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It is known that any two rhombus tilings of a polygon are flip-accessible, that is, linked by a

finite sequence of local transformations called flips. This paper considers flip-accessibility

for rhombus tilings of the whole plane, asking whether any two of them are linked by a

possibly infinite sequence of flips. The answer turning out to depend on tilings, a character-

ization of flip-accessibility is provided. This yields, for example, that any tiling by Penrose

tiles is flip-accessible from a Penrose tiling.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

A rhombus tiling of D ⊂ R2
is a set of rhombus-shaped compact sets, namely rhombus tiles, whose interiors are disjoint,

which meet edge-to-edge and whose union is D. Fig. 1 depicts celebrated rhombus tilings of D = R2
(see also [6]).

Then, the flip is awell-known local transformation over rhombus tilingswhich just exchanges three rhombus tiles sharing

a vertex (see e.g., [1,2,5,9,11,15], and also Fig. 2). Flips rise the question of flip-accessibility: can a given rhombus tiling be

transformed into another one by performing a sequence of flips?

Amotivation for studying flip-accessibility for rhombus tilings comes from statistical mechanics. Indeed, rhombus tilings

appeared to be a suitable model for the structure of recently discovered quasicrystalline alloys (see [14]). Moreover, elemen-

tary transformations of real quasicrystal, called phasons, seem being efficiently modeled by flips (see [10]). This led to study

flip dynamics, thus the preliminary question of flip-accessibility.

In the case of rhombus tilings of a polygon, it is proven in [9] that any two rhombus tilings are linked by a finite sequence

of flips. In other words, rhombus tilings of a polygon are all mutually flip-accessible. Many results concerning flip dynamics,

in particular random sampling, have been obtained (see e.g., [5,11]). The case of rhombus tilings of the whole plane is more

complicated. First, note that it is natural to consider flip-accessibility in terms of possibly infinite sequences of flips. Then,

even with this definition, tilings turn out to be not always flip-accessible. Thus, answering the question of flip-accessibility

amounts to characterize flip-accessibility between pairs of tilings.

The paper is organized as follows. In Section 2, we more formally define rhombus tilings of the whole plane and the

corresponding notion of flip-accessibility. We also show that rhombus tilings are naturally associated with a useful higher-

dimensional notion, namely stepped surfaces. Section 3 then states the main result of this paper, that is, a characterization of
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Fig. 1. Rauzy-dual, Ammann-Beenker and Penrose rhombus tilings (from left to right).

Fig. 2. A flip is a local exchange of three rhombus tiles.

flip-accessibility in termsof shadows (Theorem1). As a corollary,we showthat there is a large class of rhombus tilings, namely

the canonical projection tilings, fromwhich any other rhombus tiling over the same set of rhombus tiles is flip-accessible. The

last section is devoted to the proof of this characterization. In particular, we rely on the de Bruijn lines of [3] to introduce de

Bruijn cones, a tool which could be used for achieving efficient algorithms in the finite case.

2. General settings

Let us first define rhombus tilings of the whole plane. Let �v1, . . . ,�vd be d ≥ 3 non-colinear unit vectors of R2
. Rhombus tiles

are the

(
d

2

)
compact sets of non-empty interior defined for 1 ≤ i < j ≤ d by:

Tij = {λ�vi + μ�vj , 0 ≤ λ,μ ≤ 1}.
Then, for �x ∈ ⊕iZ�vi, we denote by �x + Tij the rhombus tile obtained by translating Tij by �x. Note that there is no loss of

generality by considering rhombus tiles translated in ⊕iZ�vi (instead of the whole R2
) because we are here interested in

flip-accessibility; this restriction will be useful in Proposition 1, below. Let us now define rhombus tilings of the whole plane

R2
.

Definition 1. A d→ 2 rhombus tiling is a set of translated rhombus tiles of disjoint interiors, meeting edge-to-edge1and

whose union is the whole plane.

For example, Fig. 1 depicts d→ 2 rhombus tilings for, respectively, d = 3,4,5.

Let us now define flip-accessibility for d→ 2 rhombus tilings. Introduced in [15] for finite domino or lozenge tilings, flips

are similarly defined for rhombus tilings. If three and only tiles meet at a vertex, then their union is a hexagon, and thete is

a unique way to move these tiles such that their union is still this hexagon. We call flip the operation which performs this

move (see Fig. 3).

