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Abstract

Designing and implementing security-critical systems correctly is very difficult. In practice, most vulnerabil-
ities arise from bugs in implementations. We present work towards systematic specification-based testing of
security-critical systems based on UMLsec models. We show how to systematically generate test sequences
for security properties based on the model that can be used to test the implementation for vulnerabilities.
We explain our method at the example of a part of the Common Electronic Purse Specifications (CEPS),
a candidate for an international electronic purse standard.
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1 Introduction

Modern society and economy rely on infrastructures for communication, finance,

energy distribution, and transportation. These infrastructures depend increasingly

on networked information systems. This leads to vulnerabilities, for the exploitation

of which there have recently been a number of widely publicised examples. Correct

design and implementation of security-critical systems that are part of an open

network is a difficult task. In practice, most vulnerabilities arise from bugs in

implementations. It would be highly desirable to gain confidence in the protection

of implemented security-critical systems against attacks.

Towards this goal we present work for systematically testing security-critical sys-

tems. The idea is to specify the system (at the abstract design level) using a formal

specification language and to use this specification to generate test-sequences to find

security weaknesses in an implementation in a systematic way. More specifically,

we use UMLsec [11,12] to specify the unlinked load transaction of the Common
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Fig. 1. Model-based Security Engineering

Electronic Purse Specifications (CEPS) [5]. We use this specification to generate

test-sequences for implementations of the protocol. CEPS is a candidate for a glob-

ally interoperable electronic purse standard supported by organisations (including

Visa International) representing 90 percent of the world’s electronic purse cards,

making its security an important goal.

As well-known, testing cannot prove the absence of implementation errors. It is

however currently the technique most widely used in industry to gain some confi-

dence in the absence of major bugs, since mechanically assisted theorem proving or

model-checking of code have thus far been perceived as being limited in the size of

treatable systems and as being comparatively costly.

The effectiveness of testing depends crucially on the ability to identify adequate

test strategies. This is very difficult when testing for security requirements, since

it is not sufficient to establish that no failures will occur most of the time, as the

remaining, non-tested situations that lead to failures must be assumed to be found

by motivated attackers and then be systematically exploited. Rather, one needs

to establish that certain security-critical parts of the system are indeed free from

failures under all conceivable attack attempts from the system environment. The

current work aims to provide some guidance on how to do this in a systematic way.

The work presented here is part of a more general approach towards model-based

security engineering visualized in Fig. 1 (see [11]).

In Section 2, we give an overview over the Common Electronic Purse Specifi-

cation, specify the part under consideration and explain the security threat model.

In Sect. 3 we explain our use of the UMLsec tool to generate test-sequences that

examine the security of the above specification. In Sect. 4 we refer to related work.

We end with a conclusion and indicate further planned work.

2 CEPS

We give an overview over the Common Electronic Purse Specifications. Stored value

smart cards (“electronic purses”) have been proposed to allow cash-free point-of-

sale (POS) transactions offering more fraud protection than credit cards: Their

built-in chip can perform cryptographic operations which allows transaction-bound

authentication (whereas credit card numbers are valid until the card is stopped,
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which enables misuse). The card contains an account balance that is adjusted when

loading the card or purchasing goods. The Common Electronic Purse Specifications

(CEPS) define requirements for a globally interoperable electronic purse scheme

providing accountability and auditability. The specifications outline overall system

security, certification and migration. For more detail on the functionality of CEPS

cf. [5].

Here we consider a central part of CEPS, the (unlinked, cash-based) load trans-

action, which allows the cardholder to load electronic value onto a card in exchange

for cash at a load device belonging to the load acquirer. The participants involved

in the transaction protocol are the customer’s card, the load device and the card

issuer. The load device contains a Load Security Application Module (LSAM) that

is used to store and process data (and is assumed to be tamper-resistant). During

the transaction, the account balance in the card is incremented, and the amount is

logged in the LSAM and sent to the issuer for later financial settlement between the

load acquirer and the card issuer. Load transactions in CEPS are on-line transac-

tions using symmetric cryptography for authentication. We only consider unlinked

load, where the cardholder pays cash into a, possibly unattended, loading machine

and receives a corresponding credit on the card. Linked load, where funds are

transferred for example from a bank account, the so-called funds issuer, is viewed

as offering fewer possibilities for fraud, because funds are moved only within one

financial institution [5, Funct. Req. p. 12].

