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1. Introduction

This paper deals with the existence of (weak) solutions of the semilinear elliptic problem

(P ) −�u = g(x, u) in Ω, u = 0 on ∂Ω,

where Ω is a (smooth) bounded open subset of R
n (n � 3 for simplicity), and g is a Carathéodory

function with subcritical growth, under so-called double resonance conditions. Namely, letting (λ j) de-
note the nondecreasing sequence of (positive) eigenvalues of −� with 0-Dirichlet boundary condition,
we say that the above problem is strongly doubly resonant if for some i ∈ N and almost every x ∈ Ω ,
we have
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λi � lim inf|s|→∞
g(x, s)

s
� lim sup

|s|→∞
g(x, s)

s
� λi+1,

and we call it weakly doubly resonant if the weaker condition

λi � lim inf|s|→∞
2G(x, s)

s2
� lim sup

|s|→∞
2G(x, s)

s2
� λi+1,

where G(x, s) := ∫ s
0 g(x, t)dt , is satisfied. Such problems were first considered by Berestycki and

Figueiredo [1] through a degree theoretic approach. Here, we use a variational approach and, amidst
the vast literature on the subject, we parallel our study and the works (in decreasing order of gener-
ality) of Furtado and Silva [10], Costa and Magalhães [7], and Costa and Oliveira [8], which appear as
key steps in this line (and to which we refer for further references). As well known, the functional f
associated with problem (P ) is of class C1 on H1

0(Ω); accordingly, the results of the quoted papers
are based on critical point theory for C1 functionals on Banach spaces. This leads to identify appro-
priate compactness conditions of (weak) Palais–Smale type satisfied by f , which are shown, in an
abstract part, to suffice in order to obtain a suitable deformation property, whence an existence of
critical point result.

The main purpose of this paper is to show how the main technical assumptions of the problem
(namely, variants of the so-called nonquadraticity at infinity conditions, introduced in [7] and refined
in [10]) can be used to define a metric d, equivalent to the norm metric, in such a way that, using
only a basic form of the deformation principle from critical point theory for continuous functions
on complete metric spaces [5,9], and a simple (new, however) linking principle, the functional f is
shown to possess a Palais–Smale type sequence in (H1

0(Ω),d) — which is ultimately shown to be
norm-bounded, and we are done. For the definition of the metric d, we use a particular case of the
general change-of-metric principle from [2], where the main motivation indeed was to unify various
abstract results of Schechter in smooth critical point theory (see [16]), thus avoiding the repetitive
construction of ad hoc deformations. We believe that our approach, in separating the specific technical
features of the abstract theory and of its applications to partial differential equations, provides a
clearer and more systematic view of the problems dealt with, what can thus be helpful for further
studies.

In Section 2, we provide the necessary background in nonsmooth critical point theory, as well as
the abstract results (Theorems 2.3 and 2.4) on existence of Palais–Smale type sequences in appro-
priately defined equivalent metrics, for continuous functions on Hilbert spaces. Though no min–max
procedure is involved, these results can be seen as variants of the saddle-point theorem of Rabi-
nowitz [15]. In Section 3, we introduce some nonquadraticity conditions (in the spirit of [10]), the
connection of which with one of the afore-mentioned metrics is established. These conditions are
used, together with Theorem 2.3, in Section 4, dealing with weak double resonance for problem (P ),
to obtain refinements of the corresponding results in [10]; and in Section 5, dealing with strong dou-
ble resonance, in the case when the nonlinearity g has sublinear growth. Still in the sublinear case,
we consider another set of nonquadraticity conditions in Section 6, from which existence results for
problem (P ) are deduced, under both weak and strong double resonance, as an application of Theo-
rem 2.4.

2. Abstract results

Let X be a metric space endowed with the metric d, and let f : X → R be continuous. If A is a
subset of X , a deformation of A (in X ) is a continuous map η : A × [0,1] → X such that η(u,0) = u
for every u ∈ A. For ρ > 0, we denote by

Bρ(A) := {
u ∈ X: d(u, A) < ρ

}
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the open ρ-neighborhood of A, where d(u, A) := inf{d(u, v): v ∈ A}, with the convention d(u,∅) =
+∞. If A := {u}, we simply write Bρ(u). If B is another subset of X , we set

d(A, B) := inf
{

d(u, v): u ∈ A, v ∈ B
}

(with the convention d(A, B) = +∞, if either A or B is empty). For a ∈ R, we let

[ f < a] := {
u ∈ X: f (u) < a

}
.

