visual) comparison between locc of aspects and of
classes. Section 5.1 discusses such classes in detail.

124 E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144

Table 3
Summary statistics for locc values.

Project name x σ x σ x rat.
(Aspects) (Classes)

AspectJ Design Patterns 19.7 14.1 13.9 9.5 1.42
AspectJ Examples 33.7 35.9 34.7 39.3 0.97
AspectJ Hot Draw 18.0 10.4 62.8 88.7 0.29
aTrack 33.5 46.4 22.1 18.8 1.51
Jakarta Cactus 88.0 0.0 54.3 64.1 1.62
Glassbox 40.5 35.7 18.9 16.6 2.14
GTalkWap 11.0 7.1 38.2 33.6 0.29
Infra Red 33.7 38.2 84.5 97.4 0.40
My SQL Connector J 186.0 0.0 271.9 668.4 0.67
Surrogate 7.0 6.9 41.0 54.3 0.17

Total 30.4 35.5 94.3 291.8 0.32

standard deviation is 291.8. The mean value of locc for the aspects is 30.5 and the standard deviation is 35.5. The mean
values of locc in the selected projects are, in general, higher for classes; also, the variability for classes is higher than for
aspects. The high values of standard deviation, in terms of locc values, show that the size of classes and of aspects varies
among them. This can be an indication that the modules are not well balanced in terms of size, there are too many Lazy
Modules or too many Large Modules.

If we analyse the ratio between the mean locc of aspects and the mean locc of classes, we have projects with a ratio
lower than one (classes are bigger, in terms of locc) and projects with ratio higher for aspects. Projects presenting a low
ratio include Surrogate (0.17), AspectJ Hot Draw (0.29), GTalkWap (0.29), Infra Red (0.40), My SQL Connector J (0.67) and
AspectJ Examples (0.97). In these projects, the core functionality of the application is modularised in classes and the aspects
are used to encapsulate auxiliary concerns (such as logging, tracing, and policy enforcement), application of design patterns
or other infra-structure aspects.

There are projects in which the ratio is bigger than one (i.e. the aspects are bigger than the classes). This usually occurs
when the application is heavily based on aspects, such as the aTrack (1.51) and the AspectJ Design Patterns (1.42) projects or
when the application is designed to be plugged into another using load-time weaving. In this sense, the locc of the affected
classes is not being computed. This situation occurs in the Glassbox (2.14) project. One last project with a high ratio is the
Jakarta Cactus (ratio of 1.62), which has 93 classes and only one aspect. This single aspect is responsible for logging every
entry and exit of methods and is quite long. It could be simplified by reducing the duplication inside its pieces of advice.

Considering the collected data, 95% of the modules have a locc smaller than 250 and 85% are smaller than 100 lines of
code. Developers tend to define small classes to improve the understandability of the modules and reduce the defects per
module (as demonstrated by Briand et al. [4]). There are however, classes with high values for locc . Querying the metric
values of the selected projects, the maximum value of locc is 4374 (which is a pretty high number for the size of a class) and
the maximum value for the locc in the aspects is 186.

4.1.4. Analytical evaluation
Consider an aspect A and an aspect B that is an exact copy of A, plus an additional field, and a name change. The

value of locc(B) = locc(A) + 1 and Property 18 is satisfied, as the predicate ∀A ∃ B locc(A) ≠ locc(B) holds.
Property 2 is satisfied, as for each A, an exact copy B can be created (with a different name), and therefore the predicate
∃ A ∃ B locc(A) = locc(B) holds. The locc of each construction in a class is a design decision and it is not determined by
the functionality of the aspect, therefore Property 3 is satisfied.

Consider two modules A and B, which are composed by inheritance (A extends B). The locc of the composition of A
and B can be defined as locc(A + B) = locc(A) + locc(B) + κ , where κ is the number of lines needed to express the
composition relationship (inheritance, association, type binding, inter-type declaration, or pointcut expression), which is
non-negative. The value of κ is ≥ 0. Either if (κ = 0) or (κ ≥ 0), (locc(A + B) ≥ locc(A)) and (locc(A + B) ≥ locc(B)).
Therefore, Property 4 is satisfied.

Let A and B be two different modules, in which locc(A) = locc(B). Consider a third different aspect C, containing a set
of methods K in common with A and K ′ in common with B. For example, if we use inheritance to compose C with A (A
extendsC) andC withB (B extendsC) the commonmethods are removed. If

|K|

i=0 locc(ki) ≠
|K ′

|

i=0 locc(k′

i), locc(A+C) ≠

locc(B + C). Property 5 is satisfied as the existence of the same value of locc for both aspects (locc(A) = locc(B)) does not
imply that the locc(A + C) = locc(B + C).

8 Section 3.5 describes each of the properties used in the analytical evalution.

E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144 125

If two modules A and B are composed through association, for example, locc(A + B) > locc(A) + locc(B), as the
association must be expressed either in A or in B. The same occurs using the inter-type declaration as the composition
mechanism. Therefore, Property 6 is satisfied, as ∃ A, B such as locc(A + B) > locc(A) + locc(B).

4.2. Weighted operations in module

The weighted operations in module (wom) metric counts the number of operations in a given module [8]. Chidamber and
Kemerer [9] define the wom of classes as the number of methods of a given class. When dealing with aspects, there is the
need to also consider pieces of advice and inter-type declarations. So, in this paper, we define a slightly different formula
for the wom of aspects. This metric is similar to the metric named Weighted Methods Per Class (wmc) [9]. The wom metric
relates directly to the complexity of modules similarly to wmc , since an advice is a method-like construct that provides a
way to express crosscutting actions at the join points that are captured by a pointcut [30]. Informally, the value ofwom for a
module is given by the number of its methods, pieces of advice, inter-type method declarations and inter-type constructor
declarations.

4.2.1. Rigorous definition
Consider a 4-tuple W = (M, A, MD, CD) where M is the set of methods, A is the set of pieces of advice, MD is the

set of inter-type method declarations and CD is the set of inter-type constructor declarations of a m module. The wom of
the modulem is given by a function wom(m) : Module → N:

wom(m) = |M| + |A| + |MD| + |CD| (3)

4.2.2. Usage
We adapted the following viewpoints from Chidamber and Kemerer [9], applicable to the wom metric:

• The number and the complexity of the pieces of advice in a class indicate howmuch time and effort is needed to develop
and to maintain the aspect.

• Aspects with large numbers of pieces of advice are likely to be more application specific, limiting the possibility of reuse.
• One of the original viewpoints from Chidamber and Kemerer [9] is that the larger the number of methods in a class, the

greater the potential impact on children, as children will inherit all the methods defined in a class. The impact of this
viewpoint is not as high for aspects (as in AspectJ, for instance, the sub-aspects do not redefine the advices of super-
aspects), as the pieces of advice of super-aspects do not influence much the complexity of sub-aspects.

Other considerations regarding the wommetric are:

• Classes and aspects with low values of wom can be inspected to see if they are not Lazy Aspects [20,21] or Lazy Classes
[12]. This shortcoming occurs if an aspect or a class has few responsibilities, and its elimination could be beneficial.
Sometimes, this responsibility reduction is related to previous refactoring or to unexpected changes in requirements
(planned changes that did not occur, for instance).

• Classes and aspectswith high values ofwom can be Large Classes [12] or Large Aspects [21].When an aspect encapsulates
more than one concern, it can be divided in asmany aspects as there are concerns. This shortcoming is usually discovered
when the developer finds several unrelated members (fields, pointcuts, inter-type declarations) in the same aspect [22].

• In terms of reusability,moduleswith high values ofwom can suffer from Refused Bequest (inwhich the sub-classes inherit
methods that are not used) [12].

• In terms of modularity, the higher the value of wom, the higher is the likelihood that those methods are responsible to
deal with different concerns. Further research is needed to correlate wom with cohesion metrics.

When considering the combinations of this metric with the other metrics discussed in this paper, the following rules of
thumb apply:

• The combination with locc is discussed in the previous sub-section (Section 4.1).
• The cda/wom metric can be an indicative of how much influence (in terms of affected modules) an aspect has. High

values of cda/wom indicate that the pieces of advice affect several modules.
• The cae/wom metric can be used to see how much the aspects influence the overall behaviour of a given module. The

value of cae/wom is directly proportional to the influence of aspects in a module.

4.2.3. Empirical data
Table 4 shows summary statistics related to the wom metric. Fig. 2 shows histograms for the values of wom for aspects

and for classes. The x-axis shows the values of wom and the y-axis shows the relative frequency of each category in the
projects. Each bar shows the relative frequency in the format [min,max[. For example, in the value of wom for aspects,
nearly 80% of the aspects have a wom value between the interval [0, 5[.

126 E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144

Table 4
Summary statistics for wom values.

Project name x σ x σ x rat.
(Aspects) (Classes)

AspectJ Design Patterns 2.8 2.7 2.1 1.2 1.34
AspectJ Examples 5.3 5.3 4.9 4.6 1.08
AspectJ Hot Draw 2.7 2.5 9.2 12.1 0.29
aTrack 4.1 6.1 3.8 4.2 1.08
Jakarta Cactus 5.0 0.0 7.2 9.2 0.69
Glassbox 5.3 6.0 2.8 2.7 1.91
GTalkWap 1.5 0.7 5.5 4.4 0.27
Infra Red 2.4 2.0 10.7 15.1 0.22
My SQL Connector J 17.0 0.0 19.4 47.8 0.96
Surrogate 0.3 0.6 5.8 7.0 0.05

Total 3.9 4.8 9.3 21.0 0.42

Fig. 2. Value of wom for aspects and for classes.

The values for the wommetric are highly correlated to those of locc (Section 5.8 describes this in more detail). The mean
value of wom for classes is 9.3 and for aspects is 3.9, denoting that the number of operations in classes is larger than in
aspects in the selected sample. The maximum value of wom for classes is 313 and for aspects it is 23. Also, the variability of
this metric in the classes is higher than in the aspects. In the selected projects, the computed standard deviation of classes is
21 and in aspects it is 4.8. High values of standard deviation, in terms of wom values, can indicate a set of Large Modules, as
the number of methods in a module, as shown by the empirical data, is quite small. There are, however, classes with more
than 300 methods, which clearly indicate design issues.

