Cyclic GMP phosphodiesterase from bovine retina

Amino acid sequence of the α-subunit and nucleotide sequence of the corresponding cDNA

Yu.A. Ovchinnikov, V.V. Gubanov, N.V. Khramtsov, K.A. Ischenko, V.E. Zagranichny, K.G. Muradov, T.M. Shuvaeva and V.M. Lipkin
Shemyakin Institute of Bioorganic Chemistry, USSR Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117871 GSP Moscow V-437, USSR

Received 27 August 1987

Abstract

The α-subunit primary structure of cyclic GMP phosphodiesterase has been determined by parallel analysis of the protein amino acid sequence and the corresponding cDNA nucleotide sequence. The enzyme α-subunit contains 858 amino acid residues, its N-terminal amino group being acetylated. The partial primary structure of the enzyme β-subunit has also been elucidated. A significant homology has been found between the α - and β-subunits of cGMP phosphodiesterase.

Cyclic GMP phosphodiesterase; Amino acid sequence; cDNA cloning; Nucleotide sequence; (Bovine retina)

1. INTRODUCTION

Cyclic GMP phosphodiesterase (PDE) as well as rhodopsin and transducin participates in transduction and amplification of the visual signal [1]. PDE from bovine retina consists of three subunits: α, β and γ, with molecular masses of 88,84 and 10 kDa , respectively [2]. The enzyme catalytical subunits are α and β, the γ-subunit being an internal inhibitor of the protein enzymatic activity [3,4].

The protein amino acid sequence and the corresponding cDNA nucleotide sequence were

Correspondence address: Yu.A. Ovchinnikov, Shemyakin Institute of Bioorganic Chemistry, USSR Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117871 GSP Moscow V-437, USSR

The nucleotide sequence presented here has been submitted to the EMBL/GenBank database under the accession number Y00699
analyzed in parallel to solve the enzyme γ-subunit primary structure [5]. The structure of large subunits was studied similarly.

The present paper describes determination of the amino acid sequence of PDE α-subunit (preliminary results published in [6]).

2. MATERIALS AND METHODS

The enzyme was isolated, and the γ-subunit was separated from α - and β-subunits as described in [5]. The mixture of α - and β-subunits was hydrolyzed with cyanogen bromide. The fragments obtained were fractionated by gel-filtration (Toyopearl HW-40 in $10 \% \mathrm{HCOOH}$). 10 homogeneous peptides were isolated from the low-molecular-mass fractions by HPLC on a reversephase column (Ultrasphere ODS, acetonitrile gradient in trifluoroacetic acid). The mixture of high-molecular-mass fragments was additionally digested with trypsin. Then the peptides were fractionated by gel-filtration and separated by HPLC
on Ultrasphere ODS. Their amino acid sequence was established according to [5].
cDNA clone libraries in vector pUC 8 were produced by a poly(A) ${ }^{+}$fraction of RNA from bovine retina as described in [5]. To initiate synthesis of the first cDNA chain use was made of: (i) oligo(dT) ${ }_{12-18}$; (ii) specific oligodeoxyribonucleotide probes; (iii) statistic mixture of primers (DNA hydrolysate with an average size of 10-20 nucleotides).

Oligodeoxyribonucleotide probes were synthesized by the phosphoramidite method on an Applied Biosystems synthesizer. The nucleotide sequence of DNA fragments was determined according to Maxam and Gilbert [7] and Sanger et al. [8]. The strategy of determining the nucleotide sequence was analogous to that used in [9].

3. RESULTS AND DISCUSSION

The attempts to elaborate a preparative method for separating α - and β-subunits failed due to similarity of their physicochemical properties. To study the primary structure a mixture of these subunits was hydrolyzed with cyanogen bromide and trypsin. Amino acid sequences of the peptides underlay in synthesizing a number of nucleotide probes. The former were used for screening the bovine retina cDNA clone library obtained by priming the first cDNA chain with oligo(dT). The screening with probe I (5^{\prime}-CATGAGGGTCTCGT

CCAT-3') corresponding to cyanogen bromide peptide Asp-Glu-Thr-Leu-Hse allowed identification of three clones: $\alpha \times 55, \mathrm{p} \alpha 154$ and $\mathrm{p} \alpha 225$ (fig.1).

