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Abstract

The BlAcore is an instrument for measuring rate constants in real time by using a surface—volume geometry.
Though current models for the resulting reaction includegport effects for the reactant in solution, they do not
account for spatial nonuniformities in the reactant attacbelde wall. This work accounts for such nonuniformities
and establishes that in the limit of small Damkdhler number, such effects are negligible due to the averaging
characteristics of the instrumentation.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Obtaining accurate quantitative estimates for the rate constants for biochemical reactions is a pressing
experimental need. These rate constants yield valuable insights into the chemical processes that occur
inside living organisms, such as those that occur on the surface of dfelje popular and accurate
way of obtaining reaction data is through the use of the BIAcore, a surface plasmon resonance device.

The BlAcore device consists of a channel through which one of the reactants (the analyte) is convected
in standard tw-dimensional Poiseuille flow fromm = 0, the inlet position. The other reactant, called
the receptor, is coupled to a dextran layer on the ceiling of the channeFHge#&). Reactant binding

* Corresponding author.
E-mal addressesedwards@math.udel.edu (D.A. Edwards), sswamina@udel.edu (S. Swaminathan).

0893-9659/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2004.10.007


https://core.ac.uk/display/82730226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/aml

1102 D.A. Edwards, S. Swaminathan / Applied Mathematics Letters 18 (2005) 1101-1107

sensor surface (length L, height Hq)

evanescent '

wave

H;
parabolic flow

dextran
layer

bound/ unbound

complex
P unbound receptor
ligand

Fig. 1. Schematic diagram of the BIAcore device.

causes changes in the refractive index of the dextran layer. These changes are measured by a polariz¢
light beam, and averaged over the length of the ceiling to provide real-time measurement of the bound-
state concentratior2[3]. The beam has a finitpenetrdion depth so eactions occurring near the ceiling
provide a stronger signal than those further away.

Because of fluid dynamic effects in the BlAcore, the mathematical model is more complicated than
simple kinetics. Contemporary models of the BIAcore include the effects of convective transport (and
associated downstream depletioa}-f], the effects of diffusivarangort in the dextran§,9], and the
effect of the finite peetrdion depth of the evanescent wavil)]. However, to date they have always
assumed a constant densRy of receptors in the layer. But the receptors are embedded in the dextran
layer usihg a convective flow process similar to the one used in the experiment t&glP]. Thus we
expect that the true receptor density will have nonuniformities induced by depletion as does the bound
state. In this paper we will analyze these nonuniformities, and we conclude that due to the averaging
process in the BlAcore, these nonuniformities do not affect rate constant measurements to the order nov
considered to bthe standard.

2. Receptorson asurface

Because the ratio of the width of the receptor layer to the width of the channel is so 8nalld
often instructive iitially to treat the receptorlyer as a surface, and we dolere. When calculating its
output, the BIAcore averages the dimensionless bound Btai@roduce a sensogram readiBgin the
surface case, the averaging is given by

B 1 Xmax
B(t) = 7/ B(x, t) dx,
Xmax — Xmin J Xmin

wherexmin and Xmax are the limits of the scanning range of the device. Thus any useful mathematical
model for the BIAcore must eventually be expressed in termB,ofiot B. On theother hand, any
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data input to our model must also be expressed in terms of averages. In particular, upon introducing
a variable receptor densitRR(x), we realize that the BlAcore will measure onR. Thus we may set
R = Ry, replcing the uniform density of previous models with the average density. But what is the size
of the cscillations?

It can be showrd] that the relevant dimensionless parameter characterizing the effects of convection
is given by theDamkohler number

Da— IZaRTLl/'stl/3 B reaction rate
- V1/3[3f2/3 ~ diffusion rate in unstirred layér

The “unstirred layer” refers to the boundary layer near the surface of iAdtf/3, wherePeis the
Peclét number. In this layer, diffusion and convection balance. Hened H; are the dimensions of the
channel)V is proportional to the flow ratek, is the association constafor the analyte, ands is the
diffusion coefficient for the analyte in the fluid buffer.

Experimentalists strivéo work in the regime wher®a is small and @mnsport effects are limited.
Focusingon this case, we udla as a small perturbation parameter. In the case of sbalprevious
studies of associatio] and dissociation p] experiments show that transport effects introduce an
O(Da) correction to the well-mixed case where transport is infinitely fast.

