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ON BETTER QUASI-ORDERING COUNTABLE TREES

E. COROMINAS

Laboratoire d’Algébre Ordinale, Département de Mathématiques, Université Claude Bernard,
69622 Villeurbanne, France

The main result is that the class of countable trees is better-quasi-ordered under embeddabil-
ity. R. Laver proved before that a certain class of well-founded trees is b.q.0. Actually our
better-quasi-ordered class is larger than the countable class but does not contain Suslin
like-trees nor certain Galvin trees of height o + 1.

Introduction

Ce mémoire est une des parties des recherches de ’auteur sur le meilleur-
préordre (b.q.0.) en rapport avec plusieurs structures mathématiques. Une
premiére partie, déja publiée, concerne le meilleur préordre des classes des
p-groups abéliens non divisibles et dénombrables. On en déduit la construction
inductive d’une classe plus grande que celle de ces p-groupes dénombrables et
une généralisation du théoreme d’Ulm.

Une troisiéme partie, non publiée, est consacrée aux classes b.q.o. de fonctions
analytiques ordonnées par un plongement de type topologique. On en déduit, par
exemple, que Vordre circulaire des directions asymptotiques des fonctions entieres
est dispersé (scattered).

Ici nous étudions les algebres ordinales des arbres dénombrables. Il existe une
décomposition finie de tout arbre en arbres indécomposables. Ces ‘atomes’ sont
indécomposables, soit par rapport a une chaine, soit par rapport a une antichaine
soit leur indécomposabilité est du méme type que celle de I’arbre dichotomique:
ils se plongent en eux méme en dessus de tout point. Ces derniers arbres,
lorsqu’ils sont dénombrables, possédent une chaine, étiquetée par les nombres de
branchements, qui est maximum; et leur comparaison est équivalente a celle de
leurs chaines maximum. Nous retrouvons ainsi beaucoup des résultats sur les
chaines dénombrables mais dans un contexte bien plus riche.

Nous utilisons une version de la construction d’une mauvaise application
minimale qui redonne les constructions classiques. Cette construction évite I’emp-
loi du ‘forerun’ de Nash-Williams bien qu’elle s’en inspire.

Nous utilisons les théorémes de R. Laver sur les chaines dispersées. La plupart
de nos résultats sont donnés sous la forme de théorémes sur les M-algebres
ordinales.
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1. Indecomposable trees and embeddability

We call tree an ordered set T whose left segment T* ={y | y<X x} are chains. A
tree is well branched if all the infimums x Ay exist. We call a path any set which is
both a left segment and a chain.

An embedding of a well-branched tree T into another tree T' is any injective
map f:T— T’ such that f(xAy)=Ff(x)Af(y) for every x,ye T.

In order to define the embedding between trees which are not necessarily well
branched we define the minimal branching of a tree.

For every tree T there is a well-branched tree T and an ordinal isomorphism i
preserving existing infimums from T to T such that for every o.ip.if:T— T’ (we
write 0.i.p.i instead of ordinal isomorphism preserving infimum) there is an
embedding f: T — T’ such that f=foi

Using this we say that an o.i.p.i f:T'— T” is an embedding if there is an
embedding f : ' — T" such that i" o f =f o i’. Le. we get the following commutative
diagram:

rj-vl > rim

i'l ' i”

TI f T"

An explicit definition of i and T is: T={T*N'T” | x, y € T} ordered by inclusion
and i(x) = T*. Indeed, clearly T is a well-branched tree. Now let f : T — T’ be an
i.o.p.i into a well-branched tree T'. Let Pe 1, observing that f(P) has a greatest
element we put f(P)=Max f(P).

The embedding of trees is a quasi-order relation, stronger than the order
preserving embedding. We always will be concerned with the first relation, and we
will denote it T'<X T’ (we will denote T'<, T” the order preserving embedding).

We look first at labelled trees. Usually a labelled tree (T, 1) is a tree T and a
map [ : T — L whose range is a quasi-ordered set L. Our labelled trees are slightly
different: a labelled tree is a pair (T, I) where | is a map defined on T, the range
being a quasi-ordered set L. We say that (T, 1) is countable if T is countable and
the domain of 1 is countable. In this section all the labelled trees are countable.

The embedding of labelled trees is defined as follows: (T, I)<(T", I”) if there
is a tree embedding f: T’ — T” such that for every PeDom I’, the path f(P)=
(«f(P)] belongs to Dom I" and I'(P)<I"(f(P)). We call any intersection P=
A N B of two maximal different chains of T, a junction path. To a junction path is
associated an important cardinal. Let K be any set of maximal chains C such that
the intersection of two distinct members is P. If K’ and K” are two such sets
maximal for inclusion, then for any C’ € K’ there exists only one C” € K" such that
C'NC"# P and conversely. Therefore the cardinals of K’ and K” are the same.
We put b(P) =|K|, the cardinal of K when K is infinite and b(P)=|K|—1 when K
is finite. We extend the definition of b to all paths, putting b(P)=0 if P is not a
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junction path. This defines a labelled tree (T, b) whose range is included into the
set Card of cardinal numbers ordered by magnitude. To every labelled tree (T, [)
one can associate a labelled tree (T, b, I), where the labelling b, | has as domain
the domain of ! and as range the direct product Card X L, and gives the value
(b(P), I(P)) to every PeDom L. If (T, ]) is a labelled tree and T' is a subset of T,
then we can consider the labelled tree (T',1") where I’ is the induced labelling
defined by lI'(P") = l(« P]). When there is no possible confusion we denote by [
this labelling. For instance a branching chain of (T, I) is a labelled chain, the chain
being a subchain C of T, the labelling induced by b and . The tree above x is
denoted by T, ={ye T|x<y} we recall that T* denotes the chain beneath the
point x. Let (T, ) be a labelled tree; the left segment, in the class of (b, I)-labelled
chains ordered by embedding, generated by the branching chains of (T, I) will be
denoted B(T).

It is well known that the class of countable chains labelled by countable b.q.o.
sets is a b.q.o.-class, and that any labelled countable chain is a finite sum of
indecomposable labelled chains. In the theory of chains it is well known too that
any countable chain is the inductive outcome of the iteration of finite sums, and
indecomposable w-sums, w™-sums or n-sums; the process begins with the single-
tons and the empty chains.

In the case we consider, our chains are labelled in a slightly different way, e.g.
there are different labelled singletons (1,1) and different labelled empty chains
@,1).

