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Abstract
Graphene-like two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been attracting a wide range of research interests.
Molybdenum disulfide (MoS2) is one of the most typical TMDCs. Its particular direct band gap of 1.8 eV in monolayer and layer dependence of
band structure tackle the gapless problems of graphene, thus making it scientific and industrial importance. In this Review, we attempt to provide
the latest development of optical and electronic properties, synthesis approaches, and potential applications of 2D MoS2. A roadmap towards
fabricating hybrid structures based on MoS2 and graphene is highlighted, proposing ways to enhance properties of the individual component and
broaden the range of functional applications in various fields, including flexible electronics, energy storage and harvesting as well as electro-
chemical catalysis.
© 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of The Chinese Ceramic Society. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Graphene, which is a typical two-dimensional (2D) layered
material, has experienced its brilliant age since it was first me-
chanically exfoliated from three-dimensional (3D) graphite in
2004 [1]. Many strikingly highlighted properties, such as its
high transparency (97.7% transmittance in the visible spec-
trum), high thermal conductivity at room temperature
(3� 103W/mK), high electrical conductivity (~104U�1 cm�1),
high Young's modulus (1.1 TPa) and high specific surface area
(2630 m2/g) have been identified in monolayer graphene [2,3].
All these extraordinary properties benefit graphene for various
applications, including transparent electrodes [4], energy stor-
age [5], solar cells [6,7], wearable devices [8] and catalysis [9].
Graphene is defined as a semi-metallic material because of its
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specialpep* band structure. The conduction band and valence
band are symmetrical about Dirac point, so its electronic prop-
erties near K point can be described with Dirac equation, not
Schrodinger equation. The Fermi surface is just the intersection
point of the conduction band and valence band, making gra-
phene to be a zero gap material [1]. This unique structure gives
graphene extremely outstanding electrical property, while limits
its applications in logical circuits for low-power electronic
switching.

Recently, researchers have been refocusing on other
graphene-like 2D materials, aiming at overcoming the
shortage of graphene and broadening its range of applications
[10,11]. 3D bulk materials possess similar traits to obtain their
corresponding 2D layered materials [12]. The melting tem-
perature of these materials is higher than 1000 �C, and they
should be both chemically inert and surface stable at room
temperature. Generally, 2D insulating and semiconducting
materials are more likely to be obtained due to the intrinsic
chemical activity of most metallic materials. Graphite, hBN
and molybdenum disulfide (MoS2) stand out in this
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competition, which are all widely used as lubricants at first.
hBN is electrical insulator and widely used as gate dielectrics
in capacitors [13]. Due to the widespread in nature as
molybdenite, MoS2 has been one of the most studied layered
transition metal dichalcogenides (TMDCs). Monolayer MoS2
is a semiconductor with a direct bandgap of 1.8 eV [10]. This
property of MoS2 is inspiring, which will largely compensate
the weakness of gapless graphene, thus making it possible for
2D materials to be used in the next generation switching and
optoelectronic devices. Thus far, MoS2 has achieved primary
progress in the following fields, including energy conversion
[14] and storage [15] and hydrogen evolution reaction (HER)
[16]. Additionally, MoS2 with odd number of layers could
produce oscillating piezoelectric voltage and current outputs,
indicating its potential applications in powering nanodevices
and stretchable electronics [17].

In this Review, taking MoS2 as a benchmark material, we
attempt to give a basic outlook of the large family of 2D
TMDCs, highlighting their interesting physical properties that
are most relevant in device applications and systematically
introducing the recent process in the preparation methods,
including exfoliation and chemical vapor deposition (CVD).
Finally we delineate and categorize a series of emerging ap-
plications of MoS2, such as field-effect transistors (FETs),
memory devices, photodetectors, solar cells, electrocatalysts
for HER, and lithium ion batteries.

2. Properties

TMDCs, whose generalized formula is MX2

(M ¼ Transition metal (Ti, Zr, Hf, V, Nb, Ta, Mo, W, Tc, Re,
Co, Rh, Ir, Ni, Pd, Pt), X ¼ Chalcogen (S, Se, Te)), have a
large family of materials and their electronic characters could
be semiconducting, metallic and superconducting [12]. We
focus on the most widely and stable existing semiconducting
MoS2 for introduction. In the single layer of MoS2 films, Mo
Fig. 1. Crystal structure and optical properties of MoS2. (a) Chemical structure of t

(1H) and octahedral (1T). (c) Schematic illustrations of the two typical Raman-ac

films. (e) Frequencies of E1
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MoS2 monolayer, bilayer, hexalayer, and bulk sample. (h) Calculated band structur

left to right, a~d). The solid arrows indicate the lowest energy transitions. Panel b

