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Abstract.  We use the operatorial approach to obtain, in non-Archimedean spaces,
the Hyers—Ulam stability of the Pexider K-quadratic functional equation

D S+ k-y) = xg(x) + Kkh(y), x,y € E,
kek

where f,g,h : E — F are applications and K is a finite subgroup of the group of auto-
morphisms of E and « is its order.
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1. INTRODUCTION

The concept of the stability for functional equations was introduced for the first time
by Ulam in 1940 [17]. Ulam started the stability by the following question

Given a group G, a metric group (G', d), a number 6 > 0 and a mapping /: G — G’
which satisfies the inequality d(f(xy),f(x)f(y)) < o for all x,y € G, does there exist an
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homomorphism 4 : G — G’ and a constant y > 0, depending only on G and G’ such
that d(f(x), h(x)) < yo for all x in G?

In 1941, Hyers [17] gave the partial solution to Ulam’s question in Banach spaces.
The result of Hyers was extended, for additive mappings by Aoki [1] and later, for lin-
ear mappings by Rassias [29]. For more information on the history of the concept see
[4,5,7,11,15,18-20,23,25,32-34,36-38] and especially the recent developments of the
stability in [6,7].

The first stability theorem for the K-quadratic functional equation was proved for
K = {id} by Hyers—Ulam (1941) [17] and Rassias (1978) [31] and for K = {—id, id}
by Skof (1983) [35] in Banach spaces. Cholewa (1984) [12] extended Skof’s result to
an abelian group. Czerwik (1992) [13], in the spirit of Hyers—Ulam—Rassias generalized
Skof’s theorem.

Recently, the stability problem of the K-quadratic functional equation has been
investigated by a number of mathematicians, the interested reader should refer to
Ait Sibaha et al. [3], Bouikhalene et al. [8], Charifi et al. [9,10] and Lukasik [26], see
also [6,20,22-24,31].

In 1897, Hensel [16] discovered the p-adic numbers. Let p be a fixed prime number
and x a nonzero rational number, there exists a unique integer v,(x) € Z such that
X = p"ﬂ(’*)% where ¢ and b are integers co-prime to p. The function defined in @ by
| x| , = p~""™) is called a p-adic, a ultrametric or simply a non-Archimedean absolute va-
lue on Q. So, with the p-adic absolute value Q is called a p-adic or a non-Archimedean
field. The completion, denoted by Q, of Q with respect to the metric defined by the p-
adic absolute value is called the p-adic numbers. Their elements are the formal series
PN aip', with ag # 0 and |a;| < p — 1 are integers.

In general, by a non-Archimedean field, we mean a field k equipped with a function
| | : k& — [0,400), called a non-Archimedean absolute value on k and satisfying the fol-
lowing conditions

L x=0<=x=0
ii. eyl =[xyl x, v ek
iii. |x +y| < max(|x|,|y]), x,y € k.

We assume, throughout this paper that this value absolute is non-trivial i.e., there
exists an element A of k such that, |1| # 0, .

By a non-Archimedean vector space, we mean a vector space £ over a non-Archi-
medean field k equipped with a function || || : E — [0, +00) called a non-Archimedean
norm on E and satisfying the following properties

L |x| =0<=x=0,
i [Jx] = |2l (%) € k x E,
iii. [l 4yl < max(|lxl], [I¥]]), x,» € E.

The particularity of a non-Archimedean norm is the fact that they do not satisfy the
Archimedean axiom and a sequence {x,} is Cauchy if and only if {x,; — x, } converges
to zero.

In 2005 Arriola and Beyer in [2], initiated the stability of Cauchy functional equa-
tion over p-adic fields. In 2007, Sal Moslehian and Rassias [29] studied the stability
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of Cauchy and quadratic functional equations in non-Archimedean spaces. In [30], the
author investigated, by using the fixed point method the non-Archimedean stability of
a quadratic functional equation.