The α - and β-subunits were analytically separated by SDS-electrophoresis in polyacrylamide gel according to Laemmli to determine the PDE subunit to which the nucleotide cDNA sequence of the isolated clones corresponded. The subunits were cleaved directly with cyanogen bromide in gel strips without pre-elution. Two peptides whose amino acid compositions and N terminal residues corresponded exactly to sequences Asp-Glu-Thr-Leu-Met and Asn-Lys-Leu-Glu-Asn-Arg-Lys-Asp-Ile-Phe-Gln-Asp-Met, deduced from the nucleotide sequence of the fragments of cDNA clones $\mathrm{p} \alpha 55, \mathrm{p} \alpha 154$ and $\mathrm{p} \alpha 225$, were isolated by HPLC from the α-subunit hydrolysate. These peptides were not found in the β-subunit hydrolysate. Thus the cDNA of the isolated clones encoded the PDE α-subunit.

To isolate clones containing cDNA of the $\alpha-$ subunit N -terminal part, a cDNA clone library was created using unique oligodeoxyribonucleotide probes I, II and III for priming cDNA synthesis, their structures corresponding to the 5 'terminal DNA region of clone p $\alpha 154$ (fig.1).

Analysis of 100000 recombinants revealed a great number of clones yielding a positive hybridization signal with probes II and III. Clones $\mathrm{p} \alpha 17$ and $\alpha<40$ were primarily chosen, but determination of their structure showed that neither of

Fig.1. Location of cDNA fragments of the isolated clones in the restriction map of the PDE α-subunit cDNA. The cDNA part encoding the α-subunit is shaded. Black rectangles indicate nucleotide probes used in cDNA cloning.
 Ac-Gly-Glu-Val-Thr-Ala-Glu-Glu-Val-Glu-Lys-Phe-Leu-Asp-Ser-Asn-Val-Ser-Phe-Ala-Lys-Gin-Tyr-Tyr-Asn-Leu-Arg-Tyr-Arg-Ala-Lys-
 Val-1le-Ser-Asp-Leu-Leu-Gly-Pro-Arg-Glu-Ala-Ala-Val-Asp-Phe-Ser-Asn-Tyr-His-Ala-Leu-Asn-Ser-Val-Gilu-Glu-Ser-Glu-1le-Ile-
 274- 363 TTC GAC CTC CTG CGG GAC TTI CAG GAC AAC CIG CAI GC ${ }_{90}$ Phe-Asp-Leu-Leu-Arg-Asp-Phe-Gin-Asp-Asn-Leu-Gln-Ala-Glu-Lys-Cys-Yal-Phe-Asn-Yal-Met-Lys-Lys-Leu-Cys-Phe-Leu-Leu-G1n-Ala-

91-120
454- 543
121-150
544-633
151-1
634-7
181-
2 OH
814-
241-
904- 9
271-
994-1
301-
1084-11
331-
$1174-12$
$361-3$
36.

1264-13
391-
1354-1 421-
1444-1 451.

1534-1 $481-$

1624-1713 CCC CTG ACG GAA CTG GAG CTG GTG AMA TGT GGA ATT CAG ATG TAC TAT GAG CTC AAA GTG GIG GAT AAA TTT CAC ATT CCT CNG GAG GCC 511-540 Pro-Leu-Thr-Glu-Leu-G1u-Leu-Val-Lys-Cys-Gly-Ile-Gln-Met-Tyr-Tyr-Glu-Leu-Lys-Yal-Val-Asp-Lys-Phe-His-Ile-Pro-Gin-Glu-Ala-
1714-1803 CTG GTG GGG TTC ATG TAT TCC CTG AGC AaG GGC TAC CGC AGG ATC ACC TAC CAC AAC TGG CGG CAC GGC TTC AAC GTG GGG CAG ACC ATG 541-570 Leu-Val-Arg-Phe-Met-Tyr-Ser-Leu-Ser-Lys-Gly-Tyr-Arg-Arg-1le-Thr-Tyr-His-Asn-Trp-Arg-His -Gly-Phe-Asn-Val-Gly-Gin-Thr-Met-
1804-1893 TTC TCC TTG CTG GTG ACC GGA AMG TIG AAG CGA TAC TTC ACA GAC CTG GAG GCC TTG GCC ATG GTC ACC GCC GCC TTC TGC CAT GAC ATT 571-600 Phe-Ser-Leu-Lev-Vol-Thr-Gly-Lys-Leu-Lys-Arg-Tyr-Phe-Thr-Asp-Leu-Glu-Ala-Leu-Ald-Met-Val-Thr-Ala-Ala-Phe-Cys-His-Asp-Jle
 601-630 Asp-His-Arg-Gly-Thr-Asn-Asn-Leu-Tyr-Gln-Met-Lys-Ser-Gln-Asn-Pro-Leu-Ala-Lys-Leu-His-Gly-Ser-Ser-1le-Leu-Glu-Arg-his-His-
1984-2073 TTG GGG TT GGT AAA ACA CIG TTG AGA GAT GAG AGC CTA AAT ATC TTT CAG AAC CTC AAT CGC AGG CAG CAC GAG CAT GCA ATC CAC ATG
2074-21 661-