Society. Panel a, c ~ f reproduced and reprinted with permission from Ref. [21]. Co

from Ref. [23]. Copyright 2010 American Chemical Society.
(þ4) and S (�2) are arranged to a sandwich structure by co-
valent bonds in a sequence of SeMoeS [18], whereas the
sandwich layers are interacted by relatively weak van der
Waals forces (Fig. 1a). Generally, each layer has a thickness of
~0.65 nm. Monolayer MoS2 with trigonal prismatic polytype
is found to be semiconducting (referred to as 2H), while that
with octahedral crystal symmetry configuration (referred to as
1T) is metallic (Fig. 1b) [19]. Very similarly to graphene,
MoS2 is mechanically flexible with a Young's modulus of
0.33 ± 0.07 TPa [20].
2.1. Raman spectra
Raman spectra is a convenient characterization method to
illustrate the evolution of structural parameters in layered
materials in changing from the 3D bulk blocks to the 2D van
der Waals bonded constructions, which has been popularly
used to study the quality and layer number of graphene.
Similarly, early in 2010, Changgu Lee's group has been sys-
tematically characterized single- and few-layer MoS2 by
Raman spectra [21]. Generally, two typical Raman peak, E1

2g

and A1g are investigated to reflect the crystal structure of
MoS2. E

1
2g and A1g are indicators of in-plane and out-of-plane

vibration modes of S atoms, respectively (Fig. 1c) [21]. From
bulk to monolayer, three changing rules are collected. First,
E1
2g exhibits a regularly blue-shifted while A1g shows an

opposite red-shifted. E1
2g and A1g locate at the ~384 cm�1 and

405 cm�1 for single layer MoS2 (Fig. 1d, f). Second, the peak
frequency difference between E1

2g and A1g shows a clear
decreasing trend as a function of layer number (Fig. 1d, f)
[21]. The frequency spacing is about 25 cm�1 and 19 cm�1 for
bulk and monolayer MoS2, respectively. Third, two peak in-
tensities almost increase linearly up to four layers with
increasing layer thickness, while decrease for thicker MoS2
(Fig. 1e) [21]. Yongjie Zhan's group has also reported the in-
tensity ratio between E1

2g and silicon (Si) substrate is
wo layers of MoS2. (b) Two polytypes of single layer MoS2: trigonal prismatic

tive phonon modes (E1
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associated with layer thickness, ~0.05 and 0.09 for single- and
double-layer samples [22].
2.2. Photoluminescence (PL) evolution and band
structure engineering
PL spectra are found to be closely related to the number of
layers in MoS2 [19]. Andrea Splendiani’ group has reported
the distinct PL difference between monolayer (1L), bilayer
(2L), quadrilayer (4L) and hexalayer (6L) samples (Fig. 1g)
[23]. Two evident absoption peaks at 670 nm and 627 nm,
identified as A1 and B1 excitons, can be observed in the
spectrum for 1L MoS2, while they both disappear in bulk
MoS2. These two excitons are associated with the energy split
from valence band spin-orbital coupling. Prominent reso-
nances in 1L sample indicate the direct excitonic transitions at
the Brillouin zone K point, which is also consistent with the
theoretical prediction of indirect (1.2 eV) to direct (1.8 eV)
bandgap transition in changing from bulk to single layer
MoS2. Thus, MoS2 with its layer number varying from
multilayer to monolayer, will lead to qualitatively change in its
Fig. 2. Electrical performance of MoS2 and its chemical exfoliation. (a) 3D schem

MoS2. Red line goes across the edge of MoS2 to the Si substrate with a 270-nm-thic

Photoswitching rate of on/off behavior of single-layer MoS2 phototransistor at Vds ¼
(Vds ¼ 1 V, Plight ¼ 80 mW). (f) Electrochemical lithiation process for the fabricat

permission from ref 24. Copyright 2011, Rights Managed by Nature Publishing

American Chemical Society. Panel f reprinted with permission from ref 28. Copyr
band structure, further explaining the prominent PL effect in
1L sample (Fig. 1h) [23].
2.3. Electrical performance
Single layer MoS2 has a large direct bandgap of 1.8 eV,
being suitable acting as switching nanodevices. In 2011, B.
Radisavljevic's group proposed a single-layer MoS2 transistor
adopting a halfnium oxide as the gate dielectric material, in
which the mobility of MoS2 could be up to 200 cm2/(V s) at
room temperature with the current on/off ratio to be 1 � 108

(Fig. 2a, b) [24]. Generally, MoS2 based transistors show the
n-type behavior. Later in 2012, Zongyou Yin's group reported
a phototransistor based on the mechanically exfoliated single-
layer MoS2 for the first time (Fig. 2c) [25]. The switching
character of this device is outstanding, with photocurrent
generation and annihilation within only 50 ms (Fig. 2d) [25].
Under incident light control, the photoresponsivity could reach
7.5 mA/W at a gate voltage of ~50 V, much higher than that in
graphene based devices (~1 mA/W at the gate voltage of 60 V)
(Fig. 2e) [25]. This advantage gives MoS2 best chances for
atic view of MoS2 monolayer transistors. (b) AFM image of a single layer of

k oxide layer. (c) Optical image of FET device made by single-layer MoS2. (d)