Following this investigation, we deal with the operatorial approach, in a non-
Archimedean space, the Hyers—Ulam stability of a Pexiderized version of the
K-quadratic functional equation,

> flx+k-y) =rg(x)+Kkh(y), x,y € E, (1.1)
kekK
where f,g,h : E — F are applications from a normed space E into a non-Archimedean
space F, K is a finite abelian subgroup of the group of automorphisms of E and x
denotes the order of K.
The present paper is a continuation, in a non-Archimedean space of the previous
work by Charifi et al. [9,10].
The paper is organized as follows: in the second section we give some notions,
notations and preliminary results. In the third section, we derive the non-Archimedean
stability of Eq. (1.1).

2. NOTATIONS AND PRELIMINARY RESULTS

In this section, we introduce some notions and notations. We give necessary results for
the proof of Theorem 2.6. They are a faithful translation, in terms of a non-
Archimedean norm of results which were given in the case of a usual norm by Hyers in [21].

A function 4 : E — F between vector spaces £ and F'is said to be additive provided
if A(x+y)=A(x)+A(y) for all x,y € E; in this case it is easily seen that
A(rx) =rA(x) for all x € E and all r € Q.

Let k € N and 4 : EX — Fbe a function, then we say that A4 is k-additive provided if
it is additive in each variable; in addition we say that A is symmetric provided if

A(Xo(1)5 Xo(2), - - s Xak)) = A(X1, X2, .., X)

whenever xi, x,,...,x; € E and ¢ is a permutation of (1,2,... k).

Let keN and A:E°—F be symmetric and k-additive and let
Ar(x) = A(x,x,...,x) for x € E and note that A,(rx) = r*4,(x) whenever x € E and
re Q.

In this way a function A4,:E—F which satisfies for all
J€Qand x € E, Ac(Jx) =24, will be called a rational-homogeneous form of de-
gree k (assuming A, # 0).

A function p: E — F is called a generalized polynomial (GP) function of degree
m € N if there exist ¢y € E and a rational-homogeneous form A, : E— F (for
1 < k < m) of degree k, such that

p(x) =ay+ Y _A(x)
k=1
for x € E.

Let F* denote the vector space (over a field K) consisting of all maps from E into F.
For h € E define the linear difference operator A, on F* by



70 A.B. Chahbi et al.

Ay fx) = flx + h) = f(x) (2.1)
for f € F¥ and x € E. Notice that these difference operators commute (A, A;,, = Ay, Ay,
for all hy,h, € E) and if h € E and n € N, then A} the nth iterate of A, satisfies

n

i) = Y0 (Yo

k=0

for fe Ff and x,h € E.
The following theorems were proved by Mazur and Orlicz [27,28], and in greater
generality by Djokovic [14].

Theorem 2.1. Letn € N andf: E — F be a function between a vector space E and F, then
the following assertions are equivalent,

(1) A} f(x) =0forall x,h € E.
(2) Ahn"'Ainf(-x) =0 for allx,hl,...,h,, cE.
(3) fis a GP function of degree at most n — 1.

Theorem 2.2. Let Ay : E — F be a rational-homogeneous form of degree k, then there
exists a unique symmetric k-additive transformation A : E* — F such that

Ap(x) = A(x,...,Xx).
The k-additive transformation is often called the polar of transformation Ay and it is given
by the formula

I
A(X], . 7Xk) = HAI;‘I--M;A/‘(X)'

Lemma 2.3. Let E be a vector space, F a non-Archimedean Banach space and
p € N*, |p| # 1. Let 0 be a fixed positive number and f: E — F be a function satisfying
one of two conditions

2) ||Ahf(x) - A/zf(O)H < 57 X,h € Ea .

then there exists an additive mapping A : E — F given by
A(x) = tim p(p ")
n—-+00
and such that

[A4(x) = f(x) +/0)]] < &

Proof. The proof is the same on the Assumption 1) or 2). Assume that 1) is true and
put g =f— f(0), so by (2.2) we have ||A§g(x) H < dforall x and & in E. Replacing x by 0
and & by x, we get
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18(2x) — 2g(x)[ < & (2.3)
for all x in E. Replacing i by x we obtain