The majority of modules (81.3%) have a maximum of ten operations (methods, pieces of advice, inter-type method
declarations, or inter-type constructor declarations), while 11% have between 11 and 20 operations, and 7.6% have more
than 20 operations. Considering only classes, there are 78.3% of themwith less than 10methods, 12.4%with 11–20methods
and 9.3% with more than 20 methods. The wom of aspects is usually smaller: 90.5% of the aspects have up to 10 operations,
8.8% have between 11 and 20 and only 0.7% (one aspect) has more than 20 operations.

The ratio between the mean of wom in classes and the mean of wom in aspects provides an indication of the proportion
between the number of operations in classes and in aspects. The ratio per project is below one for Surrogate (0.05), Infra
Red (0.22), GTalkWap (0.27), AspectJ Hot Draw (0.29), Jakarta Cactus (0.69), andMy SQL Connector J (0.96). The last project
presents a high ratio value because there is only one aspect with 17 operations. Ratio values higher than one are found in the
aTrack (1.08), AspectJ Examples (1.08), AspectJ Design Patterns (1.34), and Glassbox (1.91) projects. Note that these ratio
values are smaller than the ones presented for the locc metric.

4.2.4. Analytical evaluation
Consider two identical aspects A and B (except for their name). Adding an advice to B implies that wom(A) =

wom(B) − 1. Property 1 is satisfied (the predicate ∀A ∃ B wom(A) ≠ wom(B) holds). Property 2 is satisfied, as for
any A aspect one can create another aspect with the same number of operations. The number of pieces of advice, inter-type
declarations, declare constructions and methods is a design decision and is not dependent of the functionality of the aspect,
therefore Property 3 is satisfied.

If the modules A and B are composed through inheritance, the wom of the composition of A and B can be defined as
wom(A + B) = wom(A) + wom(B) − ω, where ω is the number of common operations (methods, pieces of advice,
inter-type declarations) between A and B. The value of ω can vary from [0,min(wom(A), wom(B))]. Either if (ω = 0)

E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144 127

Table 5
Summary statistics for dit values.

Project name x σ x σ x rat.
(Aspects) (Classes)

AspectJ Design Patterns 0.4 0.5 0.5 1.4 0.8
AspectJ Examples 0.2 0.4 0.7 0.9 0.3
AspectJ Hot Draw 0.0 0.0 1.5 1.6 0.1
aTrack 0.4 0.7 1.1 1.7 0.4
Jakarta Cactus 0.0 0.0 0.9 1.1 0.0
Glassbox 1.1 1.1 1.4 1.1 0.8
GTalkWap 0.0 0.0 0.7 0.7 0.0
Infra Red 0.4 0.5 0.4 0.7 1.0
My SQL Connector J 0.0 0.0 1.0 1.3 0.0
Surrogate 0.7 0.6 0.8 1.0 0.9

Total 0.4 0.7 1.1 1.4 0.36

or (ω = min(wom(A), wom(B))), wom(A + B) ≥ wom(A) and wom(A + B) ≥ wom(B), satisfying Property 4. If
the modules are composed through association, type-binding, pointcut expression, or inter-type declarations, the value
of ω is zero, as no common method is removed, leading to the same conclusion that wom(A + B) ≥ wom(A) and
wom(A + B) ≥ wom(B). Therefore, Property 4 is satisfied.

Let A and B be two different modules, in which wom(A) = wom(B). Consider a third different aspect C, containing a
set of methods K in commonwith A and K ′ in commonwith B. If we use inheritance to compose C with A (A extends C)
and C with B (B extends C) the common methods are removed. If |K| ≠ |K ′

|, wom(A + C) ≠ wom(B + C). Property
5 is satisfied as the existence of the same value of wom for both aspects (wom(A) = wom(B)) does not imply that the
wom(A + C) = wom(B + C).

If two modules A and B are composed through inter-type method declaration, wom(A + B) > wom(A) + wom(B),
as the inter-type declaration must be expressed either in A or in B. Therefore, Property 6 is satisfied, as ∃ A, B such as:
wom(A + B) > wom(A) + wom(B).

4.3. Depth of inheritance tree

The value for depth of inheritance tree (dit) is given by the longest path from a module to the class/aspect hierarchy root
[9,8]. It is computed by counting the number of inheritance levels, from the module to the root class/aspect.

4.3.1. Rigorous definition
Considering a function s(x) : Module → Module that computes the super-class or super-aspect of a given module, the

value of dit is given by:

dit(m) =

dit(s(m)) + 1 : m ≠ rootClass
0 : otherwise

4.3.2. Usage
The following viewpoints are adapted from Chidamber and Kemerer [9] and Ceccato and Tonella [8]:

• The higher the dit of an aspect, the more inherited methods it has and usually the more complex the aspect is, as the
developer may have to understand not only the aspect but also the super-aspects or super-classes.

• Aspects with high values for dit are commonly project specific, whilst abstract aspects are usually more reusable across
different projects.

• The dit metric does not have perceptible relevant pairwise combination scenarios with the other metrics described in
this paper.

4.3.3. Empirical data
Table 5 shows the values for dit in the selected projects. Fig. 3 shows histograms for aspects and classes. Note that, in the

implementation, we are considering classes inheriting from the Java’s Object class as root classes to compute the value of
dit (as such inheritance from Object is mandatory, implicit, and transparent to the user). The x-axis shows the values of
dit and the y-axis shows the relative frequency of each category in the projects. Each bar shows the relative frequency in
the format [min,max[. For example, in the value of dit for aspects, nearly 90% of the aspects have a dit value between the
interval [0, 1[(as the dit metric is discrete, these aspects have a dit value of zero).

The value of the mean of dit for classes is 1.1 whilst for aspects the equivalent value is 0.4. Also, the dispersion in the
values of this metric is higher for classes (1.4) than for aspects (0.7). The maximum value for dit of classes is eight and for

128 E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144

Fig. 3. Value of dit for aspects and for classes.

aspects is three. The inheritance trees in the observed projects are deeper in classes than in aspects. This is expected to be
true, as aspects in AspectJ can only extend classes or abstract aspects. As there are no benefits of inheriting pieces of advice,
the reuse using inheritance is mainly due to the definition of abstract aspects with abstract pointcuts and pieces of advice.
The sub-aspects override the abstract pointcuts to provide the concrete join points that the aspect will affect. Low values
of standard deviation in the selected projects indicate that the classes have similar dit values. There is no much dispersion
regarding the values of the metric. Indeed, it is uncommon to have too many classes or aspects with deep inheritance trees.

The ratio between the mean dit of aspects per mean dit of classes varies from zero to 0.8. In all projects, the inheritance
tree is deeper for classes than for aspects. In the selected projects, the value of dit of classes is less than two in 85.5% of the
cases, within two and four in 11.8% of the classes, and higher than four in 3.7% of the classes. In the case of dit for aspects,
the maximum value of dit is three. In fact, only two aspects are three levels down in the inheritance tree. In the other cases,
90.5% of the aspects are root aspects or inherit from one abstract aspect or class, and 8.2% have a dit equals to two.

Classes and aspects with high dit values can be inspected to search for misuse of inheritance or instances of the Refuse
Bequest shortcoming (modules that do not use inherited features). In the selected projects, only 3.7% of the classes have a
dit value higher than four. Inspecting the classes with a dit higher than four, we see that 75% of the classes are in the AspectJ
Hot Draw project, where inheritance is heavily used. In this case, the project can be analysed to see if too much emphasis is
given to inheritance instead of association, for example.

4.3.4. Analytical evaluation
Consider two aspects A and B, where B is a sub-aspect of A. In this case, the value of dit(B) = dit(A) + 1. Property

1 is satisfied, as the predicate ∀A ∃ B µ(A) ≠ µ(B) holds. The dit for any sibling of B is also dit(A) + 1, so Property 2
is satisfied, as any module can have siblings (in terms of inheritance). Property 3 is satisfied as the use of inheritance is a
design dependent issue and is independent of the aspects functionality.

The composition of A and B, in terms of inheritance, depends on the following situations: (a) A and B are super and
sub-aspects, (b) A and B are siblings, and (c) A and B are unrelated in the inheritance tree. For situation (a), if we compose
A and B, the dit(A + B) is equal to the dit of the super-aspect. In this case, the predicate dit(A + B) ≥ dit(superAspect)∧
dit(A + B) ≥ dit(subAspect) does not hold, and therefore, for this specific case, Property 4 is not satisfied. For situation (b),
dit(A) = dit(B) and therefore dit(A + B) ≥ dit(A) ∧ dit(A + B) ≥ dit(A) holds. In this case, Property 4 is satisfied. For
situation (c), if the direct common ancestor of A and B is the super-aspect or the super-class of A, the combination of both
aspects is located in B actual location. In this case, Property 4 is satisfied, as dit(A + B) ≥ dit(A) ∧ dit(A + B) ≥ dit(A).
If the common ancestor of both aspects is not a direct ancestor of both A and B, there is the need to use multi-inheritance
to address the situation (which is not a common feature in aspect-oriented languages). For a discussion of the dit metric for
object-oriented software, refer to Chidamber and Kemerer [9]. The composition through association, type binding, pointcut
expression, and inter-type declarations do not change the inheritance tree of the composedmodulesA andB and, therefore
the predicate dit(A + B) ≥ dit(A) ∧ dit(A + B) ≥ dit(A) holds. In these particular cases, Property 4 is satisfied.

Note that the dit for aspects fails to satisfy Property 4 onlywhen two aspects are in a parent-descendent relationship. The
same situation happens with the metrics for object-oriented software [9]. Not satisfying this property does not invalidate
the use of dit as a metric to assess the use of inheritance mechanisms (the same occurs to the metric for object-oriented
software).

Let dit(A) = dit(B). Let C be a sub-aspect of A. As dit(A + C) = dit(A) and dit(B + C) = dit(A) + 1, Property 5 is
satisfied as dit(A) = dit(B) does not imply that dit(A + C) = dit(B + C). Considering that the dit(A + B) is equal to
max(dit(A), dit(B)), dit(A + B) ≤ dit(A + B) for all A and B. Property 6 is not satisfied. Section 5.7 discusses the effects
of not satisfying this property.