We recall the notion of weak slope from [9].

Definition 2.1. Let (X,d) be a metric space, and let f : X → R be continuous. For u ∈ X , we denote by
|df |(u) the supremum of the set of nonnegative reals σ such that there exist δ > 0 and H : Bδ(u) ×
[0, δ] → X continuous with

d
(

H(v, t), v
)
� t, f

(
H(v, t)

)
� f (v) − σ t

for every (v, t) ∈ Bδ(u) × [0, δ]. The extended real number |df |(u) is called the weak slope of f at u.

Recall that if X is a C1 Finsler manifold and if f is a C1 function on X , then |df |(u) = ‖ f ′(u)‖ for
u ∈ X , where f ′(u) is the differential of f at u (see [9]).

The weak slope yields the following deformation theorem, which is a slight variant of [6, Theo-
rem 2.1] (itself a direct extension of [3, Theorem 2], these results relying on the basic deformation
theorem [5, Theorem (2.8)]).

Theorem 2.1. Let (X,d) be a metric space, let f : X → R be continuous, let C be a nonempty subset of X , and
let c ∈ R, ρ > 0, and σ > 0. Assume that f −1([c,b]) is complete for every b ∈]c, c + σρ[ and that

|df |(u) > σ for every u ∈ Bρ(C) with c < f (u) < c + σρ.

Then, there exist a continuous function τ : C ∩ [ f < c+σρ] → [0,+∞[ and a deformation η of C ∩ [ f <

c+σρ] such that

(a) τ (u) � max{( f (u) − c)/σ ,0} < ρ;

(b) d(η(u, t), u) � τ (u)t;

(c) f (η(u, t)) � f (u) − στ(u)t;

(d) f (u) � c ⇒ f (η(u,1)) = c.

Proof. Follow the arguments in the proof of [6, Theorem 2.1], replacing Bρ1+ρ2 (C), Bρ1 (C), and ρ2
therein by Bρ(C), C , and ρ , respectively. �
Definition 2.2. Let (X,d) be a metric space, and let S1 ⊂ D1, S2 ⊂ D2 be four subsets of X , with at
least three of them nonempty, and such that d(S1, D2) > 0 and d(S2, D1) > 0. We say that the pair
(D1, S1) links the pair (D2, S2) if for every deformation η of D1 satisfying

d
(
η(u, t), u

)
< min

{
d(S1, D2),d(S2, D1)

}
(2.1)

for every (u, t) ∈ D1 × [0,1], we have

η(D1,1) ∩ D2 �= ∅. (2.2)
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Clearly, if (D1, S1) links (D2, S2) then D1 ∩ D2 �= ∅, so that for any function f : X → R we have

inf
D2

f � sup
D1

f .

Theorem 2.2. Let (X,d) be a complete metric space, let f : X → R be continuous, let (D1, S1), (D2, S2) be
two pairs in X such that (D1, S1) links (D2, S2), and set ρ := min{d(D2, S1),d(D1, S2)} > 0. Assume that f
is bounded from above on D1 and is bounded from below on D2 . Then, for any reals β1, β2 with

β2 < inf
D2

f � sup
D1

f < β1,

there exists u ∈ Bρ(D1) such that

β2 < f (u) < β1 and |df |(u) � β1 − β2

ρ
.

Proof. We argue by contradiction. Since A := {u ∈ Bρ(D1): β2 < f (u) < β1} �= ∅, we thus assume that

|df |(u) >
β1 − β2

ρ
for every u ∈ A.