To perform a cash-based load transaction, the cardholder inserts his card into

the card reader and the money into the cash slot of the load device. To load the

cash on the card, he enters the PIN. Note again that the cardholder is not able

to communicate with the card directly, but only through the display of the load

device. A Load Secure Application Module (LSAM) is used to provide the necessary

cryptographic and control processing. The LSAM may reside within the load device

or at the load acquirer host. The load acquirer keeps a log of all transactions

processed. Through the load host application, the LSAM communicates with the

card issuer. Below, we analyze the load protocol between the card, the LSAM, and

the card issuer that is executed after the cardholder inserts the cash.

Specification: We give a specification of the CEPS load transaction, slightly

simplified by leaving out security-irrelevant details, but including exception process-

ing. The specification is given in form of the UML subsystem L. Here we show as

fragments the class and statechart diagrams in Fig. 2 to 5. The values exchanged

in the protocol are listed in Fig. 6.

We use the notation var ::= exp as a syntactic short-cut. Here var is a local vari-

able not used for any other purpose and exp may not contain var . Before assigning

a semantics to the diagram, the variable var should be replaced by the expression

exp at each occurrence. Also, for increased readability, we use pattern matching:

for example, (lda′,m′) ::= Init means that when deriving the formal semantics of the

sequence diagram, one would have to replace lda′ with Init1 and m′ with Init2 in

each case.

The link between the LSAM and the loading device, and the loading device itself,
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lda, m, nt, s2, rl : list cep, m, nt, rc : list cep, lda, m, nt, r, ml, r2l : list

Fig. 2. Load transaction class diagram
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Fig. 3. Load transaction: load acquirer
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Fig. 4. Load transaction: card

need to be secured. Otherwise an attacker could initiate the protocol without having

inserted cash into the machine. For simplicity, we leave out the communication

between the LSAM and loading device to determine the amount to be loaded, but

assume that the amount is communicated to the LSAM in a secure way. Here, a
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s2 ::=SignKCI
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Fig. 5. Load transaction: card issuer

CEP card name cep is called valid if the name is registered at the card issuer and

not on the list of revoked cards.

For the participants of the protocol, we have the classes Card, LSAM, and Issuer.

Also, each of the three classes has an associated class used for logging transaction

data named CLog, LLog, and ILog, respectivly. The logging objects simply take the

arguments of their operations and update their attributes accordingly.

We assume a sequence of random values rcnt to be given that is shared between

the card C and its card issuer I. These random values are required to be fresh

within the Load subsystem as indicated by the tag {fresh} attached to Load. Note

that when viewing the Load subsystem in isolation, the associated condition is

vacuous: It just requires that any appearance of an expression rcx in Load must be

in Load. Using the {fresh} tag at a top-level subsystem is still meaningful, because

one may want to include the subsystem in another subsystem also stereotyped
〈〈 data security 〉〉, which would extend the scope of the freshness constraint to the

larger subsystem. In this example, it would not make sense to attach the {fresh}

tag with value rc to any of the objects in Load, because the random values are

supposed to be shared among Card and Issuer. As usual, we write rc : Data to

denote an array with fields in Data. Also given are the random numbers rln, r2ln
and the symmetric keys rn of the LSAM. These values are also supposed to be

generated freshly by the LSAM. In fact, one can see that expressions of the form

rlx, r2lx, rx, for any subexpression x, only appear in the object and the statechart

associated with LSAM. Again, the keys and random values are independent of each

other and of the other expressions in the diagram. Also, again, constant attributes

have their initial values as attribute names and the corresponding attribute types

are underlined. Finally, we are given the transaction amounts mn. Before the

first protocol run, the card and LSAM initialize the card transaction number nt

and the acquirer-generated identification number n, respectively. Also, before each

protocol run, the card and LSAM increment the card transaction number nt and
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Variable Explanation