4.4. Number of children

The number of children (noc) represents the number of direct sub-classes or sub-aspects for a given module [9,8].

E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144 129

Table 6
Summary statistics for noc values.

Project name x σ x σ x rat.
(Aspects) (Classes)

AspectJ Design Patterns 0.4 0.7 0.02 0.1 19.5
AspectJ Examples 0.2 0.5 0.2 0.7 1.0
AspectJ Hot Draw 0.0 0.0 0.6 2.5 0.0
aTrack 0.3 0.7 0.2 0.8 1.4
Jakarta Cactus 0.0 0.0 0.4 0.8 0.0
Glassbox 0.5 1.4 0.7 1.4 0.7
GTalkWap 0.0 0.0 0.2 0.7 0.0
Infra Red 0.4 1.2 0.2 0.7 2.1
My SQL Connector J 0.0 0.0 0.3 1.1 0.0
Surrogate 0.7 1.2 0.2 0.5 4.2

Total 0.3 0.8 0.4 1.9 0.9

Fig. 4. Value of noc for aspects and for classes.

4.4.1. Rigorous definition
Consider a function s(x) : Module → Module that computes the super-class or super-aspect of a given module and a set

M representing the set of all modules of a given project. To compute the value of the number of children for a modulem, let
S be the set of all modules that satisfy the predicate ∀y ∈ M, s(y) = m. Thus, the metric value is given by the cardinality of
the S set:

noc(m) = |S| (4)

4.4.2. Usage
We adapted the following viewpoints for the noc metric from Chidamber and Kemerer [9] to the context of aspect-

oriented software:

• The higher the values of noc , the higher are the possibilities that the aspect has been reused, since inheritance is a reuse
mechanism. However, the higher is the likelihood of a Refused Bequest [12], in which the aspect does not use part of the
attributes or the methods defined in the super-class or in the super-aspect.

• Aspects with high values of noc can be more benefited from extensive testing, as sub-aspects usually depend on the
behaviour of the super-aspect.

• Pairwise combinations of the noc metric and the other metrics described in this paper do not show relevant shortcoming
scenarios.

4.4.3. Empirical data
Table 6 shows summary statistics of the noc metric and Fig. 4 shows empirical data for noc metric both in aspects and

in classes. The x-axis shows the values of noc and the y-axis shows the relative frequency of each category in the projects.
Each bar shows the relative frequency in the format [min,max[. For example, in the value of noc for classes, nearly all classes
have a noc value between the interval [0, 2[.

The majority of modules do not have children: in the selected projects 82% of the aspects and 87% of the classes do not
have children. Aspects with more than one sub-aspect comprise 7.5% of the aspects; and classes with more than one sub-
class correspond to 6.8% of the total number of classes. The values of the standard deviation for the noc metric indicate that

130 E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144

the classes have similar noc values. As occurs with dit values, there is nomuch dispersion regarding the values of themetric.
Typically, classes and aspects have low values for this metric (i.e. it is uncommon to have a class with too many children —
except for base core classes).

Six projects have a ratio between the mean value of noc for aspects and the mean value of noc for classes equals to zero
or below one. On the other hand, four projects havemore children in the aspects than in the classes: aTrack (1.38), Infra Red
(2.13), Surrogate (4.22), and AspectJ Design Patterns (19.5). The value in the AspectJ Design Patterns project is high because
the mean value for the noc of classes in the project is only 0.02.

4.4.4. Analytical evaluation
Let A and B be leaves and C be the root of an an inheritance tree. Property 1 is satisfied as noc(C) ≠ noc(A) and

∀A ∃ B noc(A) ≠ noc(B). As A and B are leaves, they both have noc = 0, so Property 2 is satisfied. Also, Property 3 is
satisfied as the noc of an aspect is a design issue and is independent of the functionality.

LetB be the only sub-aspect or sub-class ofA. If we composeA andB through inheritance, the value of noc(A+B) = 0
and the predicate noc(A + B) ≥ noc(A) ∧ noc(A + B) ≥ noc(A) does not hold as noc(A + B) < noc(A). Therefore,
Property 4 is not satisfied. As happenswith the dit metric, the noc for aspects fails to satisfy Property 4when two aspects are
in a parent–descendent relationship. As discussed before, not following this property does not invalidate the use of noc as
a metric to assess the use of inheritance mechanisms. We discuss more details in Section 5.7. In terms of other composition
mechanisms (association, type binding, pointcut expression, and inter-type declarations), the composition do not change
the number of children of the composed modules A and B and, thus the predicate noc(A+B) ≥ noc(A)∧ noc(A+B) ≥

noc(A) holds. For these types of composition, Property 4 is satisfied.
Now, let noc(A) = noc(B) and let C be a sub-aspect of A. As noc(A + C) = noc(A) + noc(C) − 1, noc(B + C) =

noc(B) + noc(C) and noc(A) = noc(B), the predicate noc(A + C) ≠ noc(B + C) holds and Property 5 is satisfied.
Considering that the maximum value of noc(A + B) is equal to noc(A) + noc(B) for all A and B, the Property 6 is not
satisfied (the effects of not satisfying this property are the same of those for the dit metric). Section 5.7 discusses additional
details.

4.5. Crosscutting degree of an aspect

The crosscutting degree of an aspect (cda) metric counts the number of modules affected by pieces of advice, declare
constructions, declared annotations, inter-type method declarations, and inter-type constructor declarations in a given
aspect [8]. The modules affected by an aspect are in general undecidable, because some pointcut expressions can rely on
information available only on runtime (using constructs such as cflow, cflowbelow, or if). Thus, in this paper, we
consider the cdametric for the statically determinable joinpoints (described in the following definition).

4.5.1. Rigorous definition
Consider a 3-tuple CA = (AA, AD, AI), containing information about affected modules by an aspect α, where AA

is the set of modules affected by pieces of advice of α, AD is the set of modules affected by declare constructions of α,
AI is the set of modules affected by the inter-type declarations of α. A function cda(α) : Aspect → N that computes the
crosscutting degree of an aspect can be defined as the cardinality of the union of the CA elements:

cda(α) = |AA ∪ AD ∪ AI| (5)

Note that the precise determination of infeasible conditions is undecidable in general, hence we must resort to the
approximate notion of modules affected by aspects, in our case, to the set of modules which are syntactically regarded
as potentially affected. This, however, depends on how the weaver works. For a formal calculus, for example, this can be
formally specified and its correctness and completeness proven. For an evolving programming language, with different
implementations and with an unclear semantics, it is not as precise as the former. A formal calculus (such as [25]) can
be used to specify precisely how the weaver does its job, but it does not address the issue regarding current AspectJ’s
implementations of weavers.

In this paper, we consider that an aspect A affects a module B if and only if the following constructs of A matches B:
inter-type member declarations (i.e. A{typeB.aField; } or A{B.aMethod(){. . .}; }), extension and implementation through
declare constructions (declare parents,declare error,declare warning,declare annotation, and declare
soft), and pointcut expressions composed of statically determinable pointcuts (which are pointcut expressions that do not
contain the following constructs: cflow, cflowbelow, this, target, args, and if).

4.5.2. Usage
The crosscutting degree of an aspect metric can be used as an indicator of separation of concerns [14]. The following

usages can be considered:

• High values of cda are desirable [8], as the cdametric indicates how many modules an aspect affects and how useful the
aspect is.

E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144 131

Table 7
Summary statistics for cda values.

Project name x σ Min Max

AspectJ Design Patterns 2.8 5.9 0 38
AspectJ Examples 3.5 4.8 0 20
AspectJ Hot Draw 3.6 5.4 1 18
aTrack 13.3 21.2 0 75
Jakarta Cactus 68.0 0.0 68 68
Glassbox 5.17 9.5 0 33
GTalkWap 3.0 1.4 2 4
Infra Red 2.0 4.7 0 15
My SQL Connector J 78.0 0.0 78 78
Surrogate 1.3 2.3 0 4

Total 6.2 13.9 0 78

Fig. 5. Value of cda for aspects.

• Ceccato and Tonella [8] point out that while high values of cda are desirable, the number of explicitly named modules in
the pointcuts of an aspect must be kept low (this metric is named coupling on intercepted modules (cim) [8]).

• If the cda value is equal to one, the developer has to evaluate if it is better to inline the aspect or to use inheritance or
association mechanisms to separate the concerns encapsulated by the aspect.

• Section 4.1 discusses combinations with the locc metric, and Section 4.2 discusses combinations with the wom metric.

4.5.3. Empirical data
Table 7 shows summary statistics of the cdametric. Fig. 5 shows the values of cda in the selected projects. Note that this

metric only applies to aspects, not to classes. The x-axis shows the values of cda and the y-axis shows the relative frequency
of each category in the projects. Each bar shows the relative frequency in the format [min,max[. For example, in the value
of cda for aspects, nearly 90% of the aspects affect a few classes (between the [0, 6[interval).

The values of cda are low in general (72% of the aspects have a cda value of three or less), but the values can be high and
can vary according to the nature of the concerns being encapsulated by the aspects (with a maximum of 78 in the selected
projects), thus the high values for the standard deviation. Logging and tracing aspects are more likely to have high values of
cda than other aspects. Higher values of cda indicate that the aspect is a valuable entity. This happens because, if the concern
is being implemented as a class, calls to its methods must be scattered over other classes.

4.5.4. Analytical evaluation
Consider two aspects A and B with cda(A) = cda(B). It is always possible to create a new module C and insert

an inter-type declaration in B module, which targets the C, for example. Thus, Property 1 is satisfied, as the predicate
∀A ∃ B µ(A) ≠ µ(B) holds. Two empty aspects A and B have equal values of the cda metric. In this case, Property 2 is
satisfied. Property 3 is also satisfied, as the number of modules affected by aspects is dependent of design decisions and not
of functionality.

If we compose aspects A and B through inheritance, the cda(A + B) = cda(A) + cda(B) − ν, where ν is the
number of modules affected by both A and B. In this case, ν is given by a value in the interval [0,min(cda(A), cda(B))],
if ν = 0, cda(A + B) = cda(A) + cda(B), and Property 4 is satisfied. If ν = min(cda(A), cda(B)) then cda(A + B) =

max(cda(A), cda(B)) and Property 4 remains satisfied.