In the sequel our set L of labels is countable and b.q.0. We can define a ranking
function r on the collection of countable labelled chains. The rank of a (labelled)
singleton or a (labelled) empty chain is zero. If a =}, a; is a finite sum, then
r(@)=maxr(e;). ¥ w=mn,w or o™ and the sum is indecomposable, then r(a)=
sup(r(a;)+1). If there are different possible values of r we will take the least
possible one. Because our class is b.q.0., thus w.q.0., this function is well defined.

We shall now give the definition of equimorphic classes. Two trees (T',1l’) and
(T”,1") bélong to the same equimorphic class if (T, 1)< (T",1") and (T",1")<
(T, 1').

Lemma 1. The set of equimorphic classes of countable labelled chains (labelled by
a countable b.q.0), whose rank is bounded by an ordinal 8’ < @4, is countable.

Proof. The set of singletons and empty chains (1,1) and (@, ]) is countable by
hypothesis. Hence the set of finite chains is countable too.

Let us suppose that the set of equimorphic classes of the set H of all chains of
rank less than 8’ is countable. We know that the whole class of countable labelled
chains is b.q.0, thus well founded. Hence the set of left segments of H is b.q.o.
Moreover a right segment F of H has finitely many minimal elements. Hence the
set of right segments of H is countable. Clearly the set of left segments of H is
countable too. Now, if a’'=Y;.,-ai and a"=),,~-a} are two indecomposable
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sums of rank &' and if in addition ' = w” and for any i’, there is i” such a};< ajr,
reciprocally, then a’ and a” are equimorphic. In other words if the left segment
generated by {aj}y and by {a}},» in H are the same, then a’' are «” are
equimorphic. It is obvious then that the set of equimorphic classes of indecompos-
able labelled chains of rank &’ is countable. The same is true for chains of rank &',
because any one of them is the finite sum of indecomposable chains. [l

Definition. A labelled tree (T, 1) is strongly indecomposable if (T, 1)< (T, 1) for
every x € T. If the tree T is not labelled it is strongly indecomposable if T< T, for
every xeT.

It is obvious that (T, l) is strongly indecomposable whenever (T, I) is strongly
indecomposable.

Lemma 2. The set of equimorphic classes of branching paths of a countable tree is
countable.

Proof. We claim that the supremum vy of the ranks of all paths, v =supp r(P),
satisfies y<sup, r(T™)+1.

Suppose sup, 7(T*)+1<+y. Then there exists a path P such that sup, r(T*)+
1< r(P) and next there is yeP such that sup, r(T*)< r(P*), according to the
definition of P. This is a contradiction.

Now T is countable and the rank of a countable chain is countable. Hence
sup, r(T*) is countable. Hence v is countable too and r(P) for every path, and the
set of equimorphic classes of all P is countable. [

We consider here trees whose maximal chains are not labelled; other trees will
be considered later on (e.g. in Theorem 2). Lemma 2 is the starting-point of the
following theorem about strongly indecomposable trees.

Theorem 1. A countable tree T, labelled or not, is strongly indecomposable if and
only if B(T,)=B(T) for all xeT. A countable strongly indecomposable tree
contains branching chains which are maximum under embeddability. These chains
are right indecomposable.

If B(T"<B(T") and T' and T" are countable trees and T" is strongly indecom-
posable, then T'< T".

Corollary 1. The set of countable strongly indecomposable trees is, under embedda-
bility, a b.q.o. set.

Proof. Indeed Theorem 1 says that T'< T” is equivalent to B(T')<B(T") and
equivalent to max B(T')< max B(T"). Because the class of (b, I)-labelled chains is
a b.q.o. class the result follows. [
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Corollary 1 bis. In any countable tree T there is an element x for which T, is
strongly indecomposable.

Proof. As a matter of fact B(T,) is a left segment of a class of (b, [)-labelled
chains which is a b.q.0. class and therefore is well founded. Hence, there is a value
x for which B(T,) reaches a minimum and B(T,) is constant for y>x. [

The binary tree of length o is the minimal strongly indecomposable tree which
is not a chain. Its maximum branching chain is (e, ), where l;(x)=1. '

There is an universal countable branching chain. It is the chain n labelled by
b(x) =R,. There is therefore an universal strongly indecomposable tree.

Let T be the set of elements x =(ny, 1y, Ny, 1, ..., N, 1) Where n; €N, e Q
ordered by the last possible difference, if there is any, or by the length: x'<< x" if

ni=n}, ri=rifori=12,...,8'—1 and n,=ny, ri<ry or ny,=ny, ro=ry and
s'<s". Tis atree. T, where x=(n,, rq, ..., n, r,), contains the tree T’, isomorphic
to T, where elements are y=(n,, ry,..., Ry, Iy Bhyy, The1y ..., 05, 1h). Hence T

is strongly indecomposable. T contains the chain {(0, ry)},.c.o and the branching
cardinal of its elements is X,.

Proof of Theorem 1. The set of paths with no last element is cofinal in B(T). A
maximal chain of a strongly indecomposable tree has no last point, except if the
tree is a singleton.

If (7,);en 1S @ sequence of types of branching paths with no last element, we can
write 7; =Y, Tij-

Let us suppose (inductive hypothesis) that the chain Cyo+ Cyy+ Cio+ Cor+
C;1+Cyt- - +CG+ - -+ C;+{x;} is in T, where C; are of type =7; and the
order on the (p, q) is the lexicographical order of (p+gq, q).

The tree T, contains the type of any branching chain of T (because T<T,),
namely a chain of type 7. if (i’,j") is the successor of (i, j). Hence, it contains
Gy +{x ;}, and T contains Cpy+ Cp;+Cio+- - -+ G; + Gy +x; ;. Going up step
by step we have proved that in T there is a chain ) G; whose type 7=} ;7; is
clearly >, for every i. Hence

(1) Any countable sequence of branching paths of T is bounded by another
branching path of T; in particular any couple of branching paths ' and 7" is
bounded by another path of T (indeed if 7,; =7’ and 75;,., = 7", then 7> 7', 7).