2164-2 691-

2254-2
721-
2344-2
751-
2434-25
$781-8$
781-810
2524-261 2511-84

2614-27
841-8
2714-283 3190-3201

TTTCAGCTGTGAGAACTITTTATTGAATGACAACCAACATTTTAGCTTTCACAGACICAAACATTAGTGCCAGACTCACCTGCTTACCTAGATCTTTTGTGTTCTHAGACTTTCATIT
TATAGTACACAAATATGCAATCATTCACAAAAGTAGAGATTACACATGAATTGACTCCTACCCATCATGCAGATTCTAACATCAGGATTTTTGCTGCATTTGCTTCATCTGTCCTTT TATAGTACACMAATATGCAATCATTCACAAAGTAGAGATTACACAMTGAATTGACTCCTACCCATCATGCAGATTCTAACATCAGGATTTTTGCTGCATTTGCTTCATCTGTCCTTT 3071-3189 TACAGTTTTCTTTTTTTCTTAGCTGAAATATTTAAAAACAAACTCCAGGCATATCATTGACTCCTCCATTACGCACCCCTAAGATGAATGGGTGTCTTCAAACACAATCACATCATGA Leu-Glu-Phe-Gly-Lys-Thr-Leu-Leu-Arg-Asp-Giu-Ser-Leu-Asn-1le-Phe-Gin-Asn-Leu-Asn-Arg-Arg-Gln-His-Glu-His-Ala-Ile-His-Met-
ATG GAC ATC GEG ATC ATT GCT ACA GAC CTT GCC TTG TAT TGC AAG AAA AGG ACG ATG TTC. CAA AAG ATC GTG GAT CAG TCT AAG ACA TAC Met-Asp-Ile-Ala-Ile-Ile-Ala-Thr-Asp-Leu-Ald-Leu-Tyr-Cys-Lys-Lys-Arg-Thr-Met-Phe-Gin-Lys-Ile-Val-Asp-GIn-Ser-Lys-Thr-Tyr-
gag act cag cag gag tgg aca cag tac arg atg ctg gat cag aca cgg afg gaa att gic atg gcc atg atg aig acc gcc igt gat cic Glu-Thr-G1n-Gin-Glu-Trp-Thr-Gln-Tyr-Met-Met-Leu-Asp-Gln-Thr-Arg-Lys-Glu-Ile-Val-Met-Ald-Met-Met-Met-Thr-Ala-Cys-Asp-LeuTCA GCC ATC ACC AAG CCT TGG GAG GTG CAG AGC AAG GTG GCT CTG CTG GTT GCT GCT GAA TIC TGG GAA CAA GGT GAC GTG GAG GGC ACG Ser-Ala-Ile-Thr-Lys-Pro-Trp-Glu-Val-Gln-Ser-Lys-Val-Ala-Leu-Leu-Val-Ala-Ala-Glu-Phe-Trp-Glu-Gln-Gly-Asp-Leu-Glu-Arg-ThrGTG CTG CAA CAG AAT CCC ATT CCC ATG ATG GAC AGA AAC AAG GCG GAT GAA CTC CCT AAG CTT CAG GTC GGC TTC ATC CAC ITT GTT TEC Val-Leu-Gin-Gln-Asn-Pro-Ile-Pro-此-Met-Asp-Arg-Asn-Lys-Ala-Asp-Glu-Leu-Pro-Lys-Leu-Gin-Yal-Gly-Phe-Ile-Asp-Phe-Val-CysACC TTT GTC TAC AAG GAA ITC TCC CGT IIC CAC gAG GAG ATC ACI CCC ATG CTA GAT GGG ATT ACC AAC AAC CGC AAG GAG TGG MAA GCG Thr-Phe-Val-Tyr-Lys-Glu-Phe-Ser-Arg-Phe-His-Glu-Glu-Ile-Thr-Pro-Met-Leu-Asp-Gly-Ile-Thr-Asn-Asn-Arg-Lys-Glu-TrD-Lys-AlaCTT GCT GAT GAG TAT GAG ACC AAG ATG AAG GGG CTG GAG GAG GAG AAG CAG AAA CAG CAG GCA GCC AAC CAA GCA GCC GCA GGA AGT CAA Leu-Ala-Asp-Glu-Tyr-Glu-Thr-Lys-Met-Lys-Gly-Leu-Glu-Glu-Glu-Lys-Gin-Lys-Gin-G1n-Ala-Ala-Asn-Gin-Ala-Ala-Ala-Giy-Ser-GinCAC GGC GGA AAG CAA CCT GCG GGL GGG CCT GCA TCC AAG TCT TGC TGC GTC CAA TAG CAGAGCGAGGACCCAGGGCCCAGGCCGGCCCACCCTTCACCGA H1s-Gly-Gly-Lys-G1n-Pro-Gly-Gly-Gly-Pro-Ald-Ser-Lys-Ser-Cys-Cys-Val-Gln TER
CGAGAGCACCCAGGCCAGTGGGGACCATACGCCACCTGCTCGAGAAGTCAGAGTTGTGGGGTTTGAAACTGAAAGAGMATTTAGTTTACAICTTTCCTAGTGGCTTTCMACCCTCTT tcecatgccaca