132 E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144

If we composeA andB through association, one of themmust be a class (as aspects cannot be composed together through
association). LetB be that class andA be an aspect. In this case, let us also consider that cda(A+B) = cda(A)+cda(B)−ν,
where ν is the number of modules affected by both A and B. Given that classes do not affect modules, cda(B) = 0 and
ν = 0. Therefore, cda(A + B) = cda(A) and Property 4 is satisfied.

If both A and B are classes, cda(A) = cda(B) = cda(A + B) = 0. If A and B are aspects (ore one of them is a class),
and they are composed through type binding, it means that the B is a type parameter for some A construct (or vice-versa).
As pointcuts can target type parameters, this can increase the number of affected modules of A, as it can target itself if
the pointcut expression matches the particular B type. Thus, cda(A + B) = cda(A) ∨ cda(A) + 1, and the predicate
cda(A + B) ≥ cda(A) and cda(A + B) ≥ cda(B) holds.

If modules A and B are composed through a pointcut expression, then the affected modules can increase in one unit (if it
was not being affected before the composition). Thus, the cda(A+B) = max(cda(A), cda(A)+1)+max(cda(B), cda(B)+
1). Therefore, cda(A + B) ≥ cda(A) + cda(B) holds and Property 4 is satisfied.

Consider that cda(A) = cda(B) and let C be another aspect. Consider that the number of affected modules in C that
are common with A is υ and in common with B is ω and also that υ ≠ ω. As cda(A + C) = cda(A) + cda(C) − υ and
cda(B +C) = cda(B)+ cda(C)−ω, the predicate cda(A+C) ≠ cda(B +C) holds and therefore Property 5 is satisfied as
cda(A) = cda(B) does not imply that cda(A + C) = cda(B + C). Consider that the number of common modules affected
by pieces of advice, inter-type method declarations or inter-type constructor declarations between two aspects A and B
is given by ν. For all A and B, cda(A) + cda(B) − ν ≤ cda(A) + cda(B) and therefore Property 6 is not satisfied (the
implications are the same of those for the dit metric — see Section 5.7).

4.6. Coupling on advice execution

The coupling on advice execution (cae) metric weights the number of aspects affecting a givenmodule [8]. Again, consider
that the information regarding if aspects affect classes are in general statically undecidable, because the weaver can rely on
information available only on runtime (using constructs such as cflow, cflowbelow, or if, for example). Thus, for this
metric, we also consider the caemetric for statically determinable joinpoints (as defined in Section 4.5).

4.6.1. Rigorous definition
Consider a 3-tuple CE = {EA, ED , EI} containing information about the modules that affect a module m, where EA is

the set of aspects that advises m, ED the set of aspects that add declare constructions to m, and EI the set of aspects that
define inter-type declarations tom. The cae(m) : Module → N function can be defined as the cardinality of the union of the
CE elements:

cae(m) = |EA ∪ ED ∪ EI| (6)

4.6.2. Usage
The values of the caemetric can be used as an indicator of aspect interaction. The following considerations can be made:

• Low values of cae are good, as the higher the cae value, the more coupled is the class to the aspects that affect it [8]. If a
module has a cae with a zero value, it means that the module is not affected by aspects.

• More affecting aspects can denote aspect interactions and possible precedence conflicts or incompatibilities between the
applied aspects.

• We discuss combinations with the locc metric in Section 4.1 and combinations with the wom metric in Section 4.2.

4.6.3. Empirical data
Table 8 shows summary statistics for the values of cae in aspects and in classes. Fig. 6 shows histograms for the cae values

for aspects and for classes. The x-axis shows the values of cae and the y-axis shows the relative frequency of each category
in the projects. Each bar shows the relative frequency in the format [min,max[. For example, in the value of cae for aspects,
nearly 80% of the aspects are not affected by any aspects, or are affected by only one aspect (between the [0, 2[interval).
Please, note that the total x rat. value (2.2) is greater than all individual values (including the maximum value) because it
considers all the aspects and all the classes in the selected projects (the other results are computed per project). This may
seem awkward, but it is correct.

In terms of standard deviation, the values of cae are as expected, given that it is not common to have a large number of
aspects affecting a given module. This occurs because of the nature of the aspects (they tend to modularise a few concerns,
mainly related to non-functional requirements) and the focus on domain design with classes. In the selected projects, the
aspects affect classesmore than affect other aspects. The only exception is the Glassbox project, that uses load timeweaving
to attach its aspects to a target Java application, so the values for the caemetric in the affected classes can only be computed
at load-time or later.

Considering the ratio between the mean value of cae for aspects and the mean value of cae for classes, all the projects
– except the Glassbox – have a ratio lower than one. Six projects have a zero ratio (GTalkWap, AspectJ Hot Draw, Jakarta
Cactus, Surrogate, Infra Red and My SQL Connector J), three projects have a ratio lower than one (classes are more affected

E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144 133

Table 8
Summary statistics for cae values.

Project name x σ x σ x rat.
(Aspects) (Classes)

AspectJ Design Patterns 0.1 0.4 0.5 0.6 0.2
AspectJ Examples 0.5 0.6 1.4 1.5 0.3
AspectJ Hot Draw 0.0 0.0 0.1 0.3 0.0
aTrack 3.3 1.5 4.4 1.9 0.7
Jakarta Cactus 0.0 0.0 0.7 0.4 0.0
Glassbox 3.0 1.4 1.5 0.9 2.0
GTalkWap 0.0 0.0 0.2 0.6 0.0
Infra Red 0.0 0.0 0.1 0.3 0.0
My SQL Connector J 0.0 0.0 0.5 0.5 0.0
Surrogate 0.0 0.0 0.2 0.4 0.0

Total 1.2 1.7 0.6 1.2 2.2

Fig. 6. Value of cae for aspects and for classes.

than aspects), including the AspectJ Design Patterns (0.23), AspectJ Examples (0.34) and aTrack (0.74) whereas the Glassbox
has a ratio of 1.97.

Note that the values for this metric are quite low, which indicates that interactions among aspects are not very common.
Considering all the selected projects but Glassbox and aTrack, only 2.1% of the aspects have a cae value higher than one.
However, for the Glassbox and the aTrack projects, interactions can introduce precedence issues as 91% of the aspects in
the Glassbox project and 81% of the aspects in the aTrack project have cae > 1. The mean value of the cda metric for the
selected projects is higher that the values of cae, indicating that the aspects are being used to modularise concerns that the
corresponding object-oriented alternative would be otherwise scattered among several classes.

4.6.4. Analytical evaluation
Consider two equal aspects A and B (except for their name) with cae(A) = cae(B). It is always possible to create a new

aspect C that affects only B, for example. In this case, cae(A) = cae(B) − 1. Property 1 is satisfied, as ∀A ∃ B cae(A) ≠

cae(B). Property 2 is also satisfied, as two unaffectedmodules have the same value for the caemetric. The number of aspects
that affects a class is design dependent and not mandated by the functionality of the classes and aspects, therefore Property
3 is also satisfied.

Consider the A and B modules, not related by inheritance, and their respective super-classes or super-aspects A′ and
B ′, where A′

≠ B ′. As there are certain pointcut expressions that affect a class and all its descendants, consider that B ′

has one of such pointcuts affecting it and its sub-classes or sub-aspects (in this case, including B). If the inheritance tree
is changed (i.e. the B ′ is not the superclass of B any more), the B can be no longer affected by such pointcut, and the
predicate ∀B (µ(B) ≤ µ(A + B)) does not hold, and thus Property 4 is not always satisfied for this particular case (a
pointcut expression affecting descendants of the B ′ module). Section 5.7 discusses more details about this. Composition
through association or through type binding can increase the number of classes affecting a given module, as a reference to
a new type is introduced in the module, thus cae(A + B) ≥ cae(A) + cae(B) and Property 4 is satisfied for this case. If
a A module is composed with B through a pointcut expression (i.e. a pointcut expression of A uses B in its expression),
the cae(A + B) ≥ cae(A) + cae(B), as the cae(B) after the composition is increased by one if the B module was not
already being affected by A. The same situation occurs with the composition through inter-type declarations. In both cases,
Property 4 is satisfied.

Consider that cae(A) = cae(B) and let C be another module. Consider that the number of aspects affecting C that
are common with the aspects that affect A is υ and in common with B is ω and also that υ ≠ ω. As cae(A + C) =

134 E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144

cae(A) + cae(C) − υ and cae(B + C) = cae(B) + cae(C) − ω, the predicate cae(A + C) ≠ cae(B + C) holds and
therefore Property 5 is satisfied. Let θ be the number of commonmodules affecting two modules A and B. For all A and B,
cae(A)+ cae(B)− θ ≤ cae(A)+ cae(B) and therefore Property 6 is not satisfied (the effects of not satisfying this property
are the same of those for the dit metric — as described in Section 5.7).

5. Discussion

In this section, we show a series of examples of classes and aspects showing high and low values for each metric and
discuss the implications of such situations.

5.1. Lines of code

Classes with high values of locc can be analysed and, if needed, be broken into two or more classes. For example, the top
ten classes in terms of locc values, in the selected projects, are from theMy SQL Connector J project. The locc of these classes
vary from 1317 to 4374 and they can be considered Large Classes [12].

The highest value of locc for aspects in the selected projects is the Tracer aspect, in the My SQL Connector J project.
Inspecting this aspect, we note that two private methods are not being used9 and can be deleted. Also, there are two
duplicatedmethods.10 The Extract Method refactoring [12] can be used to extract the common behaviour. The same situation
occurs with the entry and exit methods andwith the methods and constructors pointcuts. This aspect can be broken
into two different aspects: one containing the core behaviour of tracing and other with the binding between this behaviour
and the My SQL Connector J classes.

Classes with low values of locc can also bring shortcomings. For example, in the AspectJ Design Patterns project, there
is an empty class named Panel and in the aTrack project, an empty aspect named Observing. Other empty classes in the
selected projects are theSorter andButtonCommand2 classes in theAspectJ Design Patterns, theHTMLTextAreaFigure
inner-class named InvalidAttributeMarker in the AspectJ Hot Draw project and the MockMethodTestCase inner-
class named TestException in the Surrogate test framework.

