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The effect of receptor site nonuniformity on the measurement of
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Abstract

The BIAcore is an instrument for measuring rate constants in real time by using a surface–volume geometry.
Though current models for the resulting reaction include transport effects for the reactant in solution, they do not
account for spatial nonuniformities in the reactant attachedto the wall. This work accounts for such nonuniformities
and establishes that in the limit of small Damköhler number, such effects are negligible due to the averaging
characteristics of the instrumentation.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Obtaining accurate quantitative estimates for the rate constants for biochemical reactions is a pressing
experimental need. These rate constants yield valuable insights into the chemical processes that occur
inside living organisms, such as those that occur on the surface of a cell [1]. One popular and accurate
way of obtaining reaction data is through the use of the BIAcore, a surface plasmon resonance device.

The BIAcore device consists of a channel through which one of the reactants (the analyte) is convected
in standard two-dimensional Poiseuille flow fromx = 0, the inlet position. The other reactant, called
the receptor, is coupled to a dextran layer on the ceiling of the channel (seeFig. 1). Reactant binding
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Fig. 1. Schematic diagram of the BIAcore device.

causes changes in the refractive index of the dextran layer. These changes are measured by a polarized
light beam, and averaged over the length of the ceiling to provide real-time measurement of the bound-
state concentration [2,3]. The beam has a finitepenetration depth, so reactions occurring near the ceiling
provide a stronger signal than those further away.

Because of fluid dynamic effects in the BIAcore, the mathematical model is more complicated than
simple kinetics. Contemporary models of the BIAcore include the effects of convective transport (and
associated downstream depletion) [4–7], the effects of diffusivetransport in the dextran [8,9], and the
effect of the finite penetration depth of the evanescent wave [10]. However, to date they have always
assumed a constant densityRT of receptors in the layer. But the receptors are embedded in the dextran
layer using a convective flow process similar to the one used in the experiment itself [11,12]. Thus we
expect that the true receptor density will have nonuniformities induced by depletion as does the bound
state. In this paper we will analyze these nonuniformities, and we conclude that due to the averaging
process in the BIAcore, these nonuniformities do not affect rate constant measurements to the order now
considered to bethe standard.

2. Receptors on a surface

Because the ratio of the width of the receptor layer to the width of the channel is so small [8], it is
often instructive initially to treat the receptor layer as a surface, and we do so here. When calculating its
output, the BIAcore averages the dimensionless bound stateB to produce a sensogram readingB̄; in the
surface case, the averaging is given by

B̄(t) = 1

xmax − xmin

∫ xmax

xmin

B(x, t) dx,

wherexmin andxmax are the limits of the scanning range of the device. Thus any useful mathematical
model for the BIAcore must eventually be expressed in terms ofB̄, not B. On theother hand, any
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data input to our model must also be expressed in terms of averages. In particular, upon introducing
a variable receptor densityR(x), we realize that the BIAcore will measure onlȳR. Thus we may set
R̄ = RT, replacing the uniform density of previous models with the average density. But what is the size
of the oscillations?

It can be shown [4] that the relevant dimensionless parameter characterizing the effects of convection
is given by theDamköhler number

Da = k̃aRTL1/3H1/3
f

V1/3D̃2/3
f

= reaction rate

diffusion rate in unstirred layer
.

The “unstirred layer” refers to the boundary layer near the surface of widthPe−1/3, wherePe is the
Peclét number. In this layer, diffusion and convection balance. HereL andHf are the dimensions of the
channel,V is proportional to the flow rate,̃ka is the association constant for the analyte, and̃Df is the
diffusion coefficient for the analyte in the fluid buffer.

Experimentalists striveto work in the regime whereDa is small and transport effects are limited.
Focusingon this case, we useDa as a small perturbation parameter. In the case of smallDa, previous
studies of association [4] and dissociation [5] experiments show that transport effects introduce an
O(Da) correction to the well-mixed case where transport is infinitely fast.

The receptors are often bound to the dextran by an injection (flow) process similar to that for the
analyte in the experiment [11,12]. The immobilization process is allowed to run for a long time in an
attempt to reach a constant steady state. Nevertheless, because of our previous analyses, we expect that
there will always be a small deviation at any time. Thus it is reasonable to write the density of receptors
R as

R(x) = RT[1 + DaR∆(x)], R∆ = O(1). (1a)

Note thatDa is the Damköhler number for the ligand–receptor reaction (the one we choose as our
perturbation parameter), not the receptor–dextran reaction.k̃a and D̃f are similar for the analyte and
receptor, so the two Damköhler numbers are of similar order. (The termimmobilizationarisesfrom
keeping the dissociation constantk̃d low.) Moreover,we require that