Apply Theorem 2.1 with C := D1, c := β2, the given ρ > 0, and σ := β1−β2
ρ . Noting that D1 ∩ [ f <

β1] = D1, we find a continuous function τ : D1 → [0,ρ[ and a deformation η of D1 satisfying proper-
ties (a), (b) and (d) of Theorem 2.1. Using (a) and (b), we see that η is a deformation of D1 satisfying
(2.1), and that η(u, t) = u if f (u) � β2. Taking also (d) into account, we thus have

f
(
η(u,1)

)
� β2 < inf

D2
f for every u ∈ D1,

so that η(D1,1) ∩ D2 = ∅, contrary to (2.2). This contradicts the fact that (D1, S1) links (D2, S2),
whence the conclusion. �

In the remainder of this section, X is a real Hilbert space, and we denote by ‖·‖ the norm
associated with the scalar product of X . We consider a proper linear subspace X1 of X with
0 < dim X1 < +∞, and we let X2 := (X1)

⊥ . For i = 1,2 and ρ > 0, we set

Di,ρ := {
u ∈ Xi: ‖u‖ � ρ

}
, Si,ρ := {

u ∈ Xi: ‖u‖ = ρ
}
.

The following proposition, asserting that the pair (D1,ρ1 , S1,ρ1 ) “topologically links” the pair
(D2,ρ2 , S2,ρ2), is a well-known fact (see, e.g., the proof of [12, Theorem (8.1)]). We sketch the proof
for completeness.

Proposition 2.1. Let ρ1 , ρ2 > 0, and let η be a deformation of D1,ρ1 in (X,‖·‖) such that

η
(

S1,ρ1 × [0,1]) ∩ D2,ρ2 = ∅ and η
(

D1,ρ1 × [0,1]) ∩ S2,ρ2 = ∅.

Then, η(D1,ρ1 ,1) ∩ D2,ρ2 �= ∅.

Proof. Denote by πi the orthogonal projection on Xi , i = 1,2, set Y := [−1,1] × D1,ρ1 , and define
φ : Y × [0,1] → R × X1 by

φ
(
(s, u), t

) :=
(‖π2(η(u, t))‖

ρ
+ s,π1

(
η(u, t)

))
.

2
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Then, φ is continuous and φ((s, u),0) = (s, u) for every (s, u) ∈ Y . Moreover, φ((s, u), t) �= (0,0) for
every (s, u) on the boundary of Y and every t ∈ [0,1]. Indeed, let (u, t) ∈ D1,ρ1 × [0,1] be such that
π1(η(u, t)) = 0. If (s, u) ∈ [−1,1] × S1,ρ1 , then

‖π2(η(u, t))‖
ρ2

> 1, so that
‖π2(η(u, t))‖

ρ2
+ s > 0,

while if (s, u) ∈ {−1,1} × D1,ρ1 , then

‖π2(η(u, t))‖
ρ2

�= 1, so that
‖π2(η(u, t))‖

ρ2
+ s �= 0.

Thus, the Brouwer degree of φ(·,1) with respect to (0,0) is 1 (that of the identity of Y ), so that there
exists (s, u) ∈ Y with φ((s, u),1) = (0,0), and it is easy to see that this means that η(u,1) ∈ D2,ρ2 . �

The following proposition is a particular case of the change-of-metric principle [2, Theorem 4.1],
refined in [3,6]. In particular, the formula in (b), refining the corresponding one in [2], is in [6, Theo-
rem 2.2].

Proposition 2.2. Let β : [0,+∞[ → ]0,+∞[ be continuous. For u, v ∈ X, let Γu,v denote the set of (piece-
wise) C1 paths γ : [0,1] → X with γ (0) = u and γ (1) = v, and set

d̃(u, v) := inf

{ 1∫
0

β
(∥∥γ (t)

∥∥)∥∥γ ′(t)
∥∥dt: γ ∈ Γu,v

}
. (2.3)

Then, d̃ is a metric on X which is topologically equivalent to the metric induced by the norm, and the following
properties hold.

(a) If
∫ +∞

0 β(s)ds = +∞, then (X, d̃) is complete.

(b) For every u ∈ X we have

d̃(u,0) =
‖u‖∫
0

β(s)ds.

(c) If f : X → R is continuous, then for every u ∈ X we have

|d̃ f |(u) = |df |(u)

β(‖u‖) ,

where |df | and |d̃ f | denote the weak slope of f with respect to the norm metric and to the metric d̃,
respectively.