There are 25 classes and aspects with a locc value below five and 129 below six, for example. The developer can inspect
these small classes and aspects to evaluate if their existence is justified or if they can be merged with existing classes.

5.2. Weighted operations in module

We analysed two classes with the highest values for the wom metric in the selected projects: Connection and
ConnectionProperties (from the My SQL Connector J project). The Connection class has an inner class, named
UltraDevWorkAround, with 154 methods.

Inspecting the ConnectionProperties class, the first thing to note is that it has a lot of inner classes. Fig. 7 shows the
ConnectionProperties class with the attributes and methods compartments hidden to better visualize both the inner
classes and two of its sub classes: PropertiesDocGenerator and DocsConnectionPropsHelper.

The dependency between ConnectionProperties and the selected sub-classes is very weak. The sub-classes have
only a main method. As the source code to both classes is available, the PropertiesDocGenerator class (Listing 1) was
inspected. This class does not need to extend the ConnectionProperties class.

1 public class PropertiesDocGenerator
2 extends ConnectionProperties {
3 public s ta t i c void main(Str ing [] a) throws SQLException {
4 System . out . pr int ln (new PropertiesDocGenerator () . exposeAsXml ()) ;
5 }
6 }

Listing 1. PropertiesDocGenerator class

Listing 2 shows that the inheritance dependency can be removed and an instance of the ConnectionProperties class
(line 3) can be created instead.

1 public class PropertiesDocGenerator {
2 public s ta t i c void main(Str ing [] a) throws SQLException {
3 System . out . pr int ln (new ConnectionProperties () . exposeAsXml ()) ;
4 }
5 }

Listing 2. PropertiesDocGenerator class — Modified

9 The getStream and setStream methods.
10 The printEntering and printExiting methods.

E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144 135

Fig. 7. Class Diagram for the ConnectionProperties class and some of its sub-classes.

Also, the DocsConnectionPropsHelper is equal to the PropertiesDocGenerator class, except for its name. None
of them are being used by other classes and they can be both deleted. If they are being used indirectly, through reflection,
only one of them is needed. Also, the inner classes are quite big and can be extracted to new classes. This can reduce the size
of the ConnectionProperties class and some of its complexity.

In terms of high values of wom in aspects, consider the ExecutionTracer aspect in the Glassbox project, for example.
It has 20 operations dealing with trace printing, pattern matching and advising trace points. It can be refactored into a set of
aspects dealing each one with a different concern. Large aspects can benefit from the use of a guideline named one concern
per aspect [23], that proposes that each aspect should encapsulate a single concern.

Low values of wom in classes appear, for example, in the Version class (Listing 3) of the Jakarta Cactus project. This
class has only a constant field (line 2). This constant can be moved to another class or stored in a resource bundle.

1 public class Version {
2 public s ta t i c f inal Str ing VERSION = "@version@" ;
3 }

Listing 3. Version class

Another classwith a lowwom value is theEscapeProcessorResult class, from theMySQLConnector J project (Listing
4). Usually, it is interesting to encapsulate the access to the attributes using accessors. For example, the escapedSql
attribute (line 3) is used by six different methods in three classes. The developer can use the Encapsulate Attribute
refactoring [12] to provide a getEscapedSql and a setEscapedSql methods to access the protected data. This allows
the structure of the escapedSql to be changed over time (from a String to a StringBuffer, for example), decoupling
the EscapeProcessorResult class from the classes that use it.

1 class EscapeProcessorResult {
2 boolean cal l ingStoredFunct ion = fa lse ;
3 Str ing escapedSql ;
4 byte usesVariables = Statement . USES_VARIABLES_FALSE ;
5 }

Listing 4. EscapeProcessorResult class

Low values ofwom in aspects occur, for example, in the abstract aspect TemplateOperationMonitor, in the Glassbox
project. This aspect has four pointcuts that can be extended by sub-aspects, but does not have any associated behaviour.
This aspect can be seen both as a Lazy Aspect and as an occurrence of Speculative Generality (i.e. when classes or aspects
are created to handle hypothetical future requirements that are never materialised.) [12,21]. Other aspects with too few
responsibilities to justify its existence include the AtrackLogManager and the AtrackExceptionHandling aspects, in
the aTrack project.

136 E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144

For example, the AtrackLogManager (Listing 5) only defines a declare parents statement (line 2), that can be moved
to another aspect that deals with logging.

1 public aspect AtrackLogManager {
2 declare parents : org . atrack . . ∗ implements Loggable ;
3 }

Listing 5. AtrackLogManager aspect

5.3. Depth of inheritance tree

In the aTrack project, there are four classes with a dit of five or six. All these classes represent Java exceptions, with the
following hierarchy:

-Object
- Throwable

- Exception
- RuntimeException

- AtrackException
- PersistenceException
- ControllerException
- ModelException

- EntityNotFoundException

As user defined exceptions in Java usually extend from RuntimeException or from one of its sibling classes, it is expected
that they have a dit of four or more. In this case, however, one of the classes in the inheritance tree, the AtrackException
class, is used only in the LoginAction class (Listing 6 — line 8):

1 public class LoginAction extends Action {
2 . . .
3 private Subject authenticate (Str ing username , Str ing password) {
4 . . .
5 try {
6 l c . login () ;
7 } catch (LoginException e) {
8 throw new AtrackException (e) ;
9 }

10 return l c . getSubject () ;
11 }
12 }
Listing 6. LoginAction class

This class is an unnecessary Middle Man [12]. The PersistenceException, ControllerException and
ModelException can inherit from RuntimeException and the AtrackException can be deleted, as it is used in only
one place, which can be changed to a direct reference to the RuntimeException class.

In the selected projects, the maximum value for the dit of aspects is three. There are no problems associated with such
values for dit in aspects. In fact, only two aspects actually have a dit equal to three: theAbstractXmlCallMonitor and the
XMLParsingMonitor aspects in the Glassbox project. Further inspection in these two aspects does not show any misuse
of inheritance.

Low values of dit in classes are quite common. It is only a problem if the class is bloated with a lot of responsibilities
and the use of inheritance can alleviate the problem or if the class is a Lazy Class and has few responsibilities in the overall
design.

As the inheritance in aspects plays a slightly different role, compared to the inheritance of classes, the values of dit in
aspects are expected to be lower. Usually, inheritance mechanisms are used to decouple the behaviour defined in a super-
aspect with the concrete join points specified in the sub-aspects. Examples of such use of inheritance are representative
of a design guideline named use abstract aspects [23], that states that the developer should design towards abstract
aspects, whose behaviour is defined completely by its pieces of advice, and its relationship with classes or other aspects
is accomplished by specialization.

The use of abstract aspects can help in developing more reusable aspects, by postponing implementation decisions and
leaving the definition of concrete pointcut definitions to the sub-aspects. Also, the behaviour defined in abstract aspects can
be reused by different applications. Each application can create sub-aspects that capture the specific points that will activate
the aspect behaviour.

For example, in the Observer pattern [16] (in the AspectJ Design Patterns project) there is a ScreenObserver aspect
(Listing 7) that extends the reusable abstract aspect ObserverProtocol (line 1) and defines that both roles (Subject
and Observer) will be played by the Screen class (lines 2 and 3). It also defines when the subject state changes (line 4)

E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144 137

and what should be done to update the observers (lines 5–7). This example defines an abstract aspect implementing the
logic for the Observer pattern and leaves for the sub-aspects the task of binding the Subject and Observer roles and
the changes in the Subject with the classes that will play these roles.

1 public aspect ScreenObserver extends ObserverProtocol {
2 declare parents : Screen implements Subject ;
3 declare parents : Screen implements Observer ;
4 pointcut subjectChange (Subject sub) :
5 ca l l (void Screen . display (Str ing)) && target (sub) ;
6 void updateObserver (Subject sub , Observer obs) {
7 ((Screen) obs) . display ("Updated") ;
8 }
9 }

Listing 7. ScreenObserver aspect

5.4. Number of children

High values of noc can be seen in classes that are highly reused through inheritance. In the AspectJ Hot Draw project,
for example, the AbstractCommand class has 33 children and is the base class for new Command classes. Other examples
of classes with a high value of noc in the AspectJ Hot Draw framework are the UndoableAdapter (with 24 children), the
AbstractTool (with 15 children) and the ResizeHandle, with 8 children.

Aspects with high values of noc usually implement the basic behaviour of a concern and use abstract pointcuts to define
a contract that the sub-aspects must fulfil.

Consider the InfraREDBaseAspect aspect (Listing 8), from the Infra Red project, for example. This aspect tracks the
time spent by a method call and updates a set of statistics. It defines an abstract pointcut and an abstract method as hooks
that are overridden by the sub-aspects, binding the application classes with the time tracking behaviour. The condition
abstract pointcut (line 2) specifies the condition based on which monitoring is performed and the getApiType method
(line 3) gets the type (Session Bean/Entity Bean/JDBC etc.) of an API.

1 public abstract aspect InfraREDBaseAspect {
2 public abstract pointcut condition () ;
3 public abstract Str ing getApiType () ;
4 Object around () : condition () {
5 . . .
6 f ina l Str ing apiType = getApiType () ;
7 / / Time t rack ing statements
8 }
9 }

Listing 8. InfraREDBaseAspect aspect

The InfraREDBaseAspect aspect has four sub-aspects: EntityBeanAspect, SessionBeanAspect, Strut-
sAspect and WebAspect. The WebAspect aspect (Listing 9), for example, overrides the condition pointcut (line 2)
to define which join points are affected by the InfraREDBaseAspect behaviour and the getApiType (line 5), to specify
the type of API used.

1 public aspect WebAspect extends InfraREDBaseAspect {
2 public pointcut condition () :
3 execution (public ∗ HttpServlet + . ∗ (. .)) | |
4 execution (public ∗ F i l t e r + . ∗ (. .)) ;
5 public Str ing getApiType () {
6 return "Web" ;
7 }
8 }

Listing 9. WebAspect aspect

Low noc values in classes and aspects is commonplace. In fact, in the selected projects, nearly 87% of all the aspects and
classes do not have sub-classes or sub-aspects.