Clearly, performing a flip on a rhombus tiling yields a (new) rhombus tiling. This also holds for a finite sequence of flips,

but we need to be more precise in the case of an infinite sequence of flips. We define the distance d(T ,T ′) between tilings T
and T ′ by:

d(T ,T ′) = inf
{
2−r |T|B(�0,r) = T ′|B(�0,r)

}
,

where T|B(�0,r) denotes the set of rhombus tiles in T which belong to the two-dimensional ball of center �0 and radius r.

This allows us to indiscriminately consider finite or infinite sequences of flips for defining flip-accessibility:

1 That is, two intersecting tiles share either a point �x or an edge {�x + λ�vi , 0 ≤ λ ≤ 1}.
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Fig. 3. A flip is a local exchange of three rhombus tiles.

Definition 2. Let T and T ′ be two rhombus tilings of the whole plane. If there is a sequence (Tn)n≥0 of rhombus tilings such

that T0 = T , Tn+1 is obtained by performing a flip on Tn and d(Tn,T ′) tends towards 0, then one says that T ′ is flip-accessible
from T , and one writes:

T flips−→ T ′

Last, let us show how rhombus tilings and flips can be seen from a higher-dimensional viewpoint. This will be very useful

in the following sections.

Let (�e1, . . . ,�ed) be the canonical basis of Rd
. For 1 ≤ i < j ≤ d and �x ∈ Zd

, the unit face of type tij located at �x is the subset

of Rd
defined by:

(�x,tij) = {�x + λ�ei + μ�ej , 0 ≤ λ,μ ≤ 1}.
Let then � : Rd → R2

be the linear map defined by:

�(x1, . . . ,xd) =
d∑

i=1
xi�vi.

We are now in a position to introduce so-called stepped surfaces.

Definition 3. A d→ 2 stepped surface is a set S of unit faces of Rd
such that � is a homeomorphism from the union of these

unit faces onto R2
.

A stepped surface is thus a sort of fairly rugged subset of Rd
homeomorphic to a plane. Rhombus tilings and stepped

surfaces turn out to be naturally connected.

Proposition 1. If S is a d→ 2 stepped surface, then �(S) is a d→ 2 rhombus tiling. Conversely, if T is a d→ 2 rhombus tiling,

then there is a d→ 2 stepped surface S such that �(S) = T , and S is unique up to a translation in ker(�) ∩Zd
.

Proof. Let S be a stepped surface. First, � clearly maps unit faces onto rhombus tiles whose vertices belong to⊕iZ�vi. Then,
note that unit faces are of disjoint interiors andmeet edge-to-edge: this still holds by applying the homeomorphism �. Last,

� is onto R2
. This shows that �(S) is a rhombus tiling of R2

.

Conversely, let T be a rhombus tiling of R2
. Let �x0 be a vertex of T . Since �x0 ∈ ⊕iZ�vi (by definition), there is some �y0 ∈ Zd

such that �(�y0) = �x0, and �y0 is unique up to a translation in ker(�) ∩Zd
. One then define a function h from the vertices of T

to Zd
as follows:

h(�x0) = �y0 and �x′ = �x + �vi ⇒ h(�x′) = h(�x)+ �ei.
Actually, h is nothing but a height function, and is thus consistent (see e.g., [4]). Here, note that �(h(�x)) = �x for any vertex

�x of T , and let us define the following set of unit faces:

S = {(h(�x),tij)|�x + Tij ∈ T }.
It follows from the construction of S that the restriction of � to the union of unit faces of S , denoted by �|S , is a bijection

onto R2
, whose inverse is a piecewise linear map depending on the height function h associated with the rhombus tiling

�(S). Since both �|S and its inverse are continuous, � is a homeomorphism from S onto R2
, that is, S is a stepped surface.

Last, S is unique up to the initial choice of �y0, that is, up to a translation in ker(�) ∩Zd
. �

In otherwords, stepped surfaces are nothing but rhombus tilings seen froma higher-dimensional viewpoint. Actually, this

is just a generalizationof ideas introduced in [15] forfinitedominoor lozenge tilings.Note also that the cased = 3corresponds
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Fig. 4. Four patches of 3→ 2 stepped surfaces and their shadows (see Definition 4, below). Flip-accessibility is represented by arrows: the top two stepped

surfaces are mutually flip-accessible (by a finite sequence of flips), and the bottom two stepped surfaces are flip-accessible from them (by an infinite

sequence of flips rejecting the “corner” to infinity in one of the two possible directions). The bottom two stepped surfaces are sort of dead ends: no flip can

be performed on them. It is worth noticing that a stepped surface is flip-accessible from another one if and only if the shadows of the latter are included in

the shadows of the former (this illustrates Theorem 1, below).

to the notion introduced in [8], where the 3-dimensional viewpoint is very natural (see, for example, the leftmost tiling of

Fig. 1).