18(3x) — 2¢(2x) + g(x)|| < 6. (2.4)
Therefore, taking into account (2.3) and (2.4), we obtain

18(3x) — 3g(x)|| < 0. (2.5)
We will prove by mathematical induction that

g(px) — pg(x)[| < 0. (2.6)

We suppose that (2.6) true for all & < p. Replacing x by (p — 1)x and / by x in (2.2) we
get

llg((p + 1)x) — 22((p)x) +g((p — 1)x)
and by hypothesis of induction we have

lg((p — 1)x) = (p = 1)’g(x)|| < 6. (2.8)
By using the inequalities 2.6, 2.7 and 2.8, we get the result

lg(px) —pg(x)[ <é, pe N, x € E.
We put ¢,(x) = p"g(p~"x), we have when replaced x by p~"~!x in (2.6)

<o (2.7)

lg(p™"x) — pg(p~"Vx)|| < 6. (2.9)
By multiplying this inequality by p” we get
14,1 (x) = g, (x)[| < [p"]6. (2.10)

Thus, since |p| # 0, 1, ¢,(x) is a Cauchy sequence, as F is complete hence ¢,(x) con-
verge to A(x). Now we have

A7) = tim |lp"A2 g )|| < lim (7)o = 0.
We see that A;A(x) = 0 for all x and /4 in E. Thus, from Theorem 1.1 4 is additive on
E. By using (2.6) we have ||q,(x) — g(x)|| < 0, and taking limits as n — oo, we obtain
14 (x) = /(x) +A0)]| <6
A(X) = nl_igloopnAp’"xf(O)'

This ends the proof of the lemma. O

Lemma 2.4. Let E be a vector space, F a non-Archimedean space and p € N*, |p| # 1.
Let h: E* — F be either identically zero or else a rational-homogeneous form of degree
k—1 (k>1)in x for each y, q: E* — F a transformation of degree at most k — 2 in
X which vanishes for x =0 and f: E — F be a function satisfying the inequality

[ /(x +) =/(x) =/(0) +/00) — g(x,5) = h(x, »)[ <0, x,y € E, (2.11)

Then h(x,x) = kAy(x), where Ay : E — Fis either identically zero or else a homogeneous
form of degree k,
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1.
Ap(x) = a lim |p*|A5, £(0).

! n—+00

Moreover h(x,y) is given by the formula

h(x,y) = lim |p("’1>"|A;‘f”‘xA},.( )(0).

1
(k= D)ln—too

Proof. By the hypothesis made on A, there exists a map 4 : EX — F which is additive
and symmetric in its first k — 1 arguments, such that

h(x,y) :ﬁA(X,...,x,y). (2.12)

In view of (2.1) and (2.11), treating y as a constant and using the increments
X1,...,Xr_1, We have

A 00 = Ay ) = A R <0,
Since ¢(x,y) is of degree at most k — 2 in x, by Theorem (2.1)
A alx ) = 0.

X1 X1 q

Also from (2.12) and Theorem (2.2) it follows that
Akil h(xay) :A(xh'"a-xk*lay)'

X Xg—]

Thus we have
HAilm-\'k—ly f(X) - A(X], s axk717J’)H < 0. (213)

Using the fact that, for each j, 1 <j < k — 1 the kth difference in (2.13) is symmetric in
all of its increments, then we obtain that

‘ Aﬁ_lmxki”, Jx) = A(x1, - X1, Yy X1y -5 Xk, XG) || <O (2.14)
Now, from (2.13) and (2.14) we get
HA(XH- .- ,kah)/) - A(Xl?' s X1 Vs X1 - e 7xk’x_l')|| <0 (215)

In order, to prove that A is additive in its last argument and symmetric in all of its
arguments we distinguish two cases.