5.5. Crosscutting degree of an aspect

Examples of aspects with high values of cda include the Tracer aspect from the My SQL Connector J project (cda = 78),
the LogAspect from the Jakarta Cactus project (cda = 68), the AtrackLogManager (cda = 39) from the aTrack project
and the QueueStateAspect (cda = 38) from the AspectJ Design Patterns project.

Consider the Tracer aspect (Listing 10), for example. This aspect has a pointcut named methods that defines the join
points usingwildcards and package information, instead of simply listing all the affected points. It ensures that everymethod

138 E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144

executions within a set of packages is traced.

1 public aspect Tracer {
2 pointcut methods () : execution (∗ ∗ (. .))
3 && within (com. mysql . jdbc .∗)
4 && within (!com. mysql . jdbc . trace .∗)
5 && within (!com. mysql . jdbc . log .∗)
6 && within (!com. mysql . jdbc . U t i l) ;
7 . . .
8 }

Listing 10. Tracer aspect

The QueueStateAspect (Listing 11) defines a behaviour according to class initialisation. The after advice with the
initialization(new()) && target(q) pointcut expression affects 34 classes (line 2). If new classes are added to the
system, they will be automatically affected by the aspect.

1 public aspect QueueStateAspect {
2 after (Queue q) : in i t i a l i za t ion (new()) && target (q) {
3 q . setState (empty) ;
4 }
5 . . .
6 }

Listing 11. QueueStateAspect aspect

The ErrorHandling aspect, in the Glassbox project, affects 33 classes using a composite pointcut, defining the affected
join points using nine separated predicates (one for each set of points).

Aspectswith low cda values can be inspected to evaluate if they can be converted to classes ormergedwith other aspects.
Sometimes the aspects with low cda values extend other aspects in a similar way that the Template Method design pattern
[13] is implemented in object-oriented systems.

Consider, for example, the ExampleProjectCalls aspect (Listing 12) in the Surrogate project. It extends the
SurrogateCalls aspect (line 5), that defines an abstract pointcut named mockPointcut (line 6) and an advice that
implements a certain behaviour each time the mockPointcut join points are reached (line 7).

1 aspect ExampleProjectCalls extends SurrogateCal ls {
2 protected pointcut mockPointcut () : (ca l l (java . io .∗Reader .new (. .)) | |
3 ca l l (∗ java . lang . System . currentTimeMill is ())) ;
4 }
5 public abstract aspect SurrogateCal ls {
6 protected abstract pointcut mockPointcut () ;
7 Object around () : mockPointcut () {
8 . . .
9 }

10 }
Listing 12. ExampleProjectCalls aspect

Other examples of aspects that implement the same pattern and have a low value for cda include the four
InfraREDBaseAspect children in the Infra Red project (EntityBeanAspect, SessionBeanAspect, StrutsAspect,
and WebAspect) and the ColorObserver and RequestCounting aspects in the AspectJ Design Patterns project.

Another situation occurs when the classes are Lazy Aspects. In the AspectJ Design Patterns project, for example, lazy
aspects appear in four aspects: StrategyProtocol, MementoProtocol, FlyweightProtocol, and CompositePro-
tocol. These aspects do not have any crosscutting members and can be converted to classes. Whenever an aspect does not
have members implementing crosscutting concerns a class can (and should, if possible) be used instead. One Lazy Aspect
was detected in Glassbox. The AbstractResourceMonitor aspect does not have crosscutting members, but it cannot be
converted to a class because it extends the AbstractRequestMonitor aspect (in AspectJ, classes cannot extend aspects).
Such situations can be automatically detected in AspectJ using a bad smell detector [22].

5.6. Coupling on advice execution

High values of cae can be an indicative of aspect interaction. The developer should focus the search for aspects interaction
on the modules with the highest values for this metric. Table 9 shows the number of modules with cae > 1 in the selected
projects. Table 10 shows the same information considering a cae > 2. Classes with a cae value higher than one can have
interaction issues. The probability of having interaction problems is higher in modules with high values for the cae metric.

The aTrack and the AspectJ Examples projects have several classes with values of cae higher than two. Note that this fact
is not a problem itself, but the classes should be inspected to detect aspect interaction issues.

E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144 139

Table 9
Number of modules with cae > 1.

Project # of modules

aTrack 51
ajExamples 22
glassbox 9
ajDesignPatterns 8
GTalkWAP 2
ajHotDraw 2

Table 10
Number of modules with cae > 2.

Project # of modules

aTrack 47
ajExamples 11
glassbox 3

Consider, for example, the LoginAction class (Listing 13) in the aTrack project. This class has a cae value equals to ten.
It means that ten different aspects affect this class. The class has only two methods and its behaviour is heavily influenced
by the aspects. It is difficult to see if the interaction of all the aspects affecting this class are correct, in the right order or
even how they affect the behaviour of the class.

1 public class LoginAction extends Action {
2 public ActionForward execute (ActionMapping mapping ,
3 ActionForm form , HttpServletRequest request , HttpServletResponse response)
4 throws Exception {
5 LoginForm loginForm = (LoginForm) form ;
6 . . .
7 return mapping . findForward
8 (Consts . SUCCESS_REDIRECT) ;
9 }

10 private Subject authenticate (Str ing username ,
11 Str ing password) {
12 . . .
13 }
14 }
Listing 13. LoginAction class

The class is advised by three pieces of advice defined in the ExecutionTracer and the ExceptionHandling aspects,
there are three parent declarations from the PersistenceControl and the AtrackLogManager aspects. Thirteen
methods are added by inter-type method declarations from the LogManager aspect. The execute method (line 2) is
advised by twelve different advices, defined in eight different aspects, and one exception is softened by theErrorHandling
aspect. Theauthenticatemethod (line 10) is advised by three pieces of advice defined in twodifferent aspect. It is difficult
to reason about the resulting behaviour of the aspects that affect this class. The development environment can help to show
these interactions. However, it is currently an open issue how this is modelled and implemented in a way to ensure that the
behaviour is correct.

Low values of cae are common and do not represent any issues in terms of complexity, reusability, or maintainability. A
cae value of zero denotes that the class or aspect is not affected by any aspects.

5.7. Margin of error and analytical results

The accuracy of samples is usually measured using margin of error. According to Snedecor and Cochran [28], the amount
bywhich the proportion obtained from the samplewill differ from the true population proportion rarely exceeds one divided
by the square root of the number in the sample (1/

√
n), in which n represents the number of elements in the sample. In this

paper, the margin of error for the analysis related to values for aspects is 8% and for the values for classes is 3%.
Regarding the analytical results, the metrics described here satisfy most of the properties analysed, except for Property

6, which states that when two modules are combined, the metric value can increase. However, this failure implies that the
metric values can increase if an aspect or class is divided in more aspects or classes. Chidamber and Kemerer [9] claim that
this property may not be an essential feature for object-oriented software design complexity metrics and not satisfying can
be seen as beneficial in object-oriented software. We agree with their interpretation and corroborate it for aspect-oriented
software. As happens with the metrics for object-oriented software [9], the dit and noc for aspects fails to satisfy Property

140 E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144

Table 11
Correlation coefficients between values for aspects.

Correlation between values for aspects

dit cae cda locc noc wom
dit 1.00 0.18 −0.25 −0.19 −0.06 −0.21
cae 1.00 0.17 0.26 0.06 0.26
cda 1.00 0.51 0.02 0.40
locc 1.00 0.22 0.87
noc 1.00 0.26
wom 1.00

Table 12
Correlation coefficients between values for classes.

Correlation between values for classes

dit cae locc noc wom
dit 1.00 −0.07 0.02 −0.02 0.02
cae 1.00 0.00 0.00 0.01
locc 1.00 0.05 0.81
noc 1.00 0.13
wom 1.00

4 (which states that the value of the metric for the composition of two modules can never be less than the metric values of
each individual module) only when two aspects are in a parent-descendent relationship. Not following this property does
not invalidate the use of dit and noc as metrics to assess the use of inheritance mechanisms (the same occurs to the object-
oriented version of these metrics). The same occurs with the cae metric, in which Property 4 does not hold only in very
specific situations and with a difference of one in the metric value.

5.8. Data correlation

The Pearson product–moment correlation coefficient (PMCC)measures the correlation (linear dependence) between two
variablesA andB and is defined as the covariance of these variables divided by the product of their standard deviations. It is
usually denoted by r . Correlation indicates the strength and direction of a linear relationship between two random variables
[28]. We measured the correlation between the metrics using the gretl11 tool. Please, refer to Rodgers and Nicewander [24]
for more details on how to compute PMCC.

Tables 11 and 12 show the correlation values (r) for aspects and classes (rounded to two digits using unbiased rounding).
We use correlation squared (r2) [28] to help in the data interpretation. Correlation squared describes the proportion of

variance in common between the two variables. High values of correlation squared appear only between the locc and the
wom metrics. This correlation squared is 0.76, which means that, across all the aspects in the sample projects, 76% of their
variance on these two metric values is in common. Fig. 8 shows the correlation between these two metrics in a scatter
plot. There is also a small squared correlation between locc and cda (0.26) and between wom and cda (0.16). These squared
correlation values lead to the notion that there is a relationship between the size of aspects (in terms of the values of locc and
wom) and the crosscutting degree of an aspect (cda) values. The remaining correlation values indicate very low correlation
or no correlation at all between dit and the other metrics, cae and the other metrics, and noc and the other metrics.

Table 12 also shows that the metrics for classes are not correlated, except for wom and locc , with a correlation of 0.81
(with a correlation squared of 0.66). Usually there is a balance between the number of lines of code per method in both
aspects and classes. Note that correlation shows that a couple of values change together, but does not necessarily imply
causation, as the causes underlying the correlationmaybe indirect andunknown. Further investigation is needed to correlate
these metrics with additional ones and to study the causes behind this correlation.

5.9. Lessons learned

Metrics adapted from Chidamber and Kemerer [9] and metrics specifically tailored for aspect-oriented software can
be used to evaluate software applications in the presence of aspects in several ways. Metrics can be used as indicators
of quality, used to measure quality attributes, such as reusability or modularity, for example. Also, they can be used to
detect problems that can appear in the software. In this section we provide a summary of how the usage guidelines and the
examples discussed can provide insights on how each metric can be used to spot shortcomings in aspect-oriented software.