C card

L LSAM

I card issuer

rcnt secret random values shared between card and issuer

rln, r2ln random numbers of LSAM

rn symmetric keys of LSAM

mn transaction amounts

m, rl, hl mn, rln, hln as received at card issuer

nt card transaction number

n acquirer-generated identification number

lda load device identifier

cep card identifier

s1 card signature: SignKCI
(cep :: lda ::m ::nt)

hcnt card hash value: Hash(lda ::cep ::nt :: rcnt)

ĥcnt hcnt as created at issuer

rc, hc rcnt, hcnt as received at load acquirer

KCI key shared between card and issuer

KLI key shared between LSAM and issuer

mln Signrn(cep ::nt :: lda ::mn ::s1 ::hc ::hln ::h2ln) (signed by LSAM)

hln hash of transaction data: Hash(lda ::cep ::nt :: rl)

h2ln hash of transaction data: Hash(lda ::cep ::nt :: r2l)

s2 issuer signature: SignKCI
(cep ::nt ::s1 ::hl)

s3 card signature of the form SignKCI
(cep :: lda ::m ::nt)

Fig. 6. Values exchanged in the load specification

the acquirer-generated identification number n, repectively, as long as a given limit

is not reached (to avoid the rolling over of the numbers).

Security Threat Model: We derive the following security conditions:

Cardholder security: If the card appears to have been loaded with a certain

amount according to its logs, the cardholder can prove to the card issuer that

there is a load acquirer who owes the amount to the card issuer.
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Load acquirer security: A load acquirer has to pay an amount to the card issuer

only if the load acquirer has received the amount in cash from the cardholder.

Card issuer security: The sum of the balances of the cardholder and the load

acquirer remains unchanged by the transaction.

Note that the correct functioning of the settlement scheme relies on the fact

that the cardholder should only be led to believe that a certain amount has been

correctly loaded (for example, when checking the card with a portable cardreader) if

the cardholder is later able to prove this using the card. Otherwise the load acquirer

could first credit the card with the correct amount, but later in the settlement

process claim that the cardholder tried to fake the transaction.

Properties to be tested: We turn to the formalizations of the above security

conditions, which should be tested using the model-based testing approach. We

focus on the condition providing security for the load acquirer. According to the

CEPS, the value mln, together with the value rln sent in the CreditforLoad message

to the card, is taken as a guarantee that the amount m specified in mln has to be

paid by the specified load acquirer to the issuer of the specified card, unless it is

negated with the value rcnt [5, Tech. Spec. 6.6.1.6]. The security condition is thus

formalized as follows:

Load acquirer security: Suppose that the card issuer I possesses the value

mln = Signrn(cep ::nt :: lda ::mn ::s1 ::hcnt ::hln ::h2ln) and that the card C possesses

rln, where hn = Hash(lda ::cep ::nt :: rln). Then after execution of the protocol ei-

ther of the following two conditions hold:
• a message Llog(cep, lda,mn, nt) has been sent to l : LLog (which implies that L

has received and retains mn in cash) or
• a message Llog(cep, lda, 0, nt) has been sent to l : LLog (that is, the load acquirer

assumes that the load failed and returns the amount mn to the cardholder) and

the load acquirer L has received rcnt with hcnt =Hash(lda ::cep ::nt :: rcnt) (thus

negating mln).