The notion of flip is then defined over stepped surfaces so that if a stepped surface S ′ is obtained by performing a flip on

a stepped surface S , then the rhombus tiling �(S ′) is obtained by performing a flip on the rhombus tiling �(S) (it suffices to

replace �vi by �ei on Fig. 3). If, moreover, one says that two stepped surfaces S and S ′ are at distance less than 2−r if they share

the same set of unit faces within the d-dimensional ball B(�0,r), then this leads to a notion of flip-accessibility for stepped

surfaces which satisfies:

Proposition 2. For two stepped surfaces S and S ′, one has:

�(S)
flips−→ �(S ′)⇔ ∃�a ∈ ker(�) ∩Zd

s.t. S flips−→ �a+ S ′,

where �a+ S ′ denotes the stepped surface obtained by translating S ′ by �a.

Fig. 4 illustrates the notion of flip-accessibility. Note that, contrarily to the case of rhombus tilings of a polygon, flip-

accessibility does not always holds, and is moreover even not symmetric.

3. Characterization by shadows

The aimof this section is to provide a characterization of flip-accessibility for stepped surfaces (which can be then restated

in terms of rhombus tilings according to Propositions 1 and 2). We define the following maps, for 1 ≤ i < j ≤ d:

πij : Rd → R2

(z1, . . . ,zd) �→ (zi,zj)

In particular, πij maps the unit face (�x,tkl) onto a unit square if i = k and j = l, onto a unit segment if i = k or j = l and onto

a point otherwise. We then use these maps to define the shadows of a stepped surface (see Fig. 4):
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Definition 4. The shadows of a d→ 2 stepped surface S are the

(
d

2

)
subsets of R2

defined, for 1 ≤ i < j ≤ d, by:

πij(S) =
⋃

(�x,t)∈S
πij(�x,t).

A simple but fundamental property of shadows is that they are invariant by performing a flip (this can be easily checked

on Fig. 3). This also holds for finite sequences of flips, but we have only a weaker property for infinite sequences.

Proposition 3. If a stepped surface S ′ is flip-accessible from a stepped surface S , then the shadows of S ′ are included in the

shadows of S :

S flips−→ S ′ ⇒ ∀i, ∀j, πij(S ′) ⊂ πij(S).

Proof. Let Sn be a sequence of stepped surfaces, obtained by performing flips on S , which tends towards S ′. Let z ∈ πij(S ′):
z belongs to the projection of a face (�x,t) ∈ S ′. Let r ∈ R such that (�x,t) ⊂ B(0,r) and N ∈N such that d(SN ,S ′) ≤ 2−r . In
particular, (�x,t) ∈ SN . Since SN is obtained from S by performing a finite number of flips, both have the same shadows. Thus,

z ∈ πij(�x,t) ⊂ πij(SN) yields z ∈ πij(S). This proves πij(S ′) ⊂ πij(S). �

In the previous proposition, inclusions of shadows can be strict (see, for example, Fig. 4). Actually, the main result of this

paper is that the converse of this proposition holds:

Theorem 1. A stepped surface S ′ is flip-accessible from a stepped surface S iff the shadows of S ′ are included in the shadows of

S :
S flips−→ S ′ ⇔ ∀i, ∀j, πij(S ′) ⊂ πij(S).

Theorem 1 is proven in the following section. Before this, let us provide an interesting corollary. We need the following

definition:

Definition 5. Given two vectors �u and �v of Rd
with non-zero entries, the d→ 2 stepped plane P�u,�v is the set of all unit faces

which lie (entirely) in the following “slice” of Rd
:

R�u+R�v + [0,1]d.

Roughly speaking, the stepped plane P�u,�v is an approximation by unit faces of the real plane R�u+R�v (this corresponds

to a viewpoint developed in discrete geometry, see e.g., [12]). Actually, stepped planes are nothing but the stepped surfaces

which are associated by Proposition 1 with so-called canonical projection tilings. These are rhombus tilings obtained by the

cut and project method (see [7,13]). For example, the Rauzy-dual, Ammann-Beenker and Penrose tilings depicted on Fig. 1

are canonical projection tilings associated with d→ 2 stepped planes for, respectively, d = 3,4,5 (see [6]).