R∆ = 0, (1b)

so thatR̄ = RT.
The governing equations forB in the case of largePe (asachieved in the BIAcore) have previously

been derived [4]. With (1a) replacing the uniform conditionR = RT, these equations become

∂ B

∂t
= [1 − DaC(x, t)][1 + DaR∆(x) − B] − K B, x ∈ [0, 1], (2a)

C(x, t) = 1

31/3Γ (2/3)

∫ x

0

∂ B

∂t
(x − ξ, t)

dξ

ξ2/3
. (2b)

HereC represents the deviation of the analyte concentration from its upstream value 1, andK is the
affinity constant, which is a ratio of the rate constants. Note from (2b) that as expected, the analyte
depleted atx is an integral of the differential changes upstream (0< ξ < x).

The second bracketed term in (2a) represents the number of receptor sites available for binding. In our
model, we consider “available sites” to be equivalent to “empty sites”, so the term in question is just the
total number of receptors less the number bound. In actuality, due to the mismatch in size between the
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large ligand molecules and the more tightly packed receptor sites, it is possible for a molecule to bind to
the surface and occlude nearby reacting sites [13]. For the model under consideration, we neglect these
steric hindranceeffects in (2a), which would introduce aC dependence into the second bracketed term
in (2a), and hence additional nonlinearities into our problem.

Now that we have chosen our small parameterDa, we may letB = B0 + o(1) in (2a) to obtain an
ODE for B0. In an association experiment,B0 is zero initially, soB0 is a function oft only:

dB0

dt
= 1 − (1 + K )B0, B0(0) = 0, (3)

which is the operator for the standard dimensionless perfectly mixed case, which considers kinetics only.
From the form of (2b) we see that to leading orderC = h(x)dB0/dt . (For reasons that will become clear,
we leaveh(x) arbitrary for now.) Making this substitution into (2a), weobtain

∂ B

∂t
+ Da(1 − B)

dB0

dt
h(x) = 1 − (1 + K )B + DaR∆(x) + O(Da2). (4)

As remarked above, the BIAcore returns measurements ofB̄. Thus we average (4) to obtain

dB̄

dt

[
1 + Da(1 − B̄)h̄

] = 1 − (1 + K )B̄ + O(Da2). (5)

In deriving (5), we note that due to the uniformity ofB0, the errors we make in replacing dB0/dt by
dB̄/dt and replacingBh by B̄h̄ are bothO(Da2). Note also that the R∆ term vanishes becauseR∆ = 0.

In order to fit the B̄ data using a curve fitting program in Matlab or a data-analysis program, the
following form is usually more convenient:

dB̄

dt
= 1 − (1 + K )B̄

1 + Da(1 − B̄)h̄
+ O(Da2), h̄ = 35/3(x4/3

max− x4/3
min)

4Γ (2/3)(xmax− xmin)
, (6)

where in calculatinḡh we have used (2b). Note from (6) that if we are in the perfectly mixed case where
Da = 0, (6) reduces to the standard kinetic equation (3). If we were (mistakenly) using the standard
kinetic model, the effect of the transport term in the denominator would be to seem to make the affinity
constantK vary with time. Hence (6) is an example of aneffective rate constant(ERC) model, which is
quite generic. Note that all the effects of transport, geometry, etc. are lumped into the parameterh̄. Thus
we can use (6) for a variety of different devices [14] andgeometries [15], with the only change being a
new value forh̄.

With the R∆ term gone, (6) is exactly the result for uniform R [5]. Thus, even though the
nonuniformity appears atO(Da), the sensogram averaging keeps it from affecting the solution to the
leading two orders. In other words, sinceB0 is uniform, the first troublesome term to average isC R∆,
which appears atO(Da2), beyond the accuracy of the ERC model.

For completeness, we mention that the BIAcore can also be used for a dissociation experiment. Once
the association experiment has reached a steady state, the injected ligand is removed, so Eq. (2a) is
replaced by

∂ B

∂t
= −DaC(x, t)[1 + DaR∆(x) − B] − K B, x ∈ [0, 1],
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where the minus sign is retained since by (2b) we seethatC < 0. Since the steady state for the association
experiment is uniform [4], the same argument aboutB0 and theform of C applies, so (6) is replaced by

dB̄

dt
= − K B̄

1 + Da(1 − B̄)h̄
+ O(Da2), (7)

with the same value of̄h. Again, this is the sameresult as in the uniform case [5].

3. Receptors in a layer

If the receptors are treated more realistically—namely in a layer—the results are similar. The
averaging is nowgiven by [10]

B̄(t) = δ

(1 − e−δ)(xmax− xmin)

∫ xmax

xmin

∫ 0

−1
e−δ(y+1)B(x, y, t) dy dx.