3 Generating test-sequences

With the help of the UMLsec model, we can now test the resistance of an imple-

mentation of the CEPS load transaction against threats using a specification-based

testing approach. For this purpose, test case specifications based on the system

model have to be formulated. Test specifications would be, for example, that a

certain log entry should be generated, certain data is sent on the channels, or a

component should reach a success or failure state. The test specification and the

model are translated into logic and their conjunction is solved. The solutions are

all test sequences of a given maximum length satisfying the test case specification.

These test sequences represent concrete system executions, and can be depicted

as message sequence charts. To test the system, the inputs contained in the test

sequence are fed into the system components and it is verified if the output is as

expected. Test sequence generation can also be used to validate and correct the
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Fig. 7. Model-based Security Tool Suite

specification: if the test sequence itself contains an unexpected system run (e.g.

there should be no execution fulfilling the test case specification, but the test se-

quence generation computed one), this indicates an error in the model.

For classical specification based testing, the main emphasis of testing is on nor-

mal system behaviour (e.g., for certain inputs, the correct result is computed).

When security aspects come into consideration, this is turned around: the system

has to behave in a secure way even in case it is under attack. Thus, in testing we

have to assume that system components may act maliciously.

We did this by including a threat model into the system specification: public

channels are vulnerable, and can be accessed and manipulated by an intruder. The

intruder is modelled by a Prolog program which is generated from the UMLsec

specification using the UMLsec tool [18,13,10] (Fig. 7).

The Smart Card Protection Profile [7] of the Common Criteria lists the following

threats relevant to fail-safety of a smart-card scheme:

Forced Reset : An attacker may corrupt Target of Evaluation Security Function

(TSF) data through inappropriate termination of selected operations.

Insertion of Faults : An attacker may determine user and TSF information though

observation of the results of repetitive insertion of selected data.

Invalid Input : An attacker may compromise the TSF data through introduction

of invalid inputs.

Environmental Stress : An attacker may introduce errors in the TSF data through

exposure of the Target of Evaluation (TOE) to environmental stress.

Correspondingly, we consider the following two threat scenarios:

(1) the attacker can only pass on the messages or drop message parts (replace them

by Empty)

(2) the attacker can pass on the messages, or replace them by own messages not

containing secret keys he does not know in advance.
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The first scenario corresponds to the situation where the adversary may interrupt

the communication between the different protocol participants at some point (Forced

Reset, e.g. by pulling out the card). The second scenario models the case that the

adversary may force one of the involved cards to behave in an arbitrary way (by

Insertion of Faults, Invalid Input, or Environmental Stress – such as heat). This may

have the result that the card sends arbitrary messages instead of the intended ones,

which may involve keys stored on the card, but it is unlikely that the misbehaving

card “guesses” unknown keys.

The attacker is generated as part of the generated Prolog program which auto-

matically finds those attacker messages corresponding to a given test scenario.

Now we can generate test sequences from the specification that correspond to

executions when the system is under attack. The main remaining problem is that

we now have a very large number of potential test sequences. As mentioned before,

it is much more difficult to test systems for the absence of undesired than for the

presence of desired behaviour. There are very many executions where the system

fails — which should we choose to cover as many different attack situations as

possible ?

A direction to do this is to use the model (states in the automata and transitions)

as a basis for test case specification. However, unlike in the general case, we can

take advantage of the fact that we know which parts of the model relate to the

security requirement to provide fail-safety, so emphasis of testing can be focused on

these.

The CEPS specifications contain the following requirements on the behaviour of

the protocol participants relevant to fail-safety (cf. Fig. 6 for an explanation of the

variables):

(1) rcnt is sent by the card to the LSAM if the card experiences an error.

(2) In case the LSAM experiences an error, either s3 or r2ln are sent by the LSAM

to the issuer.

(3) If there is no response to the s1 sent to issuer, the LSAM must send r2ln.

(4) r2ln is not sent out if the card balance incremented.

(5) The LSAM performs only one of the following two events:
• s2 and rln are sent to the card or
• r2ln is sent to the issuer.