Now the countability of the set of equimorphic classes of branching paths of T
and (1) insure the existence of a maximum element of B(T). There is only one
maximum equimorphic class in B(T). Moreover, if 7' is a maximum branching
chain in B(T) we can write 7' =7, =), 7; with 7; independent of i. Then, there
exists a common bound 7 =Y ; 7; > 7, = 7’. In this case 7 is trivially right indecom-
posable, because every term occurs infinitely many times in the sum. Now 7'~
and 7<7 (because 7' is maximum). Therefore the maximum chain is right
indecomposable.
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We shall now prove that: B(T")< B(T") and B(T")c B(T%) for every xeT
implies T'<< T".

Let us write T’ = J;n P! where the P! are maximal paths of T'. We know that
any countable tree is the union of countably many maximal chains.

Let us suppose that the embedding f,, of I, =J;<, P; into I" has been already
defined.

If P'=1,NP, is the junction path of the chains P, P;,..., P; I, with P,,
then the branching cardinal b(P’) is at least & and f,(P’) is the junction path of the
chains f,.(P}), ..., f.(P}). Above f,(P") in f,(I,) there are the 8 chains f,(P;)—
(P, ..., f.(P)—f.(P"). Now f, is an embedding of (I, b’, I) into (T", b", I") and
therefore b"(f,(P))>> b(P")> &: therefore in T” there is above f,(P') at least
another chain. Let us pick an element x in T”—f, (I) above f,(P’). We know by
hypothesis that B(T") = B(T, ), hence it is possible to embed (P,—P’, b’, l') in T
Let us denote this embedding by ¢. i we take f,.,|I.=f, and f, ., | P.~P' =¢
we get the embedding f, ,,:(I,.1, b, 1) — (T", b”, I") which extends f, to the next
I} ... The general embedding f extends all f,.

Let us suppose now that B(T,)=B(T) for every x € T. It is obvious that the
tree S =T, has the same property: B(S,)= B(T,)= B(T,)= B(S). Thus B(T)<
B(S) and B(S,)=B(S) for every yeS, and hence TS or T<T,. Hence
B(T,)= B(T) for every x € T implies that T is strongly indecomposable. Finally,
if B(T')cB(T") and T” is strongly indecomposable and both are countable
trees, then T"< T4 Hence B(T")<=B(T2Y. Now B(T)<=B(T") and B(T")c
B(T?) for every xeT. Hence T'XT". O '

A countable and direct union of trees T=]1;; T, is called indecomposable if
T<1lici_r T}, for any finite subset F of L

We will look next to another kind of indecomposability, related to the opera-
tion of tree sums.

Let (I, ) be a labelled and top labelled tree whose labels f(i) are trees indexed
by a set C of paths i of I. The maximal paths i of I are now allowed. Nevertheless
C must still be countable for countable trees I. Then the set U, denoted by
Yicrf(i), is the union of I and F=Y,_,f(i), endowed with the order relation
x<yY, whose restrictions on I and F are its own orders. Moreover x<yy if
xeicl ieC and y€f(i). This tree sum consists in putting a tree f(i) just above
every path ie C of L

The tree sum is an increasing operator:

T, LA > Y < X 6.
i'el’ i"el”
The left-hand side means that there exists an embedding g of (I, f") into (I”, f")
such that f'(i")<f"(i") for any i of C' and g(C") <= C".
Associated with any (I, f) there is a tree U =Y, f(i) with a natural partition
U=IUF where F=Y,.cf(i). Conversely, let U=IU F be a partition of a tree in
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a left segment I and right segment F. There are paths i of I such that the tree in F
above i, f(i), is not the same for a path i’ i different of i. Then f(i) is the tree in
F just above the path i of I. Let the set of those paths be denoted by C. It is clear
then that U=Y,.;f().

To check that the tree sum is an increasing operator: suppose g:(I', f’)—
", f" is an embedding and ¢(i’): (i) — f"(g(i")) is the embedding associated
with the label f'(i") of i’. If we look at the mapping defined by g|I=g and
g|f'(i"=¢'(i") we get an embedding of U’'=Y f'(i") into U"=Y f"(i"). It is easy
to see that the intersection i’ of a maximal chain C of I' and a maximal chain of
i’Uf(@i") is mapped by g onto g(i’). Therefore the rule of the intersection of
maximal chains is preserved by g.

A tree U=Y,f(i), where I is a chain, is called right (resp. left, right-left)
indecomposable if the tree sum is right (resp. left, right-left indecomposable). U is
right (resp. left, right-left) indecomposable if for any non-trivial decomposition
I=T'+I", U f(i) (resp. U< Yy f(i), U<y (D), X £(D))

The different types of trees we have talked about until now, are: the strongly
indecomposable trees, the direct indecomposable trees, and the trees we can
obtain as sums of a one side or two-side indecomposable labelled chain.

In addition of these blocks there is still another kind of block which is a
composite block consisting of four units, related to each other in a decomposable
way. Members consist of a tree sum U=);f(i), such that I=(I, f) is strongly
indecomposable (i.e. (I, f)< (L, f) for every xeI and I not a chain).

In a tree sum U=Y;f(i), there are I and the right segment F=]]; (). Our
tree has three parts: L, S and T, related to three parts G of C. C, contains the
paths of C which are not maximal in I, C,, contains the paths of C which are
maximal in (I, f*) but which are not of maximum type, and finally C; contains
the paths of C whose types restricted to (I, f*) are all equal to the greatest type of
(I, f* ({1, f*) stands for (I, f) whose labels in the top are deleted). It is obvious
that (I, f*) is strongly indecomposable too and has therefore (Theorem 1) a
branching chain of the greatest type.

Our new trees (I, f) are now labelled and top labelled. Their structure is slightly
different from that of the labelled trees when they are strongly indecomposable. A
strongly indecomposable labelled and top labelled tree has in general no branch-
ing chain of the greatest type. Nevertheless some of the statement of Theorem 1
remains true.

Theorem 2. A countable labelled and top labelled tree J = (I, ) is strongly inde-
composable if and only if B(J,) is constant for every x € I and equal to B(J). If J is
strongly indecomposable and countable, B(J) is generated by a countable set of
branching chains, namely for any set of branching chain {(P,, b, f)}.<n Such that
I= Un eN P, n*

Moreover if BJ')<B(J"), and J',J" are countable and J" is strongly indecom-
posable, then J'< J".
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Corollary 2. Let J' and J" be strongly indecomposable and I' =\ J, Pr. If 'K J”
then there exist an n €N such that the chain (P,, b, f') is not embeddable in J".