Now, let us note that πij(R�u+R�v) = R2
. This easily yields that πij(P�u,�v) = R2

. In particular, the shadows of the stepped

plane P�u,�v contain the shadows of any other stepped surface. We thus obtain as an immediate corollary of Theorem 1.

Corollary 1. Any stepped surface is flip-accessible from a stepped plane.

In terms of rhombus tilings, this means that any rhombus tiling is flip-accessible from a canonical projection tiling over

the same set of rhombus tiles.

4. Proof of the characterization

This section provides a proof of the characterization stated in Theorem1. The necessary condition is proven by Proposition

3. Let thus S and S ′ be two stepped surfaces such that the shadows of S ′ are included in the shadows of S , and let us prove

that S ′ is flip-accessible from S .
Since the proof is not so short, it is worth giving a brief outline. The general idea is to transform S into S ′ by moving

one by one unit faces. More precisely, for (�x′,tij) ∈ S ′, inclusion of shadows ensure that there is a unit face (�x,tij) ∈ S such

that πij(�x′,tij) = πij(�x,tij). We would like to move (�x,tij) to (�x′,tij). We proceed as follows. While there is k such that xk < x′
k
, we

choose such a k and we define a set F
*
k
(�x,tij) such that, by performing a finite number flips over this set.2 Similarly, we can

2 Although the faces of a given set F of faces are modified by flips, note that the projection �(F) (recall Section 2) is not modified, since a flip exchanges

three faces which still project on a hexagon. Thus, by abuse, performing flips over F means performing flips over the faces whose images by � lie in �(F).
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Ti, k
+

Ti, k

_ Si, k

ei

Fig. 5. A de Bruijn section Si,k , here represented by a broken line crossing its unit faces, splits a stepped surface into two connected sets of unit faces, T−
i,k

and T+
i,k
.

translate (�x,tij) by −�ek for k such that xk > x′
k
. Hence, we can move (�x,tij) ∈ S to (�x′,tij) ∈ S ′ by performing a finite number of

flips. The last step will be to show that we can, in this way, obtain unit faces of S ′ over growing balls centered in �0 (Lemma

4), that is, that S ′ is flip-accessible from S (see Definition 2).

Let us now start the proof. We first define a useful tool.

Definition 6. Let S be a stepped surface, k ∈ Z and 1 ≤ i ≤ d. If not empty, the following set of unit faces is the k-th de Bruijn

section of type i of S:

Si,k = {((x1, . . . ,xd),tij) ∈ S|xi = k}.

It is easily seen that Si,k is an infinite stripe of unit faces two by two adjacent along vectors �ei. Then, removing Si,k naturally

splits S into the two following connected sets of unit faces (see Fig. 5):

T+
i,k
= {((x1, . . . ,xd),t) ∈ S|xi > k} and T−

i,k
= S\(Si,k ∪ T+i,k).

Actually, de Bruijn sections turn out to be the set of unit faces associated by Proposition 1 with the well-known de Bruijn

lines introduced in [3]. In other words, Si,k is a de Bruijn section of S iff �(Si,k) is a de Bruijn line of the rhombus tiling �(S).

In particular, two de Bruijn sections share at most one face, as well as de Bruijn lines. In such a case, they are said to intersect.

Note that, if (�x,tkl) = Si,n ∩ Sj,m, then k = i, l = j, xi = n and xj = m. In particular, only sections of different types can intersect,

although they can also not intersect.

We use de Bruijn sections to define so-called de Bruijn triangles.

Definition 7. For (�x = (x1, . . . ,xd),tij) ∈ S and 1 ≤ k ≤ d, k /= i, k /= j, the de Bruijn triangle Fk(�x,tij) is the set of unit faces of S
defined by:

Fk(�x,tij) = (Si,xi ∪ T
εi
i,xi

) ∩ (Sj,xj ∪ T
εj

j,xj
) ∩ (Sk,xk ∪ T−k,xk ),

where εi and εj , respectively, denote the signs of entries of �vk in the basis (�vi,�vj).

Roughly speaking, Fk(�x,tij) is the triangle defined by the three “lines” Si,xi , Sj,xj and Sk,xk (see Fig. 6, left). Note that it could

be infinite, since the de Bruijn sections Si,xi or Sj,xj do not necessarily intersect Sk,xk . We will later avoid this case (Lemma 3).

Intuitively, for translating (�x,tij) by �ek , we first need to translate by �ek the unit faces in Fk(�x,tij). However, moving a unit face

of Fk(�x,tij) requires, in turn, to move some others unit faces before. Therefore, we extend de Bruijn triangles by so-called de

Bruijn cones (see also Fig. 6, right).

