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Abstract

We find a (nonlocal) gauge where the wavefunction renormalization constant does not get any corrections for all m
in the hard-dense loop approximation. In this gauge, we solve the Schwinger–Dyson equations for the diquark cond
dense QCD to calculate the Cooper-pair gap. We determine not only the exponent but also the prefactor of the gap i
independent way. We find that the higher order corrections increase the gap only by about 1.6 times to the leading or
Coulomb gauge.
 2003 Published by Elsevier B.V.

PACS: 12.38.Aw; 12.38.Mh; 11.15.Ex

Matter at extreme density is known to be a color superconductor [1], quarks forming Cooper pairs t
a gap at the Fermi momenta. The properties of color superconductor are intensively studied recent
asymptotic density [2], where quarks interact weakly due to asymptotic freedom in quantum chromody
(QCD). However, the study beyond the leading order has been hindered by calculational difficulties.

Since superconductors are characterized by the Cooper-pair gap or the minimum energy to excite a
quark and a hole at the Fermi momenta, it is quite important to determine the size of the gap accurately. By
the Schwinger–Dyson (SD) equations, the gap at the asymptotic density has been found to be

(1)∆0 � b
µ

g5
s

exp

(
− c

gs

)
,

where the 1/gs power in the exponent is due to the long-range interaction in dense QCD. The constantc in the
exponent is gauge-independent and is determined by the long-range interaction mediated by the magnet
unscreened at high baryon density. In the hard-dense loop (HDL) approximation, it is known to bec = 3π2/

√
2 [3].

The short-range interaction mediated by the Debye-screened electric gluons contributes only to the p
Among the negative fifth power of the coupling in the prefactor, the third is due to the screened electric
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while the magnetic gluons contribute the remaining. In the leading order analysis of the SD equation [4
numerical prefactorb is found to be

(2)b = 27π4
(

2

Nf

)5/2

e3ξ/2+1,

whereNf is the number of quark flavors andξ is the gauge-fixing parameter.
The result Eq. (2) is gauge-dependent, since all subleading contributions that lead to logarithmic dive

as in the BCS superconductivity are not taken into account. Being a physical observable, the gap∆0 should be
gauge-independent. However, if one sums the contributions partially, the result is often gauge-depend
therefore need to calculate the subleading corrections to obtain the gauge-independent gap. Some of the s
corrections like the finiteness of the quasiquark life in medium [6], the running effect of the strong coupli
and the quark self-energy [8,9] have been studied.

In this Letter we determine accurately the contributions to the prefactor, coming from the vertex correctio
the wavefunction renormalization for quarks, since these are the remaining gauge-dependent contributio
prefactor and, if summed up, we should get a gauge-independent prefactor.

We first try to find a (nonlocal) gauge [10] where the quark wavefunction is not renormalized for all mom
Z(p) = 1. In this gauge we then solve the SD equations to find the Cooper-pair gap, paying special atte
the Ward–Takahashi identity. This way of calculating higher order corrections in the SD analysis has been
extremely useful in dynamical mass generation of(2 + 1)-dimensional quantum electrodynamics and in oth
since the higher order corrections vanish exactly [11,12].

Unlike ordinary electron superconductors, without additional interaction the quark–quark scattering is at
in the color antitriplet channel, where the color flux energy is lowered. By the Cooper theorem, diquark op
of opposite momenta therefore develop a condensate in quark matter, breaking the color gauge symmetry

(3)
〈
ψ(x)ψ̄c(x)

〉 = K(pF ),

where the charge-conjugated field is defined as(ψc)i(x) = Cij ψ̄j (x). The matrixC satisfiesC−1γµC = −γ T
µ and

i, j are Dirac indices.
To calculate the condensate, we introduce a Nambu–Gorkov fieldΨ (x) ≡ (ψ(x),ψc(x))

T. The inverse
propagator for the Nambu–Gorkov field is then given as

(4)S−1(p) = −i

(
a(p)

[
(p0 + µ)γ 0 + b(p)/�p] −∆(p)

−γ 0∆†(p)γ 0 a(p)
[
(p0 − µ)γ 0 + b(p)/�p]

)
,

wherea(p), b(p) denote the wave function renormalization constants and∆(p) denotes the Cooper-pair gap a
momentump. Notice that the time and spatial components of quark wavefunction renormalize differently sin
Lorentz symmetry is broken in quark matter.