We describe in the following a general procedure in order to use the change-of-metric principle.

Proposition 2.3. Let β : [0,+∞[ → ]0,+∞[ be continuous and such that sβ(s) → +∞ as s → +∞, and let
d̃ be the metric defined by (2.3) through the function β . For i, j = 1,2, i �= j, we have

d̃(Si,ρ , D j,ρ) → +∞ as ρ → +∞.



J.-N. Corvellec et al. / J. Differential Equations 248 (2010) 2064–2091 2069
Proof. Let i, j ∈ {1,2} with i �= j, let ρ > 0, u ∈ Si,2ρ , v ∈ D j,2ρ , and let γ ∈ Γu,v . Define

tγ := sup
{

t ∈ [0,1]: ∥∥γ (s)
∥∥ ∈ [ρ,3ρ] for all s ∈ [0, t]}.

Note that tγ is well defined (since ‖γ (0)‖ = ‖u‖ = 2ρ), and that ‖γ (tγ ) − γ (0)‖ � ρ (if tγ < 1, then
either ‖γ (tγ )‖ = ρ , or ‖γ (tγ )‖ = 3ρ , while if tγ = 1, then γ (tγ ) = v). We have

1∫
0

β
(∥∥γ (t)

∥∥)∥∥γ ′(t)
∥∥dt �

tγ∫
0

β
(∥∥γ (t)

∥∥)∥∥γ ′(t)
∥∥dt

�
(

min
s∈[ρ,3ρ]β(s)

)∥∥γ (tγ ) − γ (0)
∥∥

� ρ min
s∈[ρ,3ρ]β(s)

� 1

3
min

s∈[ρ,3ρ] sβ(s).

Since γ is arbitrary in Γu,v , and u, v are arbitrary in Si,2ρ , D j,2ρ , respectively, we thus obtain that

d̃(Si,2ρ, D j,2ρ) � 1

3
min

s∈[ρ,3ρ] sβ(s),

whence the conclusion. �
Combining the above propositions, the following is a corollary of Theorem 2.2.

Theorem 2.3. Let f : X → R be continuous, and let β : [0,+∞[ → ]0,+∞[ be continuous with sβ(s) →
+∞ as s → +∞. Assume that

−∞ < a := inf
X2

f � sup
X1

f =: b < +∞. (2.4)

Then, there exist c ∈ [a,b] and a sequence (uh) ⊂ X such that

f (uh) → c and
|df |(uh)

β(‖uh‖) → 0 as h → +∞.

Proof. Recall that X is a Hilbert space with X = X1 ⊕ X2, where 0 < dim X1 < ∞ and dim X2 > 0.
Let d̃ be the metric defined by (2.3) through the function β . Because β(s) � 1

s for large s, (X, d̃) is

complete according to Proposition 2.2(a). Since the topology of (X, d̃) agrees with the norm topology,
f is continuous on (X, d̃), while it follows from Proposition 2.1 that (D1,h, S1,h) links (D2,h, S2,h) in
(X, d̃) for every h ∈ N (recall Definition 2.2, and note that S1,h , D1,h are compact).

For each h ∈ N, we may thus apply Theorem 2.2 in (X, d̃), to the function f , to the pairs
(D1,h, S1,h), (D2,h, S2,h), and with β1 := b + 1

h , β2 := a − 1
h . Taking Proposition 2.2(c) into account,

we find (uh) ⊂ X such that a − 1
h < f (uh) < b + 1

h and

|df |(uh)

β(‖uh‖) � β1 − β2

min{d̃(S , D ), d̃(S , D )} → 0 as h → +∞,

1,h 2,h 2,h 1,h



2070 J.-N. Corvellec et al. / J. Differential Equations 248 (2010) 2064–2091
according to Proposition 2.3. Up to a subsequence, we further have that ( f (uh)) converges to some
c ∈ [a,b]. �
Remark 2.1. In critical point theory for continuous functions on metric spaces, the Palais–Smale condi-
tion for f : X → R at the level c ∈ R (condition (PS)c , for short) reads:

If (uh) ⊂ X is a sequence such that f (uh) → c and |df |(uh) → 0, then (uh) has a convergent
subsequence.