1 V, Plight ¼ 80 mW. (e) Dependence of photoresponsivity on the gate voltage

ion of 2D nanosheets from the layered bulk material. Panel a, b reprinted with

Group. Panel c ~ e reprinted with permission from ref 25. Copyright 2012

ight 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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future applications in many fields, including transistors, pho-
todetectors and memory devices, broadening 2D graphene and
graphene-like flexible materials into both transparent con-
ducting and semiconducting areas.

3. Preparation
3.1. Exfoliation
Graphene's successful exfoliation from bulk graphite paves
way for the fabrication of other graphene-like 2D materials
[26] through the simple “Scotch tape method” [1]. Due to high
quality monolayers occurring from mechanical exfoliation,
this method is popularly used for intrinsic sheet production
and fundamental research [24]. Nevertheless, this method is
not suitable for practical applications on a large scale due to its
low yield and disadvantages in controlling sheet size and layer
number. In 2012, Karim Gacem's group proposed a general
technique for fabricating high quality 2D layered materials,
which was called anodic bonding. Sizes of few-layer MoS2
obtained were relatively controllable and larger, ranging from
10 mm to several hundred microns [27].

Another class of exfoliation method is through chemical
approach, including ion intercalation and solvent-based exfo-
liation [10]. In 2011, Hua Zhang's group reported a fast and
highly-controllable method to exfoliate a series of semi-
conducting nanosheets. Through an electrochemical lithiation
discharge process, bulk MoS2 could be realized lithium
intercalation (Fig. 2f) [28]. Then after subsequent ultra-
sonication, a high yield (92%) single-layer MoS2 was ach-
ieved. Metallic 1T-MoS2 accounted for a large proportion
fabricated through the above way. Solvent-based exfoliation,
also called Coleman method [29], was first reported in 2011,
which could obtain mostly semiconducting 2HeMoS2 from
exfoliating suspended bulk MoS2 flakes in organic solvents.
O'Neill et al. further optimized this method by carefully
controlling the sonication time, resulting in higher reported
flake concentration of about 40 mg/mL and relatively
increasing flake size [30]. Chemical exfoliation could largely
increase production than mechanical exfoliation, whereas
sonication during this process would cause defects to 2D lat-
tice structure and reduce flake size down to a few thousand
nanometers, limiting the applications of 2D nanosheets in the
field of large-scale integrated circuits and electronic devices.
3.2. CVD synthesis
Recently, controllable preparation of 2D TMDCs with
large-area uniformity has remained a big challenge. CVD
approach has attracted widely attention because it could syn-
thesis 2D TMDCs on a wafer-scale, which shows great po-
tential toward practical applications like large-scale integrated
electronics. This method not only could prepare continuous
single film with certain thickness, but highlight in directly
growth layered heterostructures, which would largely avoid
interfacial contamination introduced during layer by layer
transfer process. This part gives a systematical presentation of
CVD synthesis of monolayer- or few-layer MoS2. Typically,
the following precursors are used to prepare MoS2 film,
including Mo based compound powder [31,32], deposited
molybdenum (Mo) based film [22,33], ammonium thio-
molybdates ((NH4)2MoS4) film [34] and MoS2 powder [35].

3.2.1. Sulfurization of Mo based compound
In 2012, for the first time, Lain-Jong Li's group reported a

CVD method to synthesis large-area, monolayer MoS2 films
on silicon dioxide (SiO2) substrate in ambient environment.
Molybdenum trioxide (MoO3) and sulfur (S) powders acted as
solid reactants and SiO2 substrate should be pretreated by
graphene-like molecules to increase nucleation points (Fig. 3a)
[31]. AFM cross-sectional profile characterization illustrates
the thickness of MoS2 layer is about 0.72 nm, very close to
that of mechanically exfoliated single layer. FET based on this
film shows typical n-type behavior and the current on/off ratio
could reach up to 104 [31]. Later in 2013, Yifei Yu's group
proposed a self-limiting CVD method under a pressure around
2 Torr to prepare uniform MoS2 films of centimeters by
changing MoO3 to molybdenum chloride (MoCl5) as pre-
cursors [32]. FET devices based on this high quality film show
comparable performance to that reported by Li's group, the
field-effect mobility of which could reach up to 0.03 cm2/(V s)
[32].