We recall that all the time the ranges of f' and f” are supposed to be b.q.0. The
corollary does not need a proof. It is easy to see that L = [l (i), T = ll¢, f(i) are
direct countable indecomposable sums. The same is true for S =[], f(i) if (L, f) is
strongly indecomposable and TUL USNT is not equimorphic to ITULUT. We
will not need these properties.

Proof of Theorem 2. Suppose J” is strongly indecomposable and I"=]J, P,.
Suppose too that any branching chain of J' is embeddable in one of the chains
(P, b, f") for one neN. We will prove then that if J'=|J, P, there exists an
embedding h from J' into J" such that any one of the chains (P,, b, f') is sent into a
chain (P%, b, f'). And this is true for any decomposition of J'= | J,, P,. Hence any
branching chain of J' is embeddable in one of the chains (Py, b, f*). If we apply the
above to J'=J" and J”, it becomes clear that any branching chain of J” is
embeddable in one of the chains (PL, b”, f"). Hence B(J") is generated by a
countable set of branching chains of J”.

Let I'={J, Pl and I"=|,n P, be two decompositions in maximal chains.
Suppose that any branching chain of J' is embeddable in one of the chains
{(P", b", f")}, and that J” is strongly indecomposable. We put I, =J;, P;. Sup-
pose that the embedding h, =(I,, b’, f) — (I",b", f") has already been defined,
and let P’ be a junction path. We know that the branching cardinals b(P; I,)
and b(h,(P); h,,(I))), restricted to I, and to h,(I,), are finite and equal. More-
over b'(P")> b'(P'; I)) and b'(P")< b"(h,(P')) (because h,, is an embedding of I,
into I").

Hence b"(h,(P))> b'(P)> b'(P., I)=b"(h,(P'), h,(I")) and therefore there is
an x above h,(P) in I"—h,(I). Now J"< J? and I"=\], P;. By hypothesis any
chain of J', i.e. (P,—P’, b’, {’), is embeddable in a chain (P;,b’, f") of J" and
hence in J”. Let ¢ be the embedding from (P,—P’, b’, ') into J. Finally
h...|I.=h, and h,,,|P,—P =¢ are an embedding from (I,.,,b’,f") into
I”, b", ). Hence if B(J')< B(J") and J” strongly indecomposable then J'<<J”.
Following the proof of Theorem 1 we get the converse: if B(J,) is constant and
equal to B(J), then J is strongly indecomposable. [1

It should also be observed that in certain cases, when the labels are trees, the
four units block U=Y;f(i), with (I, f) strongly indecomposable, has as parts
L =licc, f(i), S = Uicc, f(i) and T = [[;c, f(i) which not only are indecomposable
direct sums but also are built with strongly indecomposable trees f(i).

In the following example U has this property.

Let U be a set of x =(ny, vy, Ny, 5, . . . , N, V) With Y. v, < 0* and n; < 3 ordered
by the last and only the last difference or if there is any difference by the length,

i.e. ]
ni=n, vi=v! i=1,...,8—1, nl=n% and vi<vy
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or
"

’ ’ — " ’ ”
(nb Viseoes n;” V;’) - (nla <. Ry, Vs’) and s < S

Let E={i|i even and v; > w?i},
P={i|v,>®?} and B={i|n>1land i< min(EUPU{s+1}}.

The set U satisfies one of the following restrictions:

(i) E=P=B=¢;

() E=0, B=0 and n;<1 for i>>min B;

(s) P=B=0, E#@ and v,< ©?, n,<2 for i>e=min E and v, < w?*(e+1);

(t) B=9, P, E#9, p=min P< e and v;< o for i>p and v,< 0’ +w.

Then U=TUSUL UT where the elements of I (resp. L, S, T) satisfy (i) ((I),
(s), (1)).

The elements x of I satisfy n; =0, y,<w’> fori=1,2,...,s. If x'=(x, 1, v.41)
then x< x'e L. X x"=(x, 0, 0, 0, (s +2)) with s even or x"=(x, 0, w*(s + 1)) with
s odd then x< x"eS. Finally if x"”=(x, 0, »>) we have x< x"eT.

An element x of I satisfies n; =0, v;< > for i<s. (I, b) is the binary tree of
length w>. An element of L satisfies v,< w* and n; < 1. Any connected part of L
is the ternary tree of length w*. Finally any connected part of s (resp. of T) is the
4-ary (5-ary) tree of length w? (resp. w).

A minimal element x of L satisfies n; =0, y,<w” for i=1,2,...,b—1 and
n,=1, 1,=0, hence x=(0, vy,...,v,—1, 1, 0). The last element before x is
x'=(0, vq,...,v_1) €I and there is x"=(0, vy,..., v,—;+1) still in I such that

x'< x" and incomparable to x. Hence the restriction on I of the maximal chains in
TUL is not maximal.

A minimal element x of S satisfies n, =0, v,< > and v, < w?i for i even and
i=1,2,...,e—1 and n,=0, v, =w?. Then the last element x'< x such that
s'=e—1satisfies ni=n, v,=y, for i<s—1and n,_,=n,_,, v._,< v, = w>’e. Thus
the restriction of a maximal chain of U S is maximal in I and its length is w?e;
also sup, w’e =w?>. It is clear that the maximal chains in TUS are not the
extension of chains of I of the greatest length w>.

On the contrary one minimal element x of T’ satisfies n, =0 and v;< > for
i=1, 2,...,9—1 where q=min{p, e}, and s=¢q, and p<e, hence n,=0 and
v, =>. The elements x'< x with s’=s are such that n{=n;, v,=v] for i<s—1
and n.=n;=0, v.< o> The length of the restriction of a maximal chain in ITUT
is w>. The greatest one possible.

In short, the indecomposable blocks are: the side indecomposable trees, the
indecomposable countable direct sum of trees and finally the trees U=Y;f(i),
with (I, f) strongly indecomposable, which are the union of four indecomposables
parts: U=TUL USUT. The latter kind of trees possess a countable indecompos-
able set {(P,, b, )} of branching chains generating B(I, f).

We define a canonical tree V =|J4 U, as the finite union of indecomposable trees
or blocks such that the blocks which are indecomposable under direct sums and the
blocks U; =Y, f;(i) with (L, f;) strongly indecomposable are always in the top of the
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finite tree ®. If j'€ @ is not a top element and j"> j', then the elements of U,. are
above the chain I, of Uy =Y, fi(i).