11 http://gretl.sourceforge.net/.

http://gretl.sourceforge.net/
http://gretl.sourceforge.net/
http://gretl.sourceforge.net/
http://gretl.sourceforge.net/

E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144 141

Fig. 8.Wom Versus Locc.

The locc metric can be used in combination with other metrics as an indicator of effort, complexity, productivity and
cost. In the selected projects, the majority of classes and aspects have low values of locc , showing probable design efforts
attempting to improve the comprehensibility and to reduce the number of defects per module. More specifically the locc
metric can be used to spot:

• Large operations: The locc metric in combination of wom is used to evaluate the size of operations. High locc values with
low values of wom can show large methods, large pieces of advice or large inter-type method declarations.

• Unnecessary use of aspects: Classes with high locc values and with low cda values can denote that the aspect has state or
behaviour that is not dealing with crosscutting concerns.

• Aspect interactions: Aspects or classes with low locc values and high cae values can suffer from aspect interactions, where
more than one aspect affect the same join points at the same time.

• Large modules: High values of locc in classes and aspects can denote large classes or large aspects. Those modules should
also be inspected for code duplication, for unused operations and attributes, and for the encapsulation of more than one
concern per module.

• Lazy modules: Classes or aspects with very low values of locc should be inspected to evaluate if they have enough
responsibilities to exist at all.

Thewommetric can indicate howmuch effort is needed to develop an aspect or a class.Moduleswith high values forwom
are likely to be more application specific, with a lower reusability. The metric can also be used to detect a set of situations:

• Lazy modules: Modules with low values of wom can be evaluated to see if they have enough responsibilities to be first
class entities of a system or if it is better to merge them with other modules;

• Large modules: Modules with high values of wom can be large modules, with several concerns being encapsulated or
having a large number of inner classes or unrelated operations, for example;

• Refused bequest:Modules with high values of wom are more likely to suffer from this shortcoming, in which sub-classes
or sub-aspects inherit methods that are not used.

• Influence of aspects: The cda/wom metric can show how much influence (in terms of affected modules) an aspect has.
• How affected a module is: The cae/wom metric can be used to see how much the aspects influence the overall behaviour

of the module.

The values for the wom metric are highly correlated to those of locc . As happens with the values of locc , the wom of
classes is higher than in the aspects. Around 80% of modules have a maximum of ten operations, but several modules with
high values of wom can be found in practice.

The values of dit in classes are usually higher than in aspects, as in AspectJ the aspects have a limited inheritance
mechanism. The dit metric can be used to:

• Measure complexity:Modules with high values of dit are usually more complex and more project specific, limiting reuse.
• Misuse of inheritance:Modules with high dit values should be inspected to search for misuse of inheritance, i.e. should be

analysed to evaluate if too much emphasis is given to inheritance.
• Project specific aspects: A zero value of dit for concrete aspects indicates that pointcuts and pieces of advice are defined

in the same aspect. This kind of aspect can be inspected to see if its behaviour can be encapsulated in an abstract aspect,
decoupling it from the concrete affected points and enabling the reuse of the aspect.

The noc metric can indicate how many modules use inheritance as a reuse mechanism. In the selected projects, around
85% of the modules do not have children. The noc of an aspect or class is usually used to spot:

• Indicatives of reuse: Modules with several children are likely to be extensively reused. The developer should look for
sub-classes or sub-aspects that do not use effectively the composing elements of their super-classes or super-aspects;

142 E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144

• Important modules: Sometimes, modules with several children are important modules of a project. These modules can be
tracked and analysed for any inheritance misuses.

The cda metric is used to measure the influence of an aspect in other modules and can be used to:

• Evaluate usefulness of aspects:Aspectswith high values of cda are usuallymore valuable, as the equivalent object-oriented
modularisation would be scattered over several modules.

• Find lazy aspects: Aspects with a low cda can be inspected to see if the behaviour and state encapsulated by the aspect
can be moved to or merged with other modules.

Aspects that deal with global policies, such as logging, tracing or authentication are more likely to have high values of
cda than other aspects. In the selected projects, the majority of aspects do have low values for cda and some of them can be
seen as lazy aspects.

The cae metric represents the number of aspects that affects a given module and is mainly used to detect:

• Aspects interaction: The higher the value of cae of a module, the higher the probability of having more than one aspect
affecting the same join points of this module;

• Affected modules: The modules that have a cae different from zero are those that are affected by some aspect. These
modules have to be treated more carefully, as modifications in the affected module can potentially affect the aspect
behaviour.

In the selected projects, classes are more affected by aspects than the aspects themselves. Furthermore, the values of this
metric are quite low, except for a few modules (there are modules, for example with a cae of ten). Low values of cae are
common and do not represent any issues in terms of quality attributes.

6. Related work

Previousworks onmetrics applicable to aspect-oriented software are typically extensions of the Chidamber and Kemerer
[9] object-oriented metrics. In fact, some of these metrics were revisited to take into account the specific features of aspect-
oriented software. Castor Filho et al. [7] propose a suite of metrics, including metrics for separation of concerns, coupling,
cohesion and size. The metrics included in the suite of Castor Filho et al. [7] can be briefly summarized as follows:

• Lines of Class Code (locc): Counts the lines of code.
• Number of Attributes (noa): Counts the number of fields of each class or aspect.
• Number of Operations (noo): Counts the number of methods and advices of each class or aspect.
• Concern Diffusion over Components (cdc): Counts the number of components that contribute to the implementation of a

concern and other components which access them.
• Concern Diffusion over Operations (cdo): Counts the number of methods and pieces of advice that contribute to the

implementation of a concern plus the number of other methods and pieces of advice accessing them.
• Concern Diffusion over locc (cdl): Counts the number of transition points (points in the code where there is a concern

switch) for each concern through the lines of code.
• Coupling Between Components (cbc): Counts the number of components declaring methods or fields that may be called or

accessed by other components.
• Depth of Inheritance Tree (dit): Counts how far down in the inheritance hierarchy a class or aspect is declared.
• Lack of Cohesion in Operations (lco): Measures the lack of cohesion of a class or aspect in terms of the amount of method

and advice pairs that do not access the same field.

Ceccato and Tonella [8] also discuss metrics to count the number of operations, the depth of inheritance tree and the lack
of cohesion in operations. Other metrics include the following:

• Number of Children (noc): Number of immediate sub-classes or sub-aspects of a given module, indicating the proportion
of modules potentially dependent on inherited properties.

• Coupling on Advice Execution (cae): Number of aspects containing pieces of advice possibly triggered by the execution of
operations in a given module.

• Crosscutting Degree of an Aspect (cda): Number of modules affected by the pointcuts and by the inter-type declarations of
a given aspect.

• Coupling on Intercepted Modules (cim): Number of modules or interfaces explicitly named in the pointcuts belonging to a
given aspect.

• Coupling on Method Call (cmc): Number of modules or interfaces declaring methods that are possibly called by another
given module.

• Coupling on Field Access (cfa):Number ofmodules or interfaces declaring fields that are accessed by another givenmodule.
• Response for a Module (rfm): Methods and pieces of advice potentially executed in response to a message received by a

given module, measuring the potential communication between this module and the other ones.

Analysis of empirical data is a straightforward way to investigate the benefits and the disadvantages of software
properties. This is also the goal of some related work in the literature. In the following paragraphs, we summarize their
main characteristics and briefly compare them with our work.

E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144 143

Baxter et al. [3] analysed a corpus of Java programs to provide information about the typical values of metrics in Java
programs, aiming to understand the relationship among Java classes and objects. Our work differs from theirs in the sense
that we discuss the shape of small-scale open source aspect-oriented programs and that we focus on the rigorous definition,
evaluation of the metrics and empirical data rather than verifying if the distribution function of the metrics obeys power
laws (as in their work).

Zhao [33] proposes a set of metrics to aspect-oriented software to quantify the information flow in aspect-oriented
programs. He also discusses a set of metrics to measure coupling in aspect-oriented software [34] and a set of metrics to
compute the cohesion of aspect-oriented software [35]. His metrics are also rigorously defined and evaluated according to
a set of well-defined criteria. The main difference is that we deal with a different set of metrics, regarding size, inheritance,
and aspect-specific couplingmetrics. Also, we show typical values for open source aspect-oriented software available to the
research community and provide data interpretation and correlation of the metrics.

Santanna et al. [26], Zakaria and Hosny [32], and Tonella and Ceccato [29] propose metrics for aspect-oriented software.
They defined themetrics informally and do not conduct analytical evaluation of the proposedmetrics, neither empirical data
to describe the common characteristics of aspect-oriented software. We complement their work by providing a rigorous
definition for the metrics, empirical data and analytically evaluated the metrics.

Bartsch and Harrison [1] deal with the empirical validation of aspect-oriented coupling measures as indicators of
maintainability of aspect-oriented software and with the validity of those metrics in terms of a set of theoretical principles
[2]. They state that there is a weak correlation between a set of coupling and size metrics with the maintenance effort
between different versions of an application. Although there is the need for further research to validate coupling metrics
for aspect-oriented software as indicators of maintainability, their work is a first step on the validity of coupling metrics
for aspect-oriented software. Both of their works are in an initial stage and are grounded on an informal basis. Our work
complements their works by providing rigorous definitions, analytical evaluation, usage scenarios, empirical data and
interpretation to two of the five coupling metrics that the authors discuss (cae and cda).

7. Conclusions

In this paper, we provide a set of contributions to the use of metrics for aspect-oriented software. More specifically,
we provide for a set of six metrics: (i) a rigorous definition and a set of usage scenarios, (ii) an interpretation of collected
empirical data, the correlation between metrics, and (iii) an analytical evaluation of the metrics against established criteria
for validity.

The use of rigorous definitions helps to understand the metrics more clearly and unambiguously, making it easier to
ensure that the computation of the metric values can be done in a repeatable fashion. It can also facilitate the automation
of the metric collection process.

The set of usage scenarios can show the developers how the metrics can be used in practice to detect potential
shortcomings in existing software artefacts. For example, the metrics evaluated in this paper can be used to show the
occurrence of several situations, as follows.