3.2.2. Sulfurization of Mo and Mo based oxides
To further improve the uniformity in large areas, Yongjie

Zhan's group pre-deposited a thin layer of Mo (~1e5 nm) on
SiO2 by e-beam evaporation, and then this substrate was
placed in a tube furnace to react with sulfur vapor at 750 �C
(Fig. 3b) [22]. The resulted samples were bi- or tri-layered in
thickness with the interlayer spacing to be ~6.6 ± 0.2 Å. X-ray
photoelectron spectroscopy (XPS) results illustrated that the
ratio of Mo and S was nearly 1:2. Electrical measurements
confirmed that the as-prepared MoS2 showed resistor-like
behavior, whose sheet resistance and typical mobility were
within the range of 1.46 � 104e2.84 � 104 U/, and
0.004e0.04 cm2/(V s), respectively [22]. Lain-Jong Li's group
further adopted the similar way to thermally deposit MoO3

thin films on the sapphire substrate. After two-step thermal
reaction, MoO3 was successfully sulfurized to be MoS2 with
few layers [33]. Atomic force microscopy (AFM) proved the
thickness of the MoS2 film was about 2 nm. Samples were
transferred onto arbitrary substrates in wafer-scale by the
general PMMA-assisted etching technique. To characterize the
electrical performance of MoS2 films, a bottom-gate FET
device was constructed, which showed typical n-type behavior
with electron mobility to be ~0.8 cm2/(V s) and on/off current
ratio ~105 [33].

3.2.3. Thermal decomposition of (NH4)2MoS4
Another effective approach to synthesis MoS2 films in

wafer scale with high controllability was through simple
thermolysis of (NH4)2MoS4. Keng-Ku Liu's group reported to
have prepared bi- or trilayer continuous films on insulating
substrates through this method (Fig. 3c) [34]. It was also



Fig. 3. General CVD preparation of MoS2. (a) Sulfurization of MoO3 powder. (b) Sulfurization of Mo films. (c) Schematic illustration of the two-step thermal

decomposition of (NH4)2MoS4. (d) The typical transfer curves (conductivity vs gate voltage Vg) for the devices fabricated using the MoS2 trilayers annealed with

and without sulfur according to methods displayed in (c). (e) Vapor-solid growth from MoS2 powder. Panel a reprinted with permission from Ref. [31]. Copyright

2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Panel b reprinted with permission from ref 22. Copyright 2012 WILEY-VCH Verlag GmbH & Co.

KGaA, Weinheim. Panel c, d reprinted with permission from Ref. [34]. Copyright 2012 American Chemical Society. Panel e reprinted with permission from Ref.

[35]. Copyright 2013 American Chemical Society. Panel f reprinted with permission from Ref. 39. Copyright 2014 WILEY-VCH Verlag GmbH & Co. KGaA,

Weinheim.
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confirmed that the second-step high temperature sulfurization
process could improve the crystallization to a large extent. The
as-grown samples showed extremely high electrical perfor-
mance (Fig. 3d), and bottom gate transistors fabricated with
these films exhibited outstanding field-effect electron mobility
as high as 4.7 cm2/(V s), exceeding previous reports [34]. One
key and conclusive factor which must be carefully controlled
is to achieve homogeneous dip-coated precursor films on
target substrates.

3.2.4. Vapor-solid growth from MoS2 powder
One particular and straightforward synthesis method needs

to be mentioned was proposed by Sanfeng Wu and his co-
workers in 2013, based on a vapor-solid growth mechanism,
demonstrating the preparation of monolayer MoS2 films on
various insulating substrates (Fig. 3e) [35]. As-grown flakes
were about 25 mm in dimension, with a maximum of ~35% at
~1.92 eV exhibiting substantial PL polarization at room
temperature, which was comparable to that of samples pre-
pared by mechanical exfoliation (~40% at 300 K) [35]. The
limitation of this method lied on the random nucleation of
MoS2 crystals, leading to the presence of thicker zones and
influencing the uniformity of samples.