If V=Yg U} and V"=}4 U and there is an embedding h:®’'— d” such
that there is an embedding

By 2 Fil) = Y Fund)
I; Iian

sending I} into I},;n—we write in short (&', U’)<" (9", U")—then any g such that
g | U} =h;, is an embedding from V’ into V.

Hence,

Lemma 3. If V'=)4 U’ and V"=Y 4. U" are canonical countable trees then
(@I’ UI)<”(¢”’ U”) $ V’< V".

Our main idea is to find the good class—the canonical class—of countable trees
to prove later that this class is better quasi ordered; and owing to this particular
order, to prove finally that any countable tree is a canonical tree.

In the sections we study quasi ordered ordinal algebras. The reader might go
directly to IIL.

2. Finite basis theorems about ordinal algebras

Let A be a class and M an operator domain with arity a : M — O (where O is
the class of ordinals). An operator m € M with arity a = a(m), is a mapping
m:A*— A, ie. to any a-sequence (a;);., In A, m associates an element
m((ai)i<a) in A-

The set A with this structure is called an M-algebra.

Suppose further that there exists a quasi-order on A and M in such a way that
the operators are increasing and extensive ones and the values in A are increasing
with the operator itself, i.e. f((a;)i o)< (8(b;);<p) Whenever (a;);.. < (b))~ and
< 8; <f((a)i<a) for every j<a.

The quasi-order of the sequences (a;);..<(b;);.s means that there exists
¢:a—> B increasing and injective, such that a,<b,y for i<a. This is the
quasi-order of the labelled chains («, a) with a(i)=a,.

The M-algebra A with this quasi-order, is called an M-ordinal algebra (it is
known also as an M-algebra with a divisibility quasi-order).

We call, as usually, basis a subset that generates A.

Pouzet’s basis theorem may be stated as follows:

Let A be an M-ordinal algebra. If a basis B of A and M is better quasi-ordered,
then A is better-quasi-ordered.

If we restrict the arities of M to be finite arities (stronger condition) and replace
the b.q.o0. condition by a well-quasi-ordered one, (weaker condition), we get the
well-known Higman’s theorem.
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We need here to look at infinitary algebras (with infinite arities). In this case the
key-tool is Pouzet’s theorem.

The investigation of the class of countable trees under embedding leads to
wider classes of operators. In a first approach, M is the class of chains generated
by the rational chain n and the scattered chains. In a second one, it is necessary to
adjoin the operators associated with the strongly indecomposable countable trees.

We only adjoin now operators m, such that a(m)=m, and m: A™ — A. The
sequence-quasi-order is, as usually, the chain-labelled-order.

Theorem 4. Let A be an M-ordinal algebra such that a(M)= O U{n}. If a basis B
of A and M is b.q.0., A is also b.q.o.

The proof of this theorem will use the next definitions and lemmas.

Definition. We call an a-sequence (a;);, in A a regular sequence, if and only if
(1) a is a finite ordinal, or an infinite regular ordinal or 7;
(2) I « is infinite regular (resp. @ =7), then (a;);.. < (a&);<i<« fOr every j< a
(I'CSP~ (ai)ien < (ai)j<i<k for every ja ke ‘ﬂ)-

Let us denote I; (resp. I;) the left segment in A, I, ={x | x€ A, x< a; for some
i>j} (resp. Iy ={x | x€ A, x< a; for some ien such that j< i< k}).

Trivially condition (2) implies I, = I, constant (resp. I, constant) and conversely,
j — I constant (resp. (j, k) — I, constant) implies 2.

Notations. If s =(a;);.., u(s)=a and I(s)={xe A | x< q; for some ica}.

Lemma 4. If s and t are infinite regular sequences in A, I(s) < I(t) and u(s)< u(t)
imply s<t. "

Proof. Case 1: u(t)#n. If t is a regular sequence t=(b;);_g, the subset of S,
{k< B | k> b, b.>b;}, is cofinal in B for any j< . If a; is any element of s,
E(s) < E(t) implies that for every j>> i there is a k such that b, > a,, in any right
segment of B. All this enable us to define ¢ : @ — B increasing injective such that

< b, (the cardinal of a proper left segment of a is < |B)).

Case 2: u(s)=u(t)=n. If t is a regular n-sequence t = (b,);..,, the subset of m,
{pem|k<p<l, b,>b}, is dense in n NIk, I[. If q; is any element of s =(a;);c.,
E(s) < E(t) implies the existence of b; such that a;< b;, therefore the set of pen

such that a;< b, is dense in nN]k, I[ for any k<! in . We construct thus, as
usually, the embedding of (@;);c,, in (b;)jen. I

Definitions. Let O, be the set of all regular ordinals and S the union of O,, N and
{m}. Let us denote S(A) the set generated by iterating ordinal a-sums « € S, of
sequences in A and mappings of M and again transfinitely in the new obtained
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sets. Let us denote S(A) the subset of S(A) obtained by iterating only «-sums
and m-mappings with regular sequences. The a-sum of (s;);., is defined as
usually by s =3, s = (ti)gines Where ;= (f;)icq, and B=3,., o

Lemma 5. If S(A) is better quasi-ordered then S(A)=S(A). (We recall that
S=0,UNU{n})

Proof. Case 1: o € N. There is nothing to prove, because every finite sequence is
defined regular. _

Case 2: a € O,. We proceed inductively.

Suppose that s =Y. s, 5 € S(A) and v< a, v € O, implies s € S(A).

Let s be a-sum, in S(A), i.e. s=Y,_, s; where s, € S(A). The set {I},., where
L={xe S(A) | x< s, for some i3> j} is a set of left segments in this b.q.0. set S(A).
Thus {L};,.. is b.q.o. and a fortiori well founded. Let I, be minimal, hence
L oI, oI for every j>> jo in a and I is constant (when J,< j< «). This amounts
to say that the sequence {s;};<i<. is regular. Therefore Y <i<. S € S(A) and
YicioSi € S(A) (consequence of the inductive hypothesis), hence s € S(A).

Case 3: a=m. s=Y;c. S, 5; €S(A).

Suppose s € S(A). Then (8:)ieq is not regular. Let us take left segments in S(A).