We study the Schwinger–Dyson equation for the Nambu–Gorkov propagator, following the notations in [
gap equation in dense QCD takes a following form (see Fig. 1)

(5)∆(p0) = g2
s

c2

∫
dq0

∆(q0)√
q2

0 + ∆2

[
(1+ η) ln

(
µ

|p0 − q0|
)

+ lnb + ζ

]
.

Fig. 1. The triangle denotes the Cooper-pair gap and the blobs higher-order corrections.
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Fig. 2. The solid line denotes quarks and the curly lines gluons.

The first term in Eq. (5) comes from the magnetic gluons and gives the leading contribution. The consta
ln b, is due to the Debye screened electric gluons and the gauge fixing terms. The higher-order terms, denη
andζ , are in general given in powers of coupling constant and energy asgl

s

[∆,q0
µ

]m[
ln

(∆,q0
µ

)]n
. In our calculation

q0 ∼ ∆. The higher-order corrections are in general suppressed by powers of coupling constant. Howev
the gap depends on the coupling, the logarithmic corrections might make the higher-order corrections com
to the leading term. We examine the two-loop corrections to the gap equation in detail.

In general, the SD equations are infinitely coupled equations for the 1PI functions. However, some of th
related by Ward–Takahashi (WT) identities. The identity we are going to use in solving the gap equation is
relates the quark two-point functions with the vertex functions,

(6)∂µ
z

〈
ja
µ(z)ψ(x)ψ̄(y)

〉 = 〈
∂µja

µ(z)ψ(x)ψ̄(y)
〉 − δ(z − x)

〈
T aψ(x)ψ̄(y)

〉 + δ(z − y)
〈
ψ(x)ψ̄(y)T a

〉
.

The identity reads in the momentum space as

T aa(p)
[
(p0 + µ)γ 0 + b(p)/�p] − a(p′)

[
(p′

0 + µ)γ 0 + b(p′)/�p′]T a

(7)= (p − p′)µΛµ(p,p′)T a + Γ a(p,p′;−p − p′),
where

(8)Γ a(p,p′; k)δ(k + p + p′) =
∫

z,x,y

ei(z·k+x·p+y·p′)〈∂µja
µ(z)ψ(x)ψ̄(y)

〉
.

The one-loop vertex correction has two parts (see Fig. 2).
As in quantum electrodynamics, the first part (Fig. 2(a)) is related to the correction to the wavefu

renormalization constant as

(p − p′)µΛ(a)µ(p,p′) = a(p)
[
(p0 + µ)γ 0 + b(p)/�p] − a(p′)

[
(p′

0 + µ)γ 0 + b(p′)/�p′],
where we suppressed the color indices. We see thatΛ(a)µ = γ µ for the nonlocal gauge where the wavefunct
renormalization constants area(p) = 1 = b(p). (This result is similar to the condition obtained by Kugo a
Mitchard in the SD analysis of chiral symmetry breaking in QCD, using vector Ward identities [13].) Ther
if we find a gauge wherea(p) = 1 = b(p), not only the corrections from the wavefunction renormalization
also those from the vertex corrections from Fig. 2(a) are absent. This simplifies significantly the calculatio
higher order corrections to the Cooper-pair gap, since the vertex correction to the gap, coming from the
diagram, Fig. 2(b), does not contribute to the prefactor,b, in Eq. (1). To see this, we note the leading contributi
to the vertex comes from when both the internal and the external gluon lines are magnetic. Furthermore,
contribution to the gap occurs when the external lines carry small momenta. For small external gluon an
momenta (q, | �p| − µ, | �p′| − µ ∼ ∆), the vertex correction due to the diagram Fig. 2(b) is given as, using the
density effective theory of QCD [5],

(9)Ia
µ � g3

s

∫
l · V

l2‖ + ∆2

γ0f
abcT bT c[(c1l

i‖ + c2l
i⊥ + c3p

i + c4p
′ i )gµi + c5(2l − p − p′)µ]

[|�l − �p|2 + πM2|l0 − p0|/(2|�l − �p|)][|�l − �p′|2 + πM2|l0 − p′
0|/(2|�l − �p′|)] ,
l
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where c1 and c5 are 1+ O(∆2/l2⊥) while all other ci ’s are O(∆2/l2⊥). The screening massM is given as
gsµ

√
Nf /(2π) for Nf light quarks in the hard-dense-loop (HDL) approximation. Therefore, we find u

integration the correction becomes

(10)Ia
µ ∼ ig3

s γ0VµT
a

(
∆

M

)2

ln(∆/µ),

which is indeed negligible compared to the constant term, lnb, in the gap equation (5).
Now, we look for a nonlocal gauge where the wave function constants remain unrenormalized,a(p) = 1 = b(p).