The locc metric can be used to spot large operations, unnecessary use of aspects, aspects interactions, and large modules.
The wom metric can be used to detect lazy and large modules, refused bequests, influence of aspects, and how affected is a
given module. The dit metric is used primarily to measure complexity, misuse of inheritance and the occurrence of project
specific aspects. The noc metric can indicate the degree of reuse of a given module and to spot key modules of a project. The
cda metric is used to evaluate the usefulness of an aspect and to find lazy aspects. The cae metric is mainly used to show if
the module is affected by aspects and to show the possibility of aspect interaction scenarios.

The data interpretation shows typical values of aspects and classes in small-sized, open-source systems available to the
research community. The provided histograms can be used to compare themetric values for an aspect-oriented project with
the set of open source projects used in this paper. The examples discussed show how the metrics can be used as indicators
of shortcomings or indicators of good design.

Furthermore, the correlation between the metrics explains how certain metrics change together and how they can be
combined and used to evaluate aspect-oriented software. We show that the metrics both for aspects and classes are not
correlated, except for locc and wom (high correlation) and between locc and cda and wom and cda (small correlation), but
can nevertheless be combined to show situations in which the software application can be improved.

The analytical evaluation of the selected metrics against established criteria for validity showed that the aspect-oriented
adapted metrics, in general, satisfy the criteria originally satisfied by the object-oriented metrics, which means that they
can be used to assess aspect-oriented software and provide comparable results.

Future work will focus on the use of these metrics in the context of a query language for aspect-oriented software, in
order to enable the search for metric-based refactoring opportunities. Furthermore, the interaction between the metrics
and with quality attributes will be investigated to help in the definition of heuristic rules for the evaluation of software
artefacts. Other metrics for aspect-oriented software are also the subject of planned future work.

Acknowledgements

This workwas partially supported by CNPq under grant no. 140046/06-2 for Eduardo K. Piveta and Project CNPQ-PROSUL
grant no. 490478/06-9 - Latin-America Research Network on Aspect-Oriented Software Development (Latin-AOSD). It is also

144 E.K. Piveta et al. / Science of Computer Programming 78 (2012) 117–144

supported by Capes-Grices project grant no. 2051-05-2 - Identification of Crosscutting Concerns and Refactoring in Aspect-
Oriented Systems, FAPERGS grant no. 10/0470-1, and FCT MCTES.

References

[1] M. Bartsch, R. Harrison, Towards an Empirical Validation of Aspect-Oriented Coupling Metrics, in: Workshop on the Assessment of Aspect-Oriented
Technologies (ASAT) - In Proceedings of the 6th Aspect-Oriented Software Development Conference (AOSD), Vancouver, Canada, 2007.

[2] M. Bartsch, R. Harrison, An evaluation of coupling measures for AspectJ - revised, in: Workshop on Linking Aspect Technology and Evolution - In
Proceedings of the 5th Aspect-Oriented Software Development Conference (AOSD), Bonn, Germany, 2006.

[3] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser, H. Melton, E. Tempero, Understanding the shape of Java software, in: Proceedings of the
21st ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages and Applications, OOPSLA’06, ACM Press, 2006, pp. 397–412.

[4] L. Briand, S. Morasca, V. Basili, Property-based software engineering measurement, IEEE Transactions on Software Engineering 22 (1) (1996).
[5] N. Cacho, C. Santanna, E. Figueiredo, A. Garcia, T. Batista, C. Lucena, Composing design patterns: a scalability study of AOP, in: Proceedings of the 5th

Aspect-Oriented Software Development Conference, AOSD’06, Bonn, Germany, 2006.
[6] F. Castor Filho, N. Cacho, E. Figueiredo, R. Maranhao, A. Garcia, C. Rubira, Exceptions and aspects: the devil is in the details, in: Proceedings of the 14th

ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2005, Portland, USA, 2006, 2006, pp. 152–162.
[7] F. Castor Filho, A. Garcia, C. Rubira, A quantitative study on the aspectization of exception handling, in: Proceedings of ECOOP 2005 Workshop on

Exception Handling in Object-Oriented Systems, 2005.
[8] M. Ceccato, P. Tonella, Measuring the effects of software aspectization, in: Proceedings of the 1st Workshop on Aspect Reverse Engineering, WARE

2004, Delft, The Netherlands, 2004.
[9] S. Chidamber, C. Kemerer, A metric suite for object oriented design, IEEE Transactions on Software Engineering 20 (6) (1994) pp. 476–49.

[10] T. Elrad, R. Filman, A. Bader, Aspect-oriented programming, Communications of ACM 44 (10) (2001) 29–32.
[11] N. Fenton, S. Pfleeger, Software Metrics: A Rigorous and Practical Approach, PWS Publishing Company, 1997.
[12] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: improving the design of existing code, in: Object Technology Series, Addison-Wesley,

2000.
[13] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns — Elements of Reusable Object-Oriented Software, in: Addison Wesley Professional

Computing Series, 1995.
[14] A. Garcia, C. Santanna, E. Figueiredo, U. Kulesza, C. Lucena, A. von Staa,Modularizing design patternswith aspects: a quantitative study, in: Transactions

on Aspect-Oriented Software Development, Springer Verlag, 2006, pp. 36–74.
[15] P. Greenwood, L. Blair, A framework for policy-driven auto-adaptive systems using dynamic framed aspects, in: Transactions on Aspect-Oriented

Software Development, Springer Verlag, 2006.
[16] J. Hannemann, G. Kiczales, Design pattern implementation in Java and AspectJ, in: Proceedings of the 17th ACM conference on Object-Oriented

Programming, Systems, Languages, and Applications, ACM Press, 2002, pp. 161–173.
[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, J. Irwin, Aspect-oriented programming, in: Mehmet Aksit, Satoshi Matsuoka

(Eds.), 11th European Conference on Object-Oriented Programming, in: LNCS, vol. 1241, Springer Verlag, 1997, pp. 220–242.
[18] W. Li, S. Henry, Object-oriented metrics that predict maintainability, Journal of Systems and Software 23 (2) (1993) 111–122.
[19] R. Martin, OO design quality metrics: an analysis of dependencies, in:Workshop on Pragmatic and Theoretical Directions in Object-Oriented Software

Metrics at OOPSLA, 1994.
[20] M. Monteiro, J. Fernandes, Towards a catalog of aspect-oriented refactorings, in: Proceedings of the 4th International Conference on Aspect-Oriented

Software Development, AOSD-2005, ACM Press, 2005.
[21] E. Piveta, M. Hecht, M. Pimenta, R. Price, Bad smells in Aspect-Oriented Systems, in: Brazilian Symposium on Software Engineering, SBES 2005,

Uberlandia - Brasil, 2005 (in Portuguese).
[22] E. Piveta, M. Hecht, M. Pimenta, R. Price, Detecting bad smells in AspectJ, Journal of Universal Computer Science 12 (7) (2006) 811–827.
[23] E. Piveta, M. Hecht, A. Moreira, M. Pimenta, J. Araújo, P. Guerreiro, R. Price, Avoiding bad smells in aspect-oriented software, in: Proceedings of the

19th International Conference on Software Engineering and Knowledge Engineering, SEKE, Boston, 2007.
[24] J. Rodgers, A. Nicewander, Thirteen ways to look at the correlation coefficient, The American Statistician 42 (1) (1988) 59–66.
[25] F. Rubbo, R. Machado, A. Moreira, L. Ribeiro, D. Nunes, On the interaction of advices and raw types in AspectJ, Journal of Universal Computer Science

14 (21) (2008) 3534–3555.
[26] C. Santanna, A. Garcia, C. Chavez, C. Lucena, A. von Staa, On the reuse and maintenance of AO software: an assessment framework, in: XVII Brazilian

Symposium on Software Engineering, October 2003.
[27] H. Shimazaki, Recipes for selecting the bin size of a histogram, Ph.D. Thesis, Kyoto University, 2006.
[28] G. Snedecor, W. Cochran, ISU Statistics Dept. Staff, and D.F. Cox, Statistical Methods, 8th ed., Blackwell Publishing Limited, 1989.
[29] P. Tonella, M. Ceccato, Aspect mining through the formal concept analysis of execution traces, in: Proceedings — 11thWorking Conference on Reverse

Engineering, 2004.
[30] K. van den Berg, J. Conejero, R. Chitchyan, AOSD Ontology 1.0. Technical Report AOSD-Europe-UT-01 D9, AOSD-Europe, May 2005.
[31] E. Weyuker, Evaluating software complexity measures, IEEE Transactions on Software Engineering 14 (9) (1988) 1357–1365.
[32] A. Zakaria, H. Hosny, Metrics for aspect-oriented software design, in: 3rd International Workshop on Aspect-Oriented Modelling. Boston, USA, 2003.
[33] J. Zhao, Towards ametrics suite for aspect-oriented software, Technical Report SE-136-25, Information Processing Society of Japan (IPSJ), March 2002.
[34] J. Zhao, Measuring coupling in aspect-oriented systems, in: 10th International Software Metrics Symposium, METRICS’04, Chicago, USA, 2004.
[35] J. Zhao, B. Xu, Measuring aspect cohesion, in: 7th International Conference on Fundamental Approaches to Software Engineering, FASE’04, 2004.

	An empirical study of aspect-oriented metrics
	Introduction
	Aspect-oriented software development
	Empirical metric data collection and evaluation criteria
	Selected metrics
	Selected projects
	Computed statistics
	Data collection properties
	Evaluation criteria

	Rigorous definitions, empirical data and analytical evaluation
	Lines of code
	Rigorous definition
	Usage
	Empirical data
	Analytical evaluation

	Weighted operations in module
	Rigorous definition
	Usage
	Empirical data
	Analytical evaluation

	Depth of inheritance tree
	Rigorous definition
	Usage
	Empirical data
	Analytical evaluation

	Number of children
	Rigorous definition
	Usage
	Empirical data
	Analytical evaluation

	Crosscutting degree of an aspect
	Rigorous definition
	Usage
	Empirical data
	Analytical evaluation

	Coupling on advice execution
	Rigorous definition
	Usage
	Empirical data
	Analytical evaluation

	Discussion
	Lines of code
	Weighted operations in module
	Depth of inheritance tree
	Number of children
	Crosscutting degree of an aspect
	Coupling on advice execution
	Margin of error and analytical results
	Data correlation
	Lessons learned

	Related work
	Conclusions
	Acknowledgements
	References