The receptors are often bound to the dextran by an injection (flow) process similar to that for the
analyte in the experimeni],12]. The immobilization process is allowed to run for a long time in an
attempt to reach a constant steady state. Nevertheless, because of our previous analyses, we expect th:
there will always be a small deviation at any time. Thus it is reasonable to write the density of receptors
Ras

R(X) = Rr[1+ DaRa(x)], Ra =0(). (1a)

Note thatDa is the Damkdhler number for the ligand—receptor reaction (the one we choose as our

perturbation parameter), not the receptor—dextran readtipand D; are similar for the analyte and
receptor, so the two Damkohler numbers are of similar order. (The itemmobilizationarisesfrom
keeping the dissociation constdgtlow.) Moreoverwe requie that

Ra =0, (1b)

so thatR = Ry.
The governing equations fd in the cag of largePe (asachieved in the BlAcore) have previously
been derived4]. With (18 replacing the uniform conditioR = Ry, these guations become

% — [1— DaC(x, O)][1+ DaRa(x) — B]— KB,  x [0, 1], (2a)
1 X B de
C(x, 1) —m A E(X—f,t)gzﬁ (2b)

Here C represents the deviation dig analyte concentration from its upstream value 1, idnid the
affinity constantwhich is a atio of the rate constants. Note fror2bj that as &pected, the analyte
depleted ak is an integral of the diffeential dianges upstream @ & < x).

The second bracketed term Rgf represents the number of receptor sites available for binding. In our
model, we consider “available sites” to be equivalent to “empty sites”, so the term in question is just the
total number of receptors less the number bound. In actuality, due to the mismatch in size between the
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large ligand molecules and the more tightly packed receptor sites, it is possible for a molecule to bind to
the aurface and occlude nearby reacting site3 [ For the model under consideration, we neglect these
steric hindranceeffects in @a), which would introduce & dependence into the second bracketed term
in (28, and hence additional nonlinearities into our problem.

Now that we have chosen our small param&aywe may letB = By + 0(1) in (23 to obtain an
ODE for Bp. In an asociation experimenBg is zero initially, soBg is a function oft only:

dB
dt
which is the operator for the standard dimensionless perfectly mixed case, which considers kinetics only.

From the form of 2b) we see tht to leading orde€ = h(x)dBg/dt. (For reasons that will become clear,
we leaveh(x) arbitrary for now.) Making this substitution int@#), we obtain

—2%_1-(1+K)By, Bo(0) =0, 3)

0B dB
—- +Dba(l - B)Foh(x) —1— (14 K)B + DaR(x) + O(D&2). (4)
As remarked above, the BIAcore returns measuremerts dhus we averagelj to obtain

B - }
E[H Da(1— B)h] =1— (1+ K)B + O(Da). (5)
In derving (5), we note that due to the uniformity dBo, the erors we make in replacing&b/dt by
dB/dt and replacingBh by Bh are bothO(Da?). Note al® tha the R, term vanishes because, = 0.
In order to fit the B data using a curve fitting program in Matlab or a data-analysis program, the
following form is usually more convenient:

dB  1-(1+K)B ) 3Bl — X3
— = — + O(Dad), h= : (6)
dt 1+ Da(l- B)h 4I'(2/3) (Xmax — Xmin)

where in calculatindy we have used?p). Note from 6) that if we are in the pdectly mixed case where

Da = 0, (6) redwces to the standard kinetic equatid®). (If we were (mistakemnyl) using the standard
kinetic model, the effect of the transport term in the denominator would be to seem to make the affinity
constantK vary with time. Hence §) is an exanple of aneffective rate constagERC) model, which is

quite generic. Note that all the effects of transport, geometry, etc. are lumped into the pararibter

we can useq) for a vaiety of different devices14] andgeometries15], with the only change being a

new value foth.

With the R, term gone, 6) is exadly the result foruniform R [5]. Thus, even though the
nonuniformity appears a(Da), the sesogram averaging keeps it from affecting the solution to the
leading two orders. In other words, sinBg is uniform, the first troublesome term to averag€iRx,
which appears ab(Da?), beyond the accuracy of the ERC model.

For conpleteness, we mention that the BlAcore can also be used for a dissociation experiment. Once
the association experiment has reached a steady state, the injected ligand is removed, 2 i8q. (
replaced by

aB

i —DaC(x, t)[1 + DaRa(x) — B] — KB, x € [0, 1],
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where the minus sign is retained since Bl)(we seghatC < 0. Since the steady state for the association
experiment is uniform4], the same argument aboly and theform of C applies, sof) is replaced by

dB KB

dt ~  1+Dal- B)h
with the same value df. Again, this & the sameesult as in the uniform casB][

+ O(Da?), (7)

3. Receptorsin alayer

If the receptors are treated more realistically—namely in a layer—the results are similar. The
avemging is nowgiven by [LO]

§ Xmax

(1 — e%)(Xmax— Xmin) Xmmin
Herey € [—1, 0] represents the dextran layer ahds the ratio of the dextran thicknesdy to the
penetration depth of the measuring wave. (Hehee0 corresponds to an infinite penetration depth and
perfect measurements.)