Fig.2. Nucleotide sequence of cDNA encoding the α-subunit of cyclic GMP phosphodiesterase from bovine retina, and the corresponding protein amino acid sequence. Amino acid sequences established by the α-subunit peptide analysis are underlined.
them contained a DNA region coding for the α subunit N -terminal sequence. In search of such clones the cDNA 5^{\prime}-region of clone p $\alpha 17$ structure was used for synthesizing two new oligodeoxyribonucleotide probes: IV and V (fig.1). These were utilized to screen a specific cDNA clone library. As a result, clones $\mathrm{p} \alpha 10, \mathrm{p} \alpha 14$ and $\mathrm{p} \alpha 46$ were identified with the cDNA fragments sought.

To find the clones encoding the α-subunit Cterminal part use was made of probes VI and VII to screen the clone library created by statistic priming of the cDNA synthesis. Clones p $\alpha 24$ and p $\alpha 30$ were isolated (fig.1). Determination of the nucleotide sequence of the isolated clones allowed the reconstitution of the α-subunit cDNA sequence (3201 bp) (fig.2).

Triplet ATG (91-93) is the initiation codon of the PDE α-subunit, since on the one hand, it is the first ATG-codon located within the translation frame behind terminator TAG (70-72) and, on the other, it is a constituent of the PuCCATG sequence typical of initiation sites [10].

A peptide with a blocked N-terminal amino group was isolated from a tryptic hydrolysate.

Fig.3. Homologous segments of the amino acid sequence of the cyclic nucleotide phosphodiesterases. α - LgS and β-LgS, α - and β-subunits of the light-dependent cyclic GMP phosphodiesterase from bovine retina; cGS, cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine heart; $\mathrm{CaS}, \mathrm{Ca}^{2+} /$ calmodulin stimulated cyclic nucleotide phosphodiesterase from bovine brain; Dro, cAMP-specific phosphodiesterase from Drosophila melanogaster; Yea, cyclic nucleotide phosphodiesterase from yeast (Saccharomyces cerevisiae).