Definition 8. With the convention Fk(A ∪ B) = Fk(A) ∪ Fk(B), we define:

F0k (�x,tij) = (�x,tij) and Fn+1
k

(�x,tij) = Fk(F
n
k (�x,tij)).

Then, the de Bruijn cone F
*
k
(�x,tij) is defined by:

F
*
k
(�x,tij) =

⋃
n≥0

Fnk (�x,tij).
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Sk x, k

Si x, i

Sj x, j

Sk x, k

Si x, i

Sj x, j

Fig. 6. Ade Bruijn triangle Fk(�x,tij) (the shaded unit faces, left) and its closure, the de Bruijn cone F
*
k
(�x,tij) (right). Recall that one has always (�x,tij) = Si,xi ∩ Sj,xj .

Sk x, k

Si x, i

Sj x, j

Sk x, k

Si x, i

Sj x, j

Fig. 7. Three flips have been performed on the minimal elements of the de Bruijn cone of Fig. 6 (left). This can be repeated, reducing the de Bruijn cone up

to only three unit faces (right), on which performing a flip will translate the unit face (�x,tij) by �ek .

Let us now show that (�x,tij) can be translated by performing flips over F
*
k
(�x,tij).

Lemma 1. If F
*
k
(�x,tij) is finite, then one can translate (�x,tij) by �ek by performing card(F

*
k
(�x,tij)\Sk,xk ) flips over F*

k
(�x,tij).

Proof. Definition 8 yields, for any unit faces (�y,t) and (�y′,t′):
(�y,t) ∈ F

*
k
(�y′,t′)⇒ F

*
k
(�y,t) ⊂ F

*
k
(�y′,t′).

Let us define a sequence (fn)n≥0 of faces as follows: f0 = (�x,tij), and for n ≥ 1, fn+1 ∈ F
*
k
(fn)\Sk,xk if this last set is not empty.

This sequence is finite (fn ∈ F
*
k
(�x,tij)), so let (�y,t) be its last face. By construction, F

*
k
(�y,t) contains only three faces, on which

a flip can performed (see, for example, Fig. 6, right). By performing this flip, (�y,t) is translated by �ek , so that the obtained

face does no more belongs to F
*
k
(�x,tij), which thus decreased (Fig. 7, left). This can be inductively repeated, up to translate

by �ek the face (�x,tij) itself (Fig. 7, right). Since there is one flip performed for each translated unit face, there is a total of

card(F
*
k
(�x,tij)\Sk,xk ) flips performed. �

Although the definition of de Bruijn cones by transitive closure suffices to prove the previous lemma, the following

stronger property actually holds:

Lemma 2. One has F
*
k
(�x,tij) = F2

k
(�x,tij).

Proof. Let (�y,t) ∈ F2
k
(�x,tij). If Fk(�y,t) is not included in F2

k
(�x,tij), then a case study (relying on the fact that two de Bruijn

sections intersect at most once) shows that one of the two de Bruijn sections containing (�y,t), say Sk′ ,yk′ , necessarily inter-

sects Fk(�x,tij). Let thus (�y′,t′) ∈ Sk′ ,yk′ ∩ Fk(�x,tij). One has Fk(�y,t) ⊂ Fk(�y′,t′), and (�y′,t′) ∈ Fk(�x,tij) yields Fk(�y′,t′) ⊂ F2
k
(�x,tij). Hence,

Fk(�y,t) ⊂ F2
k
(�x,tij). Since this holds for any (�y,t) ∈ F2

k
(�x,tij), this proves F3k (�x,tij) ⊂ F2

k
(�x,tij). The result follows. �
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Fig. 8. If (�x,tij) must cross the section Sk,xk to be transformed to (�x′ ,tij), then any unit face inside the triangle T+
i,xi
∩ T+

j,xj
∩ T−

k,xk
must also cross one of the

sections Si,xi , Sj,xj or Sk,xk , hence is moved.

We are now in a position to prove that one can choose k0 such that F
*
k0

(�x,tij) is finite and (�x,tij) should be translated by �ek0
(the condition k0 ∈ D below). Lemma 1 then yields that (�x,tij) can be effectively translated by �ek0 .

Lemma 3. Let (�x′,tij) ∈ S ′ and (�x,tij) ∈ S such that πij(�x′,tij) = πij(�x,tij). If D = {k|x′k > xk} /= ∅, then there is k0 ∈ D such that

F
*
k0

(�x,tij) is finite.