(1) Case k > 2. Since k£ > 2, there exists an index i, 1 <i < k — 1 such thati# ;. In
(2.13), replacing x; by p~"x;, multiplying this inequality by p” and taking the limit
as n — oo, we obtain that 4 is symmetric in all of its arguments. Obviously 4
must be necessarily additive in its last argument. From inequality (2.13) we have

HAﬁ;_l_xHAyf(O) AN X, y)H <.

Now, take each x; = p~"x, multiply the last inequality by ’%, and then let n tend to
infinity. By (2.12) we get
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hx,y) = lim p~ AL Af(0).

1
(k — 1)' n—-+00

In a similar way, if we define 4;(x) = k™ 'A(x, x) and use the fact that 4 is additive in
each of its arguments, from (2.13) we obtain that

n—+o00

. on
A(x) = 77 lim AL 0), (2.16)
which gives the sought result.
(2) Case k = 2. Then (2.15) becomes
[A4(x1, ) — AQy, x1)[| < 6

for all x; and y in E , where A4 is additive in the first argument. Replacing x; by p~"x,
and multiplying by p”, where n and p are any positive integer, we obtain

[A(x1,y) = p" Ay, p~"x)|| < |pl"0
and so by letting » tend to infinity
A, y) = lim p"A(y, p~"x1). (2.17)
Thus
A(x1,y+z2) = nE{POOPnA(J’ +z,p"x1)
= lim p"A(y,p~"x1) + lim p"A(z,p™"x1)

= A(x1,y) + A(x1,2)

so that A is additive in its second argument. Now, the symmetry is given by (2.17) and
additivity of A, which completes the proof of Lemma 2.2. [O

Proposition 2.5. Let E be a vector space, F be a non-Archimedean Banach space and
p € N* |p| # 1. Let 6 be a fixed positive number and f: E — F be a function satisfying
the inequality

Then there exists a GP function p,,_, : E — F which is of degree at most m — 1, such that,

If(x) = ppi(X)]| < 0 for all x in E. (2.19)

Aﬂ’l

hy iy

f(x)H <5, x.h,... hy€E. (2.18)

Moreover p,, | is given by the formula
Pt (%) = f10) + A1 (x) + ... + Ay (x) (2.20)

where each Ay is either a homogeneous form of degree k or else identically zero. In addi-
tion, the Ay are given by the formulas
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Ay (x) = lim p"~ A%, 0), (2.21)

(m—l)!nHJroo
m—1

A4 = g Jim { SORD ST } 2)
Jj=k+1

forl <k<m-2.

Proof. We shall proceed by induction on m. From Lemma (2.1), the proposition holds
for m = 2, with A4,(x) = A(x). Assuming that the theorem holds for a given positive
integer m, we shall prove it for m + 1. By the hypothesis, we have

forall xand i;in E, (j=1...m+1).
Put

g%, ») = Af(x) = flx +y) = ). (2.23)

Then, treating y as a fixed parameter we have
|51,z =

for each fixed y and all x and h;in E, (j=1...m+1).

By (2.24) and the induction hypothesis, there exists, for each fixed y € E, a map
p : E — F defined by p(x,y) for all x in E which is of degree at most m — 1 in x such
that

m+l H

m\]'

A7, A)|| <0 (2.24)

lg(x,») = p(x,p)[| <6 (2.25)
for all x and y in E. More precisely p(x,y) has the form
p(x,y) = g(0,) + q(x, ) + h(x, ») (2.26)

where A(x,y) is a homogeneous form of degree m — 1 or else is identically zero, while
q(x,y) is a map of degree at most m — 2 in x, and ¢(0, y) = 0. From, (2.23) and (2.26)
and (2.25) we obtain

(x4 ) = /%) =f(y) +./00) = q(x,3) = h(x, )| < (2.27)

for all x and y in E.