The implementation can be checked wrt. these requirements by generating test

sequences. For example, for the first requirement we compute a test sequence from

the model so that rcnt is sent by the card to the LSAM, which corresponds to an

error at the card. This test sequence can then be used to verify if the implementation

has the same behaviour in this case.

Additionally one can consider test case specifications based on the structure of

the model:

(i) Compute a concrete execution where one of the components reaches the LoadSucc

state. In particular, the test sequence reflects the fact that no other component

J. Jürjens / Electronic Notes in Theoretical Computer Science 220 (2008) 93–104 101



Fig. 8. Test Sequence for Load transaction

reaches the LoadFail state (validating the model), and the implementation can

be tested with respect to this.

(ii) Analogous to the above, one can compute test sequences where one of the

component reaches the LoadFail state and verify that no other components

then reach the LoadSucc state, even in presence of an attacker.

(iii) More specifically, for any of the security-critical transitions to LoadFail or

LoadSucc one may compute test sequences so that this transition is executed.

(iv) One can compute test sequences with respect to attacker activity. E.g. mes-

sages are manipulated at certain points in time or a certain number of times.

The implementation tested in this case-study is a prototypical implementation

of part of the CEPS specifications in Javacard (consisting of 600 KB of source code

altogether) available from the UMLsec tool website [18]. Due to space restrictions,

a more detailed discussion of the results from this case-study has to be deferred to

a longer version of this paper.

As an example, Fig. 8 shows a test sequence derived from the model correspond-

ing to the class of specifications (5) given above: the test case is that an r2ln is sent

to the issuer log because of a failure of the card. In this case, s2 and rln are not

sent to the card, and all three components stop together in their LoadFail states.
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The above test sequence consists of 24 steps (executions of transitions) and is com-

puted in approximately 10 seconds by the test sequence generator. Briefly, the test

sequence proceeds as follows: r2ln is sent to the issuer log because of a failure.

In the computed test sequence, the failure occurs after the LSAM sent the Load

message to the issuer. The LSAM sends the message Comp to the card to cancel

the transaction, and the response RespL from the issuer is dropped by the intruder.

The messages RespC with cancellation information are sent from the card via the

LSAM back to the issuer, and all three components report the failure to their logs.

4 Related Work

There has been an increasing amount of work on the interaction between formal

methods and testing, see [3,16,8,2,14,6] for examples and overviews.

The work presented here is an extension of earlier work [19] (which uses the

CASE tool AutoFocus) towards using the UMLsec tool suite. Despite the title,

the paper [17] is not really about model-based testing of cryptographic protocols

in our usage of the term “model-based testing” (i.e., generate test-sequences from

models) but rather about soundness and completeness of symbolic models of crypto-

graphic protocols with respect to computational complexity models, and about using

the SpecExplorer for model-checking Spec-sharp models of cryptographic protocols.

The approach proposed in [15] deals with the problem of establishing whether or

not a security property expressed using an observer formalised as an input/output

labelled transition system (IOLTS) holds in an IOLTS providing a black-box specifi-

cation of the system. The central idea of using a Dolev-Yao based model-verification

approach to generate the traces is similar to that followed in [19] (but other tech-

niques are added, such as “learning by testing”). Otherwise, work on model-based

testing of cryptographic protocol implementations against security requirements is

limited. Since the usage of cryptography poses particular challenges, work on test-

ing other kinds of security-critical software (such as database management systems

[4]) is not directly applicable here. Also, since the goal of our work is on testing

high-level security requirements (such as secrecy and authenticity), work towards

finding buffer overflow weaknesses in implementations (such as [1]) is not directly

comparable to our work.

5 Conclusion

We used the UMLsec tool support to generate test-sequences for security aspects

of the Common Electronic Purse Specifications (CEPS) from the UMLsec models.

This gives a systematic way of doing security testing. Since security vulnerabilities

often arise from bugs in the implementation, having a systematic way to eliminate

security-critical bugs is a worth-while goal.
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