I,-,(={xe§(A)|x<si for some iem such that j< i< k}. For every p<q in
there is jo, ko such that p< jo< ko< g such that I, is minimal, ie. I, < I, for
p<j<k<gq. Thus L is constant when j, k € Jjo, kol N . This amounts to say that
the medium regular segments of s—and consequently their sum in S(A)—are
dense in 1. We remark now that every o;; =i i<kieq S such that o;, € S(A) is
contained in a o, maximal and in $(A). Indeed the union of w-sequence of
medium segments whose sums are in S(A) is also in S(A). (It is an (@™ + ®w)-sum
or * or w-sum.) Thus the set M of maximal medium segments in S(A) is dense
in m. It is also dense in itself. Suppose o, 0, € M are adjacent or either separated
by only a point {s;}. Both cases are impossible, because o, o, € S(A)> o, +0,€
S(A) (first case) or o +{s;}+0,€ S(A) in the second case. In both cases o, and
o, would be not maximal. Thus the induced order in the set of medium segments
M by 71 has just the same type 7(M)=mn. Hence s =Y., 0 with 7(M)=n and
o €S(A). We know again that there is a medium non-trivial segment M’ of M
such that o' =), .\ 0, 0’ 20, 0’ € M. This is impossible. This contradiction proves
ad absurdum that seS(A). [

We will denote S,,(B) the set obtained by iterating the mappings of M on B
and the a-regular-sums of sequences with o €S. Thus S,,(B) is closed by the
M-operators and the regular sum of sequences on Sy (B), Sp(B) = S(A). We will
prove next that S,(B)=S(A).

We come now to the ranking of S,,(B). It is a mapping r:Sy(B)— O - O*
where O - O* is the ordinal product of the class of ordinals by itself minus zero.
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The purpose is that r must fulfil the condition r(s;)< r(¥;_. s;) (strictly extensi-
bility, whenever a € O, U{n}).

Definition. For every beS,,(B), r(b) is the least r(b)eO- O for b'>b, b'e
Sy(B) such that r(b")>(0.1), r(m(b")>r(b’) and if (r,(h;));c. has a greatest
element:

r(z bi)> (max ri(b,), . rz(bi)), ae0,

ica ica

(2 b)> maxry(b)+1, 1)

iem

otherwise (r,(b;);c. Without a greatest element)

r é{ bi)> (sup r.(b,), 1).

iea

There is always a least element in any subset of O - O*. Thus there is no
ambiguity in the definition of r(b). The last three conditions make sure that it is
strictly extensive.

We will, hence, go forward to prove that S,,(B) is b.q.o0.

Suppose Sy (B) is not b.q.o., then there exist bad sequences in S,(B). It is then
known that there exist r-minimal bad sequences. That needs an explanation.

We call D an extended restriction of the barrier C, denoted C< D, if every
element ¢t of D is an extension of an element s of C, s< t (that means that s is a
left segment of t). There is only one s for each ¢, denoted s = d(t) (because C is a
barrier). It is possible that s =t=d(t) for every te D, hence it is possible that
D < C. Sometimes there is a t#d(t)> s and then D is a proper extension of a
restriction of C.

If f:C— H, g:D— H, we say that g is an subextended restriction of f if

(1) D is an extended restriction of C;

(2) g(O<f(d(®), r(g()<r(f(d(D);

(3) When t=d(1), r(g(t)) = r(f(d(1))) > g(t) = d(d(®));

@) d(t)<t=> g()< f(d(1)), r(g())< r(f(d(D)).

We say g is a proper subextended restriction of f, denoted g< f, when there
exists te D such that r(g(t))< r(f(dt)). f is minimal bad when there is no bad
proper subextended restriction of f.

To build a minimal bad mapping is a matter to get r minimal.

For instance, if f : C — H is not minimal bad, then there exists a bad g: D — H
such that g< f. Let K and L be respectively the bases of C and D, and let [N}<*
be ordered by the last difference or by inclusion if there is no last difference. It is
clear that with this order [N]<“, and also any barrier, is isomorphic to N.

We choose the smallest ¢, = d(d,) such that there is a bad g< f with r(g(dy))<
r(f(cy)). Let us write K =K'+ K", L = L' + 1" where the last element of K', L' and
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Co is ko. If C, is the set of elements of CN[K'+L"T*° which have no extension
into an element of D, then C,ND#§.

We change g into h:E — H, putting E=C,UD, M=K'+L", h|Cy=f| C,,
h|D=g|D.

It is not difficult to check that E is a barrier whose base is M, that h is bad <f,
and that f and h are equal on the left segment of C, C'=
CNle—c=EN[< c[=E' and that the bases in NN[0, k,] are the same. We
will iterate next this construction, denoting h = A(f).

Then fo=f and f,., =A(f.), with ¢, = d(d,.,) smallest such that r(f,.,(d,..1))<
r(f.(G)), C,=C,N[<c,[ and K, =K, N[« h,], k, =maxc,.

If no f, is minimal bad, we define f,:C, — H by

K,=UK,, C,=UC. and f,|C.=f.|C..

Trivially, C, is increasing, like K, and C, are. Moreover ¢, is not bounded.
Indeed, if ¢, would reach a bound ¢ for n>> n,, the sequence (r(f,(c)),>n,) would
be strictly decreasing, and the range of r would be not well founded. Hence
k, € K, < K is not bounded either, and K is infinite. We check likewise that C, is
a barrier on K, and f, is bad <f,. Trivially f, is r-minimal bad.

Suppose now that f:C — S,,(B) is minimal.

We recall that all the a-sequence in §M(B) are regular sequences and « €
O, UNU{n}. Then f(s) = (f.(s));cs.. Three cases are possible:

(1) &=1;

2) 1< §, < w;

(3) 8,€0,U{n}.

There is a restriction of f such that for all s we always get the same case (Ramsey-
Nash-William’s theorem).

(2) 1< 8,< <. Then there exist a decompOsition and a restriction such that
8, =8, +8 with &, 87> 0 and s — (fi(5))i<s;, s — (fi(5))i<s- are good. This arises
from the minimal character of f and the lesser rank. Then there is another
restriction such that these sequences are perfect. Finally s — f(s) is good. We
dismiss this case.

(3) 8,€ 0, U{n}. (§,< 8, in O, or §, =3, =n.) The sequence (f;(s));cs, for every
s is regular and s<dt = (f,(s))ics, X (;(f))jes- Then Lemma 1 enables us to claim
that there exists f;(s) such that f,(s)<X f;(¢) for every je 8, We associate u=sU 1
with s, te€ C, s<t; we will denote f;(s) by g(u). Then g(u) =f(s)< f;(t) for every
te C. Hence we have g(u)< g(w) (where w=1tUv, tJv), if f;(t)=g(w).