Now, in view of (2.27) and Lemma (2.24), the map A4,,: E — F defined by
Am(x) = m 'H(x,x), x € E, is either zero or else a homogeneous form of degree m. In
addition, we have

1
Ap(x) = — lim p" AT, (0), (2.28)

According to Lemma 2 [21] if we put

Si(x) = f(x) = 4(x) (2.29)
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then the map f; satisfies the conditions of Lemma (2.4) for k = m — 1; consequently,
there exists the map 4,,_, : E — F given by

tim p 7 { AL A0) = AL A 0) } (2.30)

Amil(x) - (m — 1)!rz—>+oo

which is either identically zero or else a homogeneous form of degree m — 1. Again by
Lemma 2 of [21], if we put

Sa(x) =fi(x) = Ap-i (x) (2.31)

then £, satisfies the conditions of Lemma (2.4) for k = m — 2 which leads to the exis-
tence of the limit

1 . m—1)n Am—1
Apa(x) = 5 lim p VAT £2(0), (232)
and
1 b m—in m— m—
An(0) = Gy P A A00) = A A(0)) (23

continuing in this way, we arrive at the map
S (x) = f(x) — A3(x) — ... — Ap(x) (2.34)

where the 4, (x) are given by formula (2.22) in the statement of our theorem and where
Jfm_2 satisfies the inequality

[ fn2(x +3) = fn2(x) = fin2(y) +fn2(0) = h(x,y)[| < 6 (2.35)

in which A(x,y) is either identically zero or a homogeneous form of degree one in x.
Applying Lemma (2.4) once more and putting A,(x) = 1/(x,x), we have
1 : 2n A2
Ax(x) = Eﬂkﬂlxl’ Ap”’,‘(»fm72(0)

which, in view of (2.34), also agrees with formula (2.22) of the theorem. Finally on
putting

Jno1(x) = fra(x) — Aa(x) = flx) — Aa(x) — ... — An(x) (2.36)
and in view of Lemma (2) [14] for the case k = 2, we get the inequality
| fn-1(x 4 3) = fn1 (%) = fn1 () + fn1 0)[| < 0 (2.37)

for all x and y in E.
Since f,,_; satisfies (2.37), it follows from the Lemma (2.3) that there exists an
additive map

A1) = Tim Ay efyr1(0) (2.38)
satisfying the inequality

| St (X) = fn1 (0) = Ay (x) | < 6 (2.39)
for all x in E. Obviously 4;(x) agrees with formula (2.22) by (2.36) and (2.34). By
substituting (2.36) into (2.39) and observing that f,,_1(0) = f{0), we obtain
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[/(x) =/10) = Ai(x) = ... = An(¥)[| <6

which is equivalent to conditions (2.21) and (2.22) of our proposition with m replaced
by m + 1. Thus the induction proof has been completed and Proposition (2.5) estab-
lished. O

Theorem 2.6. Let E be a vector space, F be a non-Archimedean Banach space and
p €N, |p| # 1. Let 6 be a fixed positive number and f : E — F be a function satisfying
the inequality

|AVf(x)|| <0, x,h € E. (2.40)
Then there exists a GP function p,,_, : E — F which is of degree at most m — 1, such that,
| f(x) = pp_i (X)|| < O for all x in E. (2.41)

Proof. We have f satisfy

A7 f(x)|| = Z(—l)””"(:)f(erkh) <9, x,heE.
k=0
By putting g, = (—1)"* (r/?)f, we have
> g(x+kh)|| <6, x,heE. (2.42)
k=0

For 0 <j <k <mlet oy =k —jso that oy # 0 if j < k and oy = 0.
For0<k<mand x,y,h € E,

(x+mhy) +k(y — i) = x + ky + amhy
From (2.40) and (2.42) we get that

S (g (x + ky + agnhn) — gi(x + k)
k=0

< max{

<6

> gl 4 ky + d) ||, || D g (x +ky)
k=0

k=0

)