3.2.5. Direct synthesis of graphene/MoS2 composites
The intensive study and prosperous achievements on gra-

phene paved the way for the development of other 2D
graphene-like materials. Building van der Waals hetero-
structures based on these 2D blocks seems to be a leading
research topic in recent years [12]. Evidently, layer-by-layer
stacking is one of the most simple and straightforward
methods for heterostructures construction. However, interfa-
cial contamination would be an important factor to be
considered. How to reduce adsorbates on individual layer and
improve interface bonding becomes a bottleneck. Insulating
substrates, such as SiO2, Mica or sapphire, are always used for
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MoS2 preparation [31,34,44]. Recent studies show that gra-
phene itself can be a suitable substrate for MoS2 growth.
Yumeng Shi and his coworkers presented a method to prepare
MoS2/graphene heterostructures bonded van der Waals force.
MoS2 nanoflakes on the graphene surface were hexagonal,
with crystal size ranging from several hundred nanometers to
several micrometers [36]. Although there existed a little lattice
mismatch between graphene and MoS2, the gap could be well
accommodated within these heterostructures. The excellent
conductivity of graphene combined with the good catalytic
property of MoS2 paves way to develop a second generation of
graphene based nanostructures into a new era. In addition,
MoS2 films have the ambition to tackle the gapless problems
of graphene. Hence, making full use of their particular ad-
vantages would largely enhance properties of the hybrid
structures, broadening the range of applications in foreseen
electronic, optoelectronic, catalytic and even energy storage
fields. Following this trend and concept [37], continuous MoS2
films of varying thickness on epitaxial graphene was prepared
by Yu-Chuan Lin's group [38]. Very recently, Kathleen M.
McCreary's group reported a relatively continuous and uni-
form MoS2 single-layer films grown on large-area graphene,
and the size of MoS2/graphene heterostructures could be
centimeters, making this type of structures more practical and
controllable (Fig. 3f) [39]. In addition, Table 1 provides a
systematic summary of the CVD preparation of MoS2 not
mentioned above [40].
4. Applications

Due to the particular optical and electrical performance of
TMDCs, these 2D graphene-like has aroused expanding in-
terest until now. As one of the most typical existing TMDCs,
Table 1

Summary of the CVD preparation of MoS2.

Method Precursor Growth condition

Sulfurization of Mo

based compound

[41] MoO3, S (180 �C) Atmosphere,

650 �C
[42] MoO3 nanoribbons, S 850 �C

[43] MoO3, S Atmosphere,

700 �C
[44] MoO3, S (~100 �C) ~225 mTorr, 530 �C
[38] MoO3, S (~130 �C) 5 Torr, 670 �C

[39] MoCl5, S 2 Torr, 850 �C

Sulfurization of Mo

and Mo based oxides

[45] Mo film, S 6.0 � 10�4 mbar,

>700 �C

[46] MoO2 flakes, S (145 �C) Atmosphere,

850e950 �C
Thermal decomposition

of (NH4)2MoS4

[34,47] (NH4)2MoS4, S 1e500 Torr, 500e1

[36] (NH4)2MoS4 10 mTorr ~ atmosph
MoS2 itself has evolved into a vast studying topic, gradually
finding its applications in many related areas, such as tran-
sistors [24], photodetectors [48], solar cells [14], etc. How-
ever, due to the limitations in intrinsic structures, one simple
material is highly difficult to satisfy all basic properties and
functional performance in practical applications. For instance,
graphene owns outstanding electrical performance, while fails
in switch control due to its gapless band structure. On the
contrary, MoS2 could realize band engineering with the
modulation of its number of layers, whereas its electron
mobility is incomparable to that of graphene, making it
impossible to act as transparent electrodes [11]. Therefore,
fabrication of hybrid structures based on 2D materials by
taking advantages of the individual component is one of latest
research trends. The ultimate goal is to synthesize more su-
perior composites, achieving synergistic effect or structural
reinforcement. This part will focus on the application of
MoS2 based structures both in 2D and 3D areas, including the
basic theoretical guidance and synthesis approaches. Finally,
the applications of 2D hybrid heterostructures in FET,
memory devices, photodetectors, solar cells would be sys-
tematically introduced and 3D structures serving as electrodes
in HER and lithium ion battery are also covered. Table 2
summarizes the classification and potential applications of
2D van der Waals structures. Table 3 lists the applications of
3D MoS2 based structures in HER and lithium ion battery. We
also give detailed introduction to some of these structures as
follows.
4.1. 2D van der Waals heterostructures
Early in 2011, Yandong Ma's group has calculated that the
binding energy of per C atom binding to MoS2 is �23 meV
and the forming interlayer spacing between graphene and
Morphology Performance

Monolayer

Monolayer FET on/off ~6 � 106,

mobility ~4.3 cm2V�1 s�1

Monolayer FET on/off ~105e107,

mobility ~3e4 cm2V�1 s�1

Monolayer on Mica Superior optical property

Monolayer on graphene 103 improvement in

photoresponse compared

to MoS2
Mono- to few layers on

graphene

Mono- to few-layers P-type with an on/off current

ratio of ~103 and hole mobility

up to ~12.2 cm2V�1 s�1

MoS2 flakes in rhomboid

shape

FET on/off 104~106,

mobility 0.1e0.7 cm2V�1 s�1

000 �C 2e3 layers FET with a low threshold

voltage <1 V, high mobility

12.5 cm2V�1 s�1

ere, 400 �C Few layers on graphene



Table 2

Classification and introduction to the applications of 2D van der Waals structures (graphene: Gr).