The sequence g:C2— $(B) is bad (g(u)< g(w) with u<aw). C? is a proper
extension of C and the rank r(g(u)) = r(f.(s))< r(X;cs, fi(s)) is strictly lesser. Then
f is not minimal bad. We dismiss this case also.

If 8, =1, then f(s)=m;  omy, o - - o m((gi(5))jes), = k(s) where m;, € M and
m,_, is the last 1l-ary operator. But M is b.q.o. and the m;, are increasing
extensive. There is a restriction such that s — m, - - -om, is perfect. Conse-
quently s — (g;(s));cs; is bad.
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Now there are only one possibility left: §;=1 and g(s) e B. This is not possible
either because B is also b.q.o0. This contradiction concludes the proof of theorem
4. U

Let S[n] be the class of chains generated by the one element chain by iterating
a-ordinal sums with a € a(M)= 0, U O* U{w\{0}}U{n}, where O* denotes the
set of dual regular ordinals. _

Thus S[n] is an M-algebra, whose arities belong to the set a(M). Let us
identify the operator and its arity, then M=a(M). M is the union of three
well-ordered chains, the basis B is the chain of one element. M and B are b.q.0.,
so is S[n].

Let S,[n] be the class of chains labelled in {0, 1} generated by M and let the
basis be ({@}, 1), {1}, Ip), ({1}, I,) where I'(@) =1, (1) =i. We do not allow chains
such that before an element c =({@}, I’) there is a last element, i.e. the path P
before ¢ is open and I'({@}}) is the label of P. There is no element ({@}, "), with
I"@)=0. S.[n] is clearly b.q.0.

Theorem 5. Let a be an M-ordinal algebra whose arity set, a(M), is S,[n]. If M
and a basis B are b.q.o. then A is b.q.o.

Proof. Theorem 4 leads us to consider the set of sequences in A, S(A) as an
(MU L)-algebra. If m e M and s = (s;);, have the same arity a € S,[n], then, if S
is the iterating a-sums of sequences s;, S — m(s) becomes an 1-any operator,
when we associate m(s) to S. Thus S(A) is generated by ({#}, I’) and ({1}, [;) and
({1}, I,) with L-ordinal sums and the operators of M. We know that L and M are
b.q.0., then L UM is b.q.o. The basis has only three elements. Hence S(A) (the
set of a-sequences in A when a € S,[n]) is b.q.0. and particularly, A is b.q.o.

If (T, t) is a labelled tree whose labels are trees (for every path P in T, t(P) is a
tree, empty or not), then 7 = (tp)p (P a path in T) is a sequence of trees. Then the
ordinal tree-sum S(7) is defined as:

(1) A tree whose underlying set is TU (| p tp) (P a path in T) and,

(2) Its order relation in T and in t, (for all P) is the same plus the relations
x<y when x€ P and y € tp. In fact S(7) is the tree we obtain when we place the
tree tp above every path P in T. The arity of S and 7 is T.

Two particular cases are important: (1) when the tree T is a chain; (2) when the
tree T is an antichain.

Definition. A tree T is slender if it does not embed (as a partially ordered set) the
binary tree B of height w, that we denote by B4, T.

If a tree T is such that for every x, T, is not a chain (the empty tree is a chain)
then B<,T. Let T’ be the subtree of T defined by T’ ={x € T | T, is not a chain}.
Define inductively T® by T*"'=(T*) and T*=J,., T® when « is a limit
ordinal. There is a first a, such that T**'=T* If T**'=T*#¢ then for every
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xeT* Ty is not a chain and B<,T*<,T. Conversely, if B<,T, we have by
induction B, T? and B, T> = T*"!, T*# (. Hence

Proposition. A tree T is slender iff T* =T**'=0.

Definition. If T is an slender tree, the degree d(t) is the least ordinal a such that
T is a chain or an antichain.

Let A be the class of all slender trees T such that the chain of T is in S[n] (the
class of m-completed scattered chains).

Let M be the set of all a-sums of tree sequences with « € S,[n] or either a an
antichain. The arities of the antichains are in NU O, U S,[n].

Theorem 6. Let A be the class of slender trees T such that the chains of T are in
S[n]; let M contain all the a-sums of a-tree sequences when a is a chain in S,[n],
or either a is an antichain. Then the singleton tree is a basis of A, and A is b.q.o.

Proof. The problem is now that (A, M) is not an ordinal M-algebra. Indeed the
a-tree sums, or sums of trees following a a chain, are not increasing. There is a
way to avoid this difficulty.

Let A(1) be (1 denotes the singleton tree) the subalgebra generated by the
singleton and the indecomposable operations plus the finite operations. In every
step we get indecomposable trees of first or third class (sided indecomposable, or
directed indecomposable). Let us endow A(1), step by step with a new order
denoted <': if T' and T” are first class indecomposable with the chains of
indecomposability C’ and C” then T'<’' T", if there exists an embedding f from T’
into T” that maps C’ into C” (It is possible to get T'<XT” and T'<’' T".) This
order is indeed strictly stronger than the order of trees under embedding.

(S(1), M) endowed with the order <’ is a true M-ordinal algebra. Therefore
Theorem 5 applies. Hence (A(1), <) is b.q.0. and (A(1), <) with a weaker order
is a fortiori a b.q.0. set.

We know that every a-tree sum, of trees in A(1), is a finite sum of indecompos-
able sums and thus A(1)= A(1) (Theorem 3).

Suppose now that every T € A such that d(T)< « belongs to A(1) (subalgebra
generated by the singleton).

If d(T)=a, then T*#1 is a chain or antichain. Let i be a pathin T and T, the
tree in T—T* above i. Its clear that d(T")< «a, i.e. T' € A(1). But if « is a chain
or antichain and T' € A(1), T is an a-sum, it is canonical and Te A(1). Hence
A(1)=A. There is nothing left to prove. [

3. Better quasi ordering of the dass of countable trees

We shall define a ranking and a new order in the class of countable canonical
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trees 6. The transfinite construction of € begins with the singleton tree. The
operations are:

(a) The finite canonical sums;

(b) the direct indecomposable sums;

(c) the chain indecomposable sums;

(d) the strongly indecomposable labelled and top labelled sums.