}

<6 (2.43)

and since o,,, = 0, we obtain that

m—1

ZA‘kahlgk (x + ky)

k=0

Repeating the argument that led from (2.40) to (2.41) we find that

m—2

ZAak.m—ll”Z A“kmhlgk (x + ky)

k=0

<9 (2.44)
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for all x,y,h,h, € E. Repeating this reasoning m — 2 times, we obtain that

||A‘x01hm . 3‘ﬂmhhg()( )” (245)

for all x,y,hy,...h, € E. Since g, = (—1)"f and op, # 0 for 1 < k < m, the inequality
(2.45) simply asserts that

||Ah/n M A/"]f(x)” < 5 (2.46)
for all x,hy,...,h, € E. Thus, by Proposition (2.5), there exists a GP function
Py - E— F, of degree at most m — 1 such that

/(%) = P (¥)[| < 0, (2.47)

which completes the proof of Theorem 2.6. [

3. MAIN RESULT

In this section we obtain the non-Archimedean Hyers—Ulam stability of the K-qua-
dratic functional equation.

Lemma 3.1. Let E be a vector space, F a non-Archimedean Banach space, K a finite
subgroup of the group of automorphisms of E and k = cardK. Let f: E — F satisfy

I Zkexf(x + k- y) = Zpexflk - y) = kf(X)[| <0, x,py € E. (3.1)
Then

1A% w) — g0 <2

) u7 v e E7 (3.2)
e

K
with g(x) = —Zfol(—l)”izfgf)f(ik%k -x) and Ky C K are pairwise different sets
such that cardK; = x — i for j € {17..., (’;)}, i€f{0,...,x}.

Proof. We have

(ZK)Z,(Z;J{ x> K(Z’;)f<2k x> E, (33)

Jj=1 ieK keKij 1 keK;;

since for all § € K,

BK; = Ky, i €{0,.. K}7j7ke{l,...,<’;>}.

Now, fix u, v € E. Let
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Xi=u+iv, yU:Zk-v, iE{O,...,K},jE{L...,(é)}.

keK; i

Forall fe K, i€{0,....,x}, j€ {1, e (’:)} we have the two following cases

Case 1, [37' €K;;. Thus i#«k, let ke {1,..., (zfl)} be such that
Ky =Kuw U{B ™'} So, we have

xl»—l—ﬁyij:u—kiv—l—z:ﬁlw:u—i-(i—f—l)v—l— Z pl-v

leKj; 1K i1k

= Xiv1 T BV

Case 2, /3’1 ¢K;. Since i#0, let ke {1,..., (zf1>} be such
thatK ;1 = K; U{p~'}. By a similar calculation to the previous we obtain

Xi+ Byy = Xio1 + By

Consequently, from the above consideration we get

o )
STEDTY N A+ dyy) =0. (3.4)

=0 =1 ek

Now, in view of (3.1), (3.3) and (3.4) we have

1A F () — kg(v)|| = Ki:(—l)'”(’lf)f(u i) + ) (—1)"’f<Zk : v>

=12 (-1’ _ [Zf(x, + Ayy) — kf(x) — Z/()yy)]

< 0.

This ends the proof. [
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Theorem 3.2. Let E be a vector space, F a non-Archimedean Banach space, K a finite sub-
group of the group of automorphisms of E and k = cardK. Let f: E — F satisfy

[Zkex flx + k- y) = Ziex flk - y) = f(x)|| <6, x,y € E. (3-5)

Then there exists a unique GP function p : E — F solution of (1,1), of degree at most «,
such that

1) = 10) = o)l < - (36)
Proof. According to (3.5), we have

(| Asf(u) — g(v)|| < %, u,vekE. (3.7)
Replacing u by u + v we get

820+ 9) = 2] < - (38)
By (3.7) and (3.8) we obtain

A ] < 2 (39)

Then by Theorem (2.6) there exists a GP function ¢ : E — F, of degree at most k, such
that

0
11(x) = q(x)|| < T (3.10)

For 0 < k < K, there is a rational-homogeneous form of degree k A4, : E — F such that
¢(x) = f0) + YA, (x). (3.11)