Device MX2 Method Structure Mechanism Performance

FET [52] MoS2 Mechanical exfoliation MoS2-Gr Heterostructure Current on/off ~36

Memory device [53] MoS2 Mechanical exfoliation MoS2-Gr Heterostructure 104 difference between memory program and

erase states

[54] MoS2 Mechanical exfoliation Gr- MoS2 Heterostructure Responsivity 1 � 1010 A/W (130 K)

Photodetector [55] MoS2 Mechanical exfoliation MoS2
(chemical doping)

p-n junction EQE ~7000%; specific detectivity ~5 � 1010 J;

light switching ratio ~103

[56] MoS2, WS2 Mechanical exfoliation MoS2-WS2 Heterostructure Vertical transistor: photoswitching

Ratio 103; planar device: ON/OFF ratio >105,
electron mobility 65 cm2V�1 s�1,

photoresponsivity 1.42 A/W

[57] MoS2 Mechanical exfoliation n_Sie MoS2 n-n junction Photoresponsivity 7.2 A/W

[58] MoS2 Mechanical exfoliation,

CVD

Gr- MoS2 Heterostructure Responsivity 0~104 mA/W

[59] MoS2 CVD Aue MoS2 Heterostructure Broadband gain 13.3; detectivity ~1010 cm Hz1/2/W;

photoresponse rise time ~70 ms, fall time ~110 ms;

2 nm device responsivity 0.57 A/W (532 nm)；
working temperature of up to 200 �C

[60] MoS2 CVD Black Pe MoS2 p-n junction Photodetection responsivity 418 mA/W (633 nm)

Photovoltaic

device

[61] MoS2 Mechanical exfoliation Aue MoS2eAu

Pde MoS2ePd

Pde MoS2eAu

Schottky junction Pde MoS2eAu device Voc ¼ 0.1 V

[62] MoS2 Mechanical exfoliation Gr- MoS2- Gr Heterostructure EQE 55%; IQE 85%

[63] MoS2 Mechanical exfoliation MoS2-p_Si Heterostructure EQE 4%

[64] WSe2, MoS2 WSe2: CVD; MoS2
mechanical exfoliation

WSe2eMoS2 p-n junction Ideality factor 1.2；EQE 12%

[65] MoS2, WSe2 Mechanical exfoliation Gr-MoS2-WSe2- Gr p-n junction Max EQE 34% (532 nm)

[66] MoS2, WSe2 Mechanical exfoliation MoS2eWSe2 TypeⅡheterostructure EQE ~1.5%; PCE ~0.2%

[67] MoS2 CVD ITO- MoS2eAu Schottky junction PCE: 1.8% (220 nm MoS2)

[60] MoS2 CVD Black PeMoS2 p-n junction EQE 0.3%
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MoS2 is 3.32 Å. Due to the variation of on-site energy induced
by MoS2, band structure of graphene could be largely pre-
served in this hybrid structure while introducing a small band-
gap of 2 meV which was almost negligible [49]. Further
analysis indicated that this band gap was tunable by varying
Table 3

Applications of 3D MoS2 based structures in HER and lithium ion battery (graphe

Applications Structure Method

HER [72] MoS2/carbon nanofiber Template-directi

[73] MoS2/carbon cloth Template-directi

[74] MoS2/RGO paper Template-directi

[75] Vertically aligned MoS2/carbon fiber paper CVD (MoO3, S)

[76] MoS2 nanoparticles/carbon fiber paper CVD (MoO3, S)

[77] Vertically aligned MoS2/carbon nanofiber CVD (5 nm Mo

Lithium ion

battery

[78]MoS2/Gr L-cysteine-assiste

[15] Honeycomb-like MoS2/Graphene Foam Template-directi

[79] MoS2 microspheres Template-directi

[80] MoS2/CNT Glucose-assisted

[81] MoS2/Gr Solution phase m
the interlayer spacing, highlighting the prospect in designing
of devices with tunable bandgap and high electron mobility
simultaneously. In 2011, A. K. Geim proposed “van der Waals
heterostructures” on Nature (Fig. 4a) [12], showing a land-
scape for future development of 2D hybrid structures. Many
ne: Gr).

Performance

ng CVD Overpotential ~0.12 V, Tafel slope 45 mV/dec

ng solvothermal method Overpotential ~0.15 V, cathodic current

density 86 mA/cm2, Tafel slope 50 mV/dec

ng solvothermal method Overpotential ~0.19 V, Tafel slope ~95 mV/dec

Tafel slope 43e47 mV/dec

Overpotential 0.2 V, cathodic current density

200 mA/cm2, Tafel slope 62 mV/dec

) Overpotential �0.3 V, cathodic current density

100 mA/cm2, Tafel slope 83 mV/dec

d solution-phase method 100 mA/g current, specific capacity 1100 mAh/g,

no capacity fading after 100 cycles

ng solvothermal method BET: 182 m2/g; 200 mA/g current density,

discharge capacity 1235.3 mAh/g; 85.8%

retaining of the initial reversible capacity

after 60 cycles

ng solvothermal method 100 mA/g current, specific capacity 672 mAh/g

after 50 cycles

hydrothermal method 100 mA/g current rate, capacity 698 mAh/g

after 60 cycles

ethod 1000 mA/g current density, specific capacity

1040 mAh/g after 50 cycles



Fig. 4. 2D van der Waals heterostructures. (a) Schematic illustrations of Lego-like van der Waals heterostructures design and construction based on 2D layered

materials. (b) MoS2/graphene interface and Schottky barrier solar cell. M1 and M2 are low and high work function metals respectively. (c) Band alignment at a