All these operations are increasing except the canonical finite sums.

If by the embedding of side indecomposable trees the existence of an embedd-
ing ¢ :2p f(i") = X f(i") such that ¢ sends the chain I' into the chain I” is meant,
then Lemma 3 says that

(@, U< (P, U") > Y U<y, Ul
@ "

As a matter of fact there exists an embedding ¢ sending Y ;- f(i’) into Y f(i"), but
not I' into I". From now on we will be concerned with this stronger embedding
relation, which will be carried on step by step. It will be denoted (%€, <’). It is now
clear that (%, <) with the operations (a), (b), (c) and (d) is an ordinal algebra.
The range of r=(ry, r,) is the ordinal product of the class of non zero ordinals
by itself. '
The inductive rules are the following:

ru)=(1,1)

where u is the singleton tree;

r(g U,-) = (max r,(U}), ||)

where |®| denotes the finite number of elements of @;
((Z10) = (sup (@) + 1), 1)
1 i

where I =1, o, 0*, Ry;

{(310)- (oo (E10) 1))

where (I,f) is strongly indecomposable labelled and top labelled and
{(P,, b, f)},.cn is a sequence of branching chains, generating B((L, f)).

If (6,<’) is not b.q.0., there exists an r-bad minimal mapping g: B — (6, <').
The Ramsey-Nash-Williams theorem enables us to take a restriction B’ < B, such
that g(s) =V, is a sum of one of the types (a), (b), (c) or (d) and when the type is
(a), to take |®,| increasing and finally when the type is (b), to take I, =R,, o, o*
or m.

If |®,|> 1, then there exists a partition &, = @.U @ such that the sum is direct
or cither is a left-right partition such that |®|, |®?#0. According to the lesser



52 E. Corominas

ranking and the definition of g, the mappings s = Yq; U, s — Yo U; are good
mappings. Hence g': B’ — (€, <) is good. The next possibility is g'(s) =2 f. (i),
where I is a countable antichain or a chain of type w, @* or n. Now, it is possible
to choose i in I, such that f,(i)X f,(j) for every j € I, where s<at in B’ (g(s)<X g(1)).
The f,(i) chosen tree, depending upon s and t, will be denoted h(sUt) (with
v=sUt s<t, and s, t are elements of the barrier B, the extended restriction of
B). Therefore h:B?— (6,<') is a bad mapping. Indeed v=sUt, w=tUu,
v <At > h(v)K h(w). Now, r(h(v)) = r(f,(i))< rQy, f(i)) = r(g'(s)), hence g’ is good,
and this is a contradiction. The only one possibility left is that g'(s)=); f,(i) is an
strongly indecomposable sum.

In this case we have s <1, g'(s)< g'(¢). But the corollary of Theorem 4 implies
the existence of chains (P,,, b, f;) embeddable in none of the (P,,,, b, f,), there-
fore U, =Yp_ f()XLp,, f(i). If we define h(sUt) by h(sUt)= U, we will get
h(v)< h(w) and will run again in a contradiction. Therefore (€, <') is b.q.0. class.
If g:B—(%,<) is a mapping into the class 4, ordered under embedding, s <t
implies g(s)<'g(t) and a fortiori we get the weaker relation g(s)< g(#). The class
(%, <) is also better quasi ordered.

3.1. Reduction process on countable trees

Let T be a countable tree and let T=1I1"UF” be a left-right segment partition
of T depending upon an ordinal ». Suppose that the partitions are already defined
for any ordinal v< a and F°=@, I°=1I. Then, if « is a limit ordinal, I*=(,__I",
and if it is not, xe I**?, if and only if x e I* (I% f) is strongly indecomposable,
and therefore U=)f(i) is a block with four subtrees I3, L%, S3, T (see
Theorem 2 and its definitions) not all of them necessarily non empty. We shall call
degree «, denoted d(T), the first ordinal a—when it exists—such that I* =¢.

Lemma 6. If T is a countable tree such that T, is a canonical tree for every xe T,
then T is a canonical tree.

If T has a root x, then T=T, and there is nothing to prove. Any tree is the
direct sum of its connected parts, and any connected tree V has a maximal chain
C and then it is the sum V =Y, f(i) where f(i) is just the subtree of V above the
junction path i (of the chain C). Hence T=|J;cn T; (Where N is N or a finite
subset of N) and T; =} f;(i). Now (I, f;) is a countable labelled chain whose
labels f;(i) are trees T, (or a right segment of a T,). Hence, all the f(i) are
canonical trees. Therefore the chains (I, ;) are b.q.o. labelled countable chains.
Accordingly, the trees T; are finite sums (under chains) of side indecomposable
trees, i.e. they are canonical trees.

Finally T is a direct sum of trees of the b.q.0. class (%, <). T is therefore a finite
set of indecomposable direct sums, and it is necessarily a canonical tree. We will
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see next that:

Any tree of countable degree is .canonical.

Let us suppose this statement true for any degree < a, and let T be of countable
degree a. If a is an ordinal limit then for any x of T there is an ordinal » such
that x € F*, and T, is then canonical (according to the reduction process). Lemma
6 allows us to claim that T is canonical. If « is not an ordinal limit, then T, is
canonical for any xe F*™ and if xeI*™', the hypothesis I*=@ implies that
T, = Y.1= f(i) is a block where (IT7, f) is strongly indecomposable and then also
T, is canonical. According again to Lemma 6 T is canonical. And now we will
prove that: Any countable tree has a countable degree and is a canonical tree.

We will return to the reduction process. If we have reached the vth partition of
T'=T"UP*, then for any xeI”, T, =Y f(i), and (I, f) is a labelled and top
labelled tree with trees f(i) which are trees of degree < v. Therefore the trees f(i)
are canonical trees and B((I$, f)) is a left segment of a b.q.0. set of (b, f)-labelled
chains. Hence the elements B((IS, f)) are elements of a well-founded set and if
B((I%,, f)) is a minimal element for x = x,, (I3, f) is strongly indecomposable and
xo€ I". Therefore we have I* 2 I**', where v is any countable ordinal.

It is obvious then that for any countable T = I° there exists a countable ordinal
a such that I* =@. We can now draw the followihg conclusion.

Theorem 8. The class of countable trees is a better quasi ordered class under
embedding and any countable tree is the finite canonical sum of indecomposable
trees.
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