Proof. Wefirst prove that Fk(�x,tij) is finite for any k ∈ D, and then that there is k0 ∈ D such that F
*
k0

(�x,tij) = F2
k0

(�x,tij) is finite. Let
k ∈ D. Note that Fk(�x,tij) is finite iff both Si,xi and Sj,xj intersect Sk,xk . Suppose that Si,xi does not intersect Sk,xk . Thus, Si,xi ⊂ T−

k,xk
.

Then, since the shadows of S ′ are included in the shadows of S , there is (�z,t) ∈ S such that πik(�x′) ∈ πik(�z,t). This yields

zi = x′
i
= xi and zk = x′

k
> xk . In particular, �z ∈ Si,xi ∩ T+k,xk . Since this contradicts Si,xi ⊂ T−

k,xk
, we deduce that Si,xi intersects

Sk,xk . Similarly, Sj,xj intersects Sk,xk . The first result is proven.

Let us now choose k0 ∈ D being minimal in D for the following partial order:

n � m⇔ T+m,xm
⊂ T+n,xn .

In other words, k0 is chosen such that there is no section Sk,xk separating (�x,tij) from Sk0,xk0
, that is, such that (�x,tij) ∈ T−

k,xk

and Sk0,xk0
⊂ T+

k,xk
. This yields that a unit face (�y,t) of Fk0 (�x,tij) belongs to two de Bruijn sections both intersecting Sk0,xk0

. Thus,

Fk(�y,t) is finite. The second result follows. �

Note that the previous lemma only proves that there is k0 ∈ D such that one can (and should) translate (�x,tij) by �ek0 .
However, this is not a problem for d = 3, since in this case D is reduced to a singleton; without going into details, let us just

say that it is strongly connected with the fact that the set of d→ 2 rhombus tilings of a polygon forms a distributive lattice

only for d = 3 (see, for example, [5,11]).

So, following the outline given at the beginning of this section, we can now, by performing flips, translate (�x,tij) by some
�ek0 such that x′

k0
> xk0 . We can repeat this up to have x′

k
≤ xk for any k. The way we can translate by −�ek0 a unit face (�x,tij)

such that x′
k0

< xk0 is similar. So, we are able to move (�x,tij) to (�x′,tij). The end of the proof relies on the following lemma.

Lemma 4. Let (�x′,tij) ∈ S ′ and (�x,tij) ∈ S such that πij(�x′,tij) = πij(�x,tij). If x′k > xk , then F
*
k
(�x,tij) ∩ S ′ = ∅.

Proof. (sketch) Writing down a detailed proof is rather technical and obfuscating, but the underlying geometrical idea

is quite easy. Indeed, x′
k

> xk yields (�x,tij) ∈ T−
k,xk

and (�x′,tij) ∈ T ′+
k,xk

, as depicted on Fig. 8. So, suppose that there is a unit

face (�y,t) ∈ Fk(�x,tij) ∩ S ′. Such a face thus should have the same position, in S and S ′, relatively to any de Bruijn section.

For example, if (�y,t) belongs to T+
i,xi
∩ T+

j,xj
∩ T−

k,xk
in S (as in the case of Fig. 8, left), then it should belongs to T ′+

i,xi
∩ T ′+

j,xj
∩

T ′−
k,xk

in S ′. However, this last set turns out to be empty (see Fig. 8, right). Thus, Fk(�x,tij) ∩ S ′ = ∅. Suppose now that

(�y,t) ∈ F2
k
(�x,tij) ∩ S ′. There is (�z,tz) ∈ Fk(�x,tij) such that (�y,t) ∈ Fk(�z,tz). We prove Fk(�z,tz) ∩ S ′ = ∅ as above, with (�z,tz) instead

of (�x,tij). �

This lemma ensures that, once a unit face of S ′ is obtained, it is no more moved. We thus can get unit faces of S ′ over
growing balls, and Theorem 1 follows. We end the paper by summing up the whole proof by the following algorithm:
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for r=0 to∞
while S

B(�0,r) /= S ′
B(�0,r)

choose (�x,tij) in S
B(�0,r)\S ′B(�0,r)

(�x′,tij)← S′
i,xi
∩ S′

j,xj
(πij(S ′) ⊂ πij(S))

while �x /= �x′
choose k s.t. xk /= x′

k
and F

*
k
(�x,tij) is finite (Lemma 3)

xk ← xk ± 1 by performing flips over F
*
k
(�x,tij) (Lemma 1)

endwhile
endwhile (Lemma 4)

endfor
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