MoS2/graphene interface. p-SB: hole Schottky barrier; Ef: Fermi energy; Ec: Conduction band bottom; Ev: Valence band top; EF,n and EF,p: Quasi-Fermi levels for

electrons and holes under illumination; Vmax: Maximum Voc. (d) Schematic diagram of a graphene-MoS2 hybrid phototransistor under light irradiation. (e)

Photocurrent of the graphene-MoS2 transistor exhibited in (d) for different optical power as a function of drain-source voltage (VDS). (f) Schematic illustration of

the plasma-treated MoS2 photovoltaic device and (g) J-V characteristics measured under illumination of AM1.5 (100 mW/cm2). (h) Schematic and (i) optical

images of the vertically stacked WS2/MoS2 heterostructures. (j) Typical plot of gating voltage versus source/drain current of a CVD-grownWS2/MoS2 bilayer, a

mechanically transferred WS2/MoS2 bilayer, a MoS2 bilayer and monolayer MoS2. (k) Schematic and (l) optical images of the WS2/MoS2 in-plane heterojunctions.

(m) Photovoltaic effect of the in-plane heterojunction. Inset is the typical IeV curve of the junction with (black) and without (red) illumination. Panel a reprinted

with permission from ref 12. Copyright 2013, Rights Managed by Nature Publishing Group. Panel b, c reprinted with permission from Ref. [50]. Copyright 2013

American Chemical Society. Panel d, e reprinted with permission from Ref. [58]. Copyright 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Panel f, g

reprinted with permission from ref 14. Copyright 2014 American Chemical Society. Panel h ~ m reprinted with permission from Ref. [69]. Copyright 2014, Rights

Managed by Nature Publishing Group.
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challenges were accomplished afterwards, pushing devices
into real practical applications. J. C. Grossman and his co-
workers confirmed the feasibility by studying the performance
of 1 nm-thick solar cell based on MoS2/graphene through first
principles calculations (Fig. 4b, c) [50]. First, MoS2 like
TMDCs monolayers could absorb 5e10% incident sunlight
within 1 nm in thickness, exceeding that of traditional semi-
conductors (GaAs and Si) more than one order of magnitude.
In addition, A type-II Schottky junction (Fig. 4c) within 1 nm
which would greatly facilitate separation and transport of
carriers in the stacking interfaces was constructed, exporting a
high power conversion efficiency (PCE) up to ~1%. Moreover,
MoS2/graphene solar cell demonstrated a power density of
0.25e2.5 mW/kg, which were higher by approximately 1e3
orders of magnitude than the best existing ultrathin solar cells
[50]. Further experimental observation proved the ultrafast
interfacial charge transfer in TMDCs stacking structures,
ensuring the effective charge collection and utilization in later
circuits [51], opening up the development for light detection
and harvesting in atomically thin devices.

Two primary approaches have been adopted to construct
devices based on 2D van der Waals heterostructures. One was
through layer-by-layer stacking and another was the direct
CVD preparation as mentioned above in Part 2. As of layer-
by-layer stacking, numerous achievements have been re-
ported. For examples, Hua Xu's group presented a high
responsivity 2D graphene-MoS2 hybrid phototransistor to be
continuously tuned from 0~104 mA/W by the gate voltage [58]
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(Fig. 4d, e). In 2014, Wenjing Zhang's group demonstrated a
photodetector with an extremely high photoresponsivity of
107 A/W based on graphene- MoS2, which could achieve a
photogain greater than 108 [68]. For direct CVD preparation,
one breakthrough was proposed by Kathleen M. McCreary and
his coworkers, which realized continuous and uniform MoS2
single-layer films growth on large-area graphene. Recently, P.
M. Ajayan's group reported the preparation of both vertically
stacked (Fig. 4h, i) and in-plane interconnected WS2/MoS2
heterostructures (Fig. 4k, l) through a convenient one-step
CVD growth [69]. The vertically stacked layers built a
typical type-II band structure, achieving an on/off ratio of up
to 106 together with the field-effect mobility as high as
15e34 cm2/(V$s), which exceeded the performance of a me-
chanically transferred WS2/MoS2 bilayer (Fig. 4j) [69]. For
the in-plane seamless p-n heterostructures, due to the strong
enhancement of localized photoluminescence effect, an open
circuit voltage (Voc) of 0.12 V with an short circuit current (Isc)
of 5.7 pA could be generated, which exhibited great potential
to be used as atomically thin solar cells (Fig. 4m) [69]. Sunjin
Wi's group demonstrated MoS2 based solar cell exhibiting a
superior PCE up 2.8% with short circuit current density (Jsc)
of 20.9 mA/cm2 (Fig. 4f, g) [14].
Fig. 5. (a) Schematic solvothermal synthesis and (b) SEM image of the MoS2/RG