At this gauge, the vertex is bare,Λµ = γ µ, and the SD equation leads to an equation for the (nonlocal) gauge-
parameter, given as

(11)
∫

d4q Dµν(q − p)Tr
(
γ 0γ µΛ+

q γ 0γ νΛ−
p

) (q0 + |�q| − µ)

q2
0 − (|�q| − µ)2 −∆2

= 0,

where the antiquarks are projected out by the positive and negative energy state projectors, defined as

(12)Λ±
p ≡ 1

2

(
1± �α · �p

| �p|
)
.

The (Higgsed) gluon propagator is given in the HDL approximation as1

(13)Dµν(k) = AO(1)
µν + BO(2)

µν + CO(3)
µν ,

where in the weak coupling limit,|k0| � |�k|,

(14)A = |�k|
|�k|3 + M2

0∆ + πM2|k4|/2
, B = 1

k2
4 + �k2 + 2M2

, C = ξ

k2
4 + �k2

,

whereM0 is Higgs-like gluon mass∼ gsµ/(2π) [4]. The polarization tensors are defined as [4]

(15)O(1) = P⊥ + (u · k)2

(u · k)2 − k2P
u, O(2) = P⊥ − O(1), O(3) = P ‖,

whereuµ = (1, �0) and

(16)P⊥
µν = gµν − kµkν

k2
, P ‖

µν = kµkν

k2
, P u

µν = kµkν

k2
− kµuν + uµkν

(u · k) + uµuν

(u · k)2
k2.

Contracting the tensors, we get

O1
µν Tr

(
γ 0γ µΛ+

q γ 0γ νΛ−
p

) = −2(1+ t)
q2 + p2 − qp(1+ t)

q2 + p2 − 2qpt
,

O2
µν Tr

(
γ 0γ µΛ+

q γ 0γ νΛ−
p

) = 1− t,

(17)O3
µν Tr

(
γ 0γ µΛ+

q γ 0γ νΛ−
p

) = −(1− t)
(p + q)2

q2 + p2 − 2pqt
,

wherep = | �p|, q = |�q|, andt = �p · �q/(pq).
Now, we assume the (nonlocal) gauge fixing parameterξ(k) has only temporal dependence, that is,ξ(k) � ξ(k0),

and would like to have (11) satisfied already at angular integration. This gives

(18)D +E +F = 0,

1 For two flavor color superconductors, some of the gluons are not Higgsed. However, since the Meissner effect is subleading, its
does not affect our calculation.
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D = q2

1∫
−1

dt A(p4 − q4, �p − �q)
[
−2(1+ t)

q2 + p2 − qp(1+ t)

q2 + p2 − 2qpt

]

≈ 2

3
ln

[
(2µ)3

(q −p)3 + M2
0∆ + πM2|p4 − q4|/4

]
,

E = q2

1∫
−1

dt B(p4 − q4, �p − �q)(1− t) ≈ 1,

(19)F = q2

1∫
−1

dt C(p4 − q4, �p − �q)
[
−(1− t)

(p + q)2

q2 + p2 − 2pqt

]
≈ −ξ ln

[
(2µ)2

(p − q)2 + |p4 − q4|2
]
.

In this calculation, we takep,q � µ, since the quarks are near the Fermi surface. We find the solution of Eq

(20)ξ ≈
2
3 ln (2µ)3

M2
0∆+πM2|p4−q4|/2

ln (2µ)2

|p4−q4|2
≈ 1

3
,

with |p4 − q4| ∼ ∆.
Plugging Eq. (20) into the leading-order expression for the gap Eq. (2), we get

(21)∆0 = 27π4
(

2

Nf

)5/2

e3/2 exp

(
− 3π2

√
2gs

)
.

We see that the vertex and the wavefunction correction increase the gap by about two thirds, compare
leading-order gap at the Coulomb gauge [14,15],

(22)∆0 = e0.5∆0(ξ = 0).

In conclusion, we find that the wavefunction renormalization vanish at a nonlocal gauge-fixing par
ξ � 1/3. By the Ward–Takahashi identity, the QED-like vertex correction vanishes at this gauge as well. Si
remaining one-loop vertex corrections are suppressed for small external momenta, which has a major con
to the gap equation, both the wavefunction correction and the vertex correction to the prefactor of the gap
at this nonlocal gauge. As the gap is independent of the choice of gauge, we conclude that the next-to-lead
corrections due to the vertex renormalization and the wavefunction renormalization increase the leading-o
at the Coulomb gauge by about two thirds.
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