Egs. (L@ and Qa) are unchanged except that all nonuniform functions must now depend on the
additional independent variabje The equation forC(x, y, t) is now given by [B]

0
B(t) f e *O+tUB(x, y, t) dy dx.
-1

C(x )= ———— XE(X—§ 0 t)d—S—DF (8a)
V3R Jy sy o VeE T P
92F 0B oF

Note the similarity between the integrals iBbf and 8d). In each case, the integral represents the
depletion effects. Here

D_ Dt/(HfPe Y/3) _ diffusion “velocity” in diffusive boundary layer
~ ¢Dg/He diffusion “velocity” in dextran

is a paameter that measures the resistance to transport caused by the presence of the dextran layer
Hereg is the partition coefficient anBy is the diffusion coefficient fortte analyte in the dextran layer.
Note that the effects in the two directions separate: the effects of convectionsrdilectionare totally
contained withirthe integral in 83, while the effects of diffusion in thg-direction are totally contained
within the second term.
None of these additional complications affects our argumerieofion 2 howeverAs long asDa is
smdl, By is still a function oft only, so from 8b) we have thaF = g(y)dBg/dt. This in turn implies
thatC = h(x, y)dBp/dt, and m&ing this substution into &), we obtain

B B
%—t + Da(l— B)%h(x, y) =1— (14 K)B + DaR(x, y) + O(Dad),

which of course is the analog of)(in two dimensions. Thus the averaging proceeds as before,@nd (
still holds, this time with 10|

24+2[6+Ded —1] 3 — X1

h=D :
262(1 — e9%) * 41'(2/3) Xmax — Xmin)

9)
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As befae, Eq. 6) (with our new definition ofh) is exadly the resul for uniform R[10].
For thedissociation case, the same arguments still hold. Thus Bqvith h defined in 9) is the
correct ERC equation, and it is the same equation as the one with urfk¢ard).

4, Conclusionsand further research

Given the current state of the art in SPR technology, simple models for surface—volume reactions
are needed to obtain accurate constants for the reactions. Most of the different models in use, which
so carefully track transport effects in the ligand—-receptor reaction, treat the initial receptor density
asuniform. This is odd, since the sartransport effects are in play when the receptors are initially laid
down in the dextran. Thus one would exp&¢k) to have the form1a), since he sizes of those transport
effects are characterized BDa. This, in turn, would lead one to believe that the sensogram data would
be affected aD(Da) by these nonuniformities.

Fortunately, the BIAcore measures the spatial average of the data it collects. Thus some of the more
negative effects of nonuniformity iR are averaged away, as they are within particular, since the
initial sen®r signal isR, the nonuniformities we examine must have mean zero. This fact, coupled with
the fact that thedading order ofB is uniform, yields he result that up t@(Da), the nonuniformity
in R does not affect the solution. Thus, we see that even thoughaheniformitiesare O(Da), their
contributionto the sensogrameading does not appear un@i(Da?).

Because of this, the nonuniformity does not affect the forrB @f the ERC model, which is accurate
to O(Da?). Since the ERC model is quite convenient for data fitting, we are in the happy position of
reporting that one can ignore the nonuniformitiesRrwhen calculating rate constants—as longoas
is small.

Though experimentalists strive to remain in this regime, there are times when it is impossible to
do so, for instance wheR, is large. In prewwus numerical studies with a uniformy, the ERC
approximation §) has been shown to be good even in the case wbeiis moderate 10,16], even
though there is no reason asymptotically why it should be so. With this positive outcome, we are hopeful
that ©) will also hold for the case of moderai2a with nonuniformR. Numercal simuldions will test
this hypothesis.

Clearlythe analysis herein will also fail iR, is large, i.e., if he nonuniformities in theeceptor sites
are moderate. Such a problem can normally be avoided by extending the injection time of the receptor
in the immobilization step. Regdess of this, since the mean of tledarger nonuniforniies would still
be zero, we expect thab) should hold in this regime as well. Numerical simulations can also test this
hypothesis.
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