catalysts. (e) Durability test for the MoS2/RGO hybrid catalyst. (f) Typical current d

read-erase-read” cycle (Inset: schematic structure of the memory device). (g) SEM

Panel a~e reprinted with permission from ref 16. Copyright 2011 American Chem

WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Panel g, h reprinted with p

KGaA, Weinheim.
4.2. 3D MoS2 based structures
For 2D heterostructures, the range of applications was
mainly focused on electronic and optoelectronic devices.
While for applications as supercapacitor, lithium ion battery or
HER, design of 3D self-assembled structures were needed
generally. The tunable bandgap of MoS2 indicates they could
achieve photoresponsivity over a wide range from ultraviolet
to infrared wavelengths with high stability. Moreover, the
abundant metallic edges of MoS2 could facilitate catalytic
activity. Besides, MoS2 with suitable interlayer spacing pro-
vides a convenient structure for ions accommodation. Never-
theless, the electrical conductivity and cycling stability of
MoS2 electrodes remain challenging. Fortunately, these two
properties could be fully displayed by carbonaceous materials,
such as carbon nanotubes (CNT), graphene, or even other
organic conducting polymers. They could provide conductive
bones for charge separation and transport. Similar to the
intention of 2D building blocks design, constructing 3D
structures based carbon materials and MoS2-like TMDCs are
of great significance.

The ways to assemble 3D macrostructures include sol-
vothermal synthesis, template-directing method and
O hybrid. (c) Polarization curves (d) corresponding Tafel plots with several

ensity-voltage (JeV) plot of an ITO/MoS2-GO/Al memory device in a “write-

image and (h) Cycling stability of MoS2/3D graphene networks composite.

ical Society. Panel f reprinted with permission from ref 70. Copyright 2013

ermission from Ref. [71]. Copyright 2013 WILEY-VCH Verlag GmbH & Co.
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combination of both. Till now, MoS2 and graphene based 3D
structures are usually used in the fields of HER and lithium ion
battery. Yangguang Li's synthesized MoS2 nanoparticles on
reduced graphene oxide (RGO) sheets through a selective
solvothermal method (Fig. 5a, b) [16]. Due to MoS2's superior
electrical coupling to graphene sheets together with its abun-
dant highly exposed edges, the as-prepared MoS2/RGO hybrid
catalyst exhibited competitive HER activity with a small over-
potential of ~0.1 V, large cathodic currents and a smaller Tafel
slope (41 mV/dec) (Fig. 5cee) [16]. In 2013, Hua Zhang's
group adopted MoS2-graphene oxide (GO) nanosheets as the
active layer for memory devices under low-energy consump-
tion (Fig. 5f) [70]. The MoS2-GO film based devices showed
rewritable nonvolatile memory with low switching voltage of
less than 1.5 Vand high on/off ratio to be about 102. The same
group prepared MoS2-coated 3D graphene networks through
CVD method (Fig. 5g) [71]. By taking full advantage of the
superior conductivity and high surface area of interconnected
3D graphene networks, together with the excellent electrical
contact between MoS2 and graphene, lithium ion batteries
based on this composite displayed reversible capacity of
877 mAh/g at current densities of 100 mA/g during 50th cycle,
which achieved enhanced cycling performance than that of
simple MoS2 based devices (Fig. 5h) [71].

5. Conclusion and outlook

After so many years' intensive exploration, graphene-
related research has entered into a mature era. However,
layered MoS2 has been triggering a new wave of research and
far from being exhausted. Moreover, there exists massive
potential to broaden this area by designing and producing 2D
or 3D hybrid components by combining graphene and
graphene-like 2D blocks. Recently, stable preparation high
quality MoS2 in large area for applications in industrial-scale
is still challenging. Research on van der Waals hetero-
structures reassembling has emerged over the past three years,
while the interfacial contact between each building layer needs
to be further optimized. In addition, band engineering of both
graphene and MoS2, achieving composite constructions with
superior electrical performance and tunable band structure, is a
leading topic in the near future. According to the present
theoretical basis, many experimental evolutionary results have
been obtained at the time of writing. To put the existing
flexible optoelectronic and energy storage devices into prac-
tical and industrial applications, the most feasible method and
technology are needed to be further investigated.
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