Amino acid and mass spectrometry analyses showed the peptide to correspond to the N terminal peptide ($1-10$, fig. 2) of the α-subunit, with the N -terminal amino group being acetylated. Thus, upon α-subunit post-translation modification the methionine N -terminal residue is cleaved (-1 , fig.2) and the glycine residue next to it is acetylated. The PDE α-subunit amino acid sequence deduced from the cDNA nucleotide sequence contains 858 amino acid residues (fig.2) with a molecular mass of 99261 Da . The structure is in perfect accord with the amino acid sequences of a large number of peptides from cyanogen bromide and tryptic hydrolysates.

Comparison of cDNA structures of the clones revealed some point differences, that sometimes led to distinctions in the amino acid sequences. For example, there were 4 clones isolated coding for methionine in position 380 and 2 for valine.

A series of clones encoding the β-subunit of the enzyme was also isolated from the clone libraries. Their structural analysis made it possible to establish over 70% of the protein amino acid sequence.

The amino acid sequences of these two subunits display close homology that, apparently, testifies to the existence of a common precursor.

Comparison of the α-subunit amino acid sequence from bovine retina with the known partial amino acid sequences of cyclic nucleotide phosphodiesterases from other sources [11] revealed close homology between the segments of the peptide chain of the α-subunit (535-671) and (719-778) adjoining the C-terminal and analogous segments of other phosphodiesterases located in different parts of polypeptide chains (fig.3). So the catalytical center in the α-subunit of cGMF phosphodiesterase is presumed to be located in the Cterminus of the molecule, while regulatory regions interacting with the γ-subunit of the enzyme and transducin are likely to be in the N -terminal part.

ACKNOWLEDGEMENTS

The authors are greatly indebted to N.B. Akhmedov, I.A. Vasilevskaya, T.V. Rakitina, N.V. Atabekova, A.A. Barinov, N.S. Bystrov, I.V. Severtsova, E.A. Feschenko, I.I. Khoroshilova, Yu.F. Yamnikova and A.N. Obukhov for their participation in the work.

REFERENCES

[1] Fung, B.K.-K., Hurley, J.B. and Stryer, L. (1981) Proc. Natl. Acad. Sci. USA 78, 152-156.
[2] Baehr, W., Devlin, M.J. and Applebury, M.L. (1979) J. Biol. Chem. 254, 11669-11677.
[3] Hurwitz, R.L., Bunt-Milam, A.H., Chang, M.L. and Beavo, J.A. (1985) J. Biol. Chem. 260, 568-573.
[4] Etingof, R.N., Furayev, V.V. and Dumler, I.L. (1979) in: FEBS 12th Meeting (Krause, E.G. et al. eds) vol. 54, pp. 71-80, Pergamon, Dresden.
[5] Ovchinnikov, Yu.A., Lipkin, V.M., Kumarev, V.P., Gubanov, V.V., Khramtsov, N.V., Akhmedov, N.B., Zagranichny, V.E. and Muradov, K.G. (1986) FEBS Lett. 204, 288-292.
[6] Ovchinnikov, Yu.A., Gubanov, V.V., Khramtsov, N.V., Akhmedov, N.B., Ischenko, K.A., Zagranichny, V.E., Vasilevskaya, I.A., Rakitina, T.V., Atabekova, N.V., Barinov, A.A., Muradov, K.G., Shuvaeva, T.M., Bystrov, N.S., Severtsova, I.V. and Lipkin, V.M. (1987) Dokl. Akad. Nauk SSSR, in press.
[7] Maxam, A. and Gilbert, W. (1977) Proc. Natl. Acad. Sci. USA 74, 560-564.
[8] Sanger, F., Nicklen, S. and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.
[9] Ovchinnikov, Yu.A., Monastyrskaya, G.S., Gubanov, V.V., Guryev, S.O., Chertov, O.Yu., Modyanov, N.N., Grinkevich, V.A., Makarova, I.A., Marchenko, T.V., Polovnikova, I.N., Lipkin, V.M. and Sverdlov, E.D. (1981) Eur. J. Biochem. 116, 621-629.
[10] Kozak, M. (1984) Nucleic Acids Res. 12, 857-872.
[11] Charbonneau, H., Beier, N., Walsh, K.A. and Beavo, J.A. (1986) Proc. Natl. Acad. Sci. USA 83, 9308-9312.