Here y ∈ [−1, 0] represents the dextran layer andδ is the ratio of the dextran thicknessHd to the
penetration depth of the measuring wave. (Henceδ = 0 corresponds to an infinite penetration depth and
perfect measurements.)

Eqs. (1a) and (2a) are unchanged except that all nonuniform functions must now depend on the
additional independent variabley. The equation forC(x, y, t) is now given by [8]

C(x, y, t) = 1

31/3Γ (2/3)

∫ x

0

∂F

∂y
(x − ξ, 0, t)

dξ

ξ2/3
− DF, (8a)

∂2F

∂y2
= ∂ B

∂t
,

∂F

∂y
(x,−1, t) = 0, F(x, 0, t) = 0. (8b)

Note the similarity between the integrals in (2b) and (8a). In each case, the integral represents the
depletion effects. Here

D = D̃f/(HfPe−1/3)

φ D̃d/Hd
= diffusion “velocity” in diffusive boundary layer

diffusion “velocity” in dextran

is a parameter that measures the resistance to transport caused by the presence of the dextran layer.
Hereφ is the partition coefficient and̃Dd is the diffusion coefficient for the analyte in the dextran layer.
Note that the effects in the two directions separate: the effects of convection in thex-directionare totally
contained withinthe integral in (8a), while the effects of diffusion in they-direction are totally contained
within the second term.

None of these additional complications affects our arguments ofSection 2, however. As long asDa is
small, B0 is still a function oft only, so from (8b) we have thatF = g(y)dB0/dt . This in turn implies
thatC = h(x, y)dB0/dt , and making this substitution into (2a), weobtain

∂ B

∂t
+ Da(1 − B)

dB0

dt
h(x, y) = 1 − (1 + K )B + DaR∆(x, y) + O(Da2),

which of course is the analog of (4) in two dimensions. Thus the averaging proceeds as before, and (6)
still holds, this time with [10]

h̄ = D
δ2 + 2[(δ + 1)e−δ − 1]

2δ2(1 − e−δ)
+ 35/3(x4/3

max− x4/3
min)

4Γ (2/3)(xmax− xmin)
. (9)
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As before, Eq. (6) (with ournew definition ofh̄) is exactly the result for uniform R [10].
For thedissociation case, the same arguments still hold. Thus Eq. (7) with h̄ defined in (9) is the

correct ERC equation, and it is the same equation as the one with uniformR [10].

4. Conclusions and further research

Given the current state of the art in SPR technology, simple models for surface–volume reactions
are needed to obtain accurate constants for the reactions. Most of the different models in use, which
so carefully track transport effects in the ligand–receptor reaction, treat the initial receptor densityR
asuniform. This is odd, since the sametransport effects are in play when the receptors are initially laid
down in the dextran. Thus one would expectR(x) to have the form (1a), since the sizes of those transport
effects are characterized byDa. This, in turn, would lead one to believe that the sensogram data would
be affected atO(Da) by these nonuniformities.

Fortunately, the BIAcore measures the spatial average of the data it collects. Thus some of the more
negative effects of nonuniformity inR are averaged away, as they are withB. In particular, since the
initial sensor signal isR̄, the nonuniformities we examine must have mean zero. This fact, coupled with
the fact that the leading order ofB is uniform, yields the result that up toO(Da), the nonuniformity
in R does not affect the solution. Thus, we see that even though thenonuniformitiesare O(Da), their
contributionto the sensogramreading does not appear untilO(Da2).

Because of this, the nonuniformity does not affect the form ofB̄ in the ERC model, which is accurate
to O(Da2). Since the ERC model is quite convenient for data fitting, we are in the happy position of
reporting that one can ignore the nonuniformities inR when calculating rate constants—as long asDa
is small.

Though experimentalists strive to remain in this regime, there are times when it is impossible to
do so, for instance wheñka is large. In previous numerical studies with a uniformRT, the ERC
approximation (6) has been shown to be good even in the case whenDa is moderate [10,16], even
though there is no reason asymptotically why it should be so. With this positive outcome, we are hopeful
that (6) will also hold for the case of moderateDa with nonuniformR. Numerical simulations will test
this hypothesis.

Clearlythe analysis herein will also fail ifR∆ is large, i.e., if the nonuniformities in thereceptor sites
are moderate. Such a problem can normally be avoided by extending the injection time of the receptor
in the immobilization step. Regardless of this, since the mean of these larger nonuniformities would still
be zero, we expect that (6) should hold in this regime as well. Numerical simulations can also test this
hypothesis.
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