By (3.5) and (3.10), for all x,y € E,

> alx +k.y) — rq(x) — kq(y) (3.12)
< maX{ > (ax+ky) = flx+ k)|, |1 (a(ky) — flkey))||,
(g x) — FC) | [ Sacrf o + k- 3) — Sxenflh ) Kf(X)I}
< % (3.13)

Now (3.11) says, in light of (3.12) that, for all x,y € E,
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m=kK

f(0) + SO A+ ) — ) -3 A

j=1 keK

(3.14)

In (3.13) replace x by rx and y by ry (r € Q) to conclude that, for all x,y € E and all
reQ,

% (3.15)

By continuity (3.14) holds for all real r and all x,y € E. Now suppose that ¢ : F — R is
a continuous linear functional. Then by (3.14),

+m§fw¢{z J(x+ky) — ZKA ZEK:A,-()/))}

keK kekK j=1

—xf(0) + ZV’Z (x+ky) — i:ijAj ZZV’A (k.y))

j=1 kek j=1 kek j=1

<ol

(3.16)

for all x,y € F and all r € R.
Since a real polynomial function is bounded if and only if it is constant, from the last
inequality we surmise that, for 1 <j < k,

QS{Z( Ax+ky) — Al ZA (k.y) } (3.17)

kek kek

for all x, y € E. Since this is so for every continuous linear functional ¢ : F — R, by the
Hahn-Banach theorem,

Z( i(x +k.y) — 1A ZA )=0 for x,y€ Eand 1 <j< k. (3.18)

keK keK

Letting p(x) = ¢(x) — ¢(0) then p is a GP function of degree at most x and by (3.17) it
is a solution of Eq. (3.9),

Z( (x+k.y) —rp(x Zpky =0 for x,y € E. (3.19)

keK kekK

Finally, by 3.10) and (3.18) we get the result, ||f(x) —f(0) — p(x)|| < K‘, x€E.
Let p’ be another GP function solution of (1.1) of degree at most x such that

0
1) = f(0) = p'(x)|| < Y e E.
Then we get [|p(x) —p'(x)]| < Mv x € E. Thus, necessarily p=p’. This ends the
proof. [

Theorem 3.3. Let E be a vector space, F a non-Archimedean Banach space, K a finite
subgroup of the group of automorphisms of E and k = cardK. Let f,g,h: E— F be
functions satisfying

[Zkex flx + k- y) — xg(x) — kh(p)|| <6, x,y € E. (3.20)
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Then there exists a unique GP function p : E — F solution of (1,1), of degree at most «,
such that

1) —£10) — p(x)]| < ﬁ veE, (3.21)
Kh(x) — Kh(0) — ;p(k.x) < |i| x€E (3.22)

and
l¢(x) — £(0) — p(x)| <>, x € E. (3.23)

Proof. By posing that /' = f— f(0), ¢ =g — g(0), and /' = h — h(0), it is clear that
1, ¢, i satisfy (3.20). First we observe that:

Kh' (v) =Y f(ky)|| <6 (3.24)
kek
and
lcg'(x) — 1/ ()] < 6. (3.25)
From the above inequality (3.20), (3.24) and (3.25) we have
[ Zkers (x + k- y) = Ziexf (k- y) = 1f (x)]| < 0. (3.26)

By Theorem (2.5) and inequality (3.24) and (3.25) the result follows. [

Corollary 3.4. Let E be a vector space, F a non-Archimedean Banach space, K a finite
subgroup of the group of automorphisms of E and k = cardK. Let f,h : E — F be func-
tions satisfying

[Zkex flx +k-y) = kg(x)[| <0, x,y € E. (3.27)
Then there exists a unique GP function p : E — F, solution of K-Jensen equation,

Yiex pP(x+k-y) =kp(x), x,y € E,
of degree at most k, such that

—, x€E, (3.28)
and

lg(x) — £(0) — p()] < 5| xeE. (3.29)
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