We thus see that if, in Theorem 2.3, we further assume that the function f satisfies condition (PS)c for
every c ∈ [a,b], in the metric space (X, d̃), then f has a critical point at level c (for some c ∈ [a,b]), that is,
there exists u ∈ X with |df |(u) = 0 and f (u) = c (using the fact that the weak slope is (clearly) lower
semicontinuous, and taking Proposition 2.2(c) into account). In [17], using the so-called strong Cerami–
Palais–Smale condition at level c ∈ R (denoted by (SCe)c), Silva obtains a result of this type through a
classical approach in critical point theory for C1 functionals, namely, by showing that condition (SCe)c

allows to obtain a suitable deformation lemma for the function f . We believe it enlightening to rather
rely on a general, basic deformation principle (Theorem 2.1), and on an elementary consequence of it
(Theorem 2.2), while postponing, at the stage of the applications to variational problems, the choice
(through the function β) of the appropriate metric in which to apply the abstract principles — a choice
depending on the technical assumptions made in the problem.

As is well known, in applications to variational nonlinear elliptic problems, if the nonlinearity has
subcritical growth then a bounded Palais–Smale sequence for the associated functional has a conver-
gent subsequence. Arguing as above, and rather than verify a Palais–Smale condition in a generalized
sense, we shall thus directly show, in the applications given in Sections 4 and 5, that the sequence
(uh) provided by Theorem 2.3 indeed is bounded.

A simple construction, to be used in applications, of a function β as in Theorem 2.3 is given below,
through another function ω.

Proposition 2.4. Let ω : ]0,+∞[ → R be nondecreasing, with ω(s)→ + ∞ as s → +∞. Then there exists a
bounded, continuous function βω : [0,+∞[ → ]0,+∞[ such that:

(a) s2βω(s)2 � ω(s) for large s;

(b) sβω(s) → +∞ as s → +∞.

Proof. Let s0 > 0 be such that ω(s) > 0 for all s � s0. Define, for s � s0:

ω̃(s) := inf
{(

ω(t) + |t − s|)1/2
: t � s0

} = inf
{(

ω(t) + s − t
)1/2

: t ∈ [s0, s]}.
Then, ω̃ : [s0,+∞[ → ]0,+∞[ is continuous, with ω̃(s)2 � ω(s) for s � s0. Moreover, ω̃ is nondecreas-
ing and ω̃(s) → +∞ as s → +∞. Then the function βω : [0,+∞[ → ]0,+∞[ defined by

βω(s) := min

{
1,

ω̃(š)

š

}
, where š := max{s, s0},

has the desired properties. �
We now provide a variant of Theorem 2.3 for a specific function β , but where we relax assump-

tion (2.4): in this case, there is no related Palais–Smale condition, while from the point of view of
applications (see Section 6), the approach is the same.



J.-N. Corvellec et al. / J. Differential Equations 248 (2010) 2064–2091 2071
Proposition 2.5. For μ > 0, consider the metric

dμ(u, v) := inf

{ 1∫
0

(
1 + ∥∥γ (t)

∥∥)μ−1∥∥γ ′(t)
∥∥dt: γ ∈ Γu,v

}

(corresponding to the function βμ(s) := (1 + s)μ−1 in (2.3)). For i, j = 1,2, i �= j, we have:

(a) if μ � 1, then dμ(Si,ρ , D j,ρ) = 1
μ(1 + ρ)μ;

(b) if 0 < μ < 1 and ρ � 1, then dμ(Si,ρ , D j,ρ) � ρμ dμ(Si,1, D j,1).

Proof. (a) Let π1 denote the orthogonal projection on X1, let u ∈ X1, v ∈ X2, and let γ ∈ Γu,v . Then,
γ1 := π1 ◦ γ ∈ Γu,0, and since s �→ (1 + s)μ−1 is nondecreasing, we have

1∫
0

(
1 + ∥∥γ (t)

∥∥)μ−1∥∥γ ′(t)
∥∥dt �

1∫
0

(
1 + ∥∥γ1(t)

∥∥)μ−1∥∥γ ′
1(t)

∥∥dt � dμ(u,0),

so that dμ(u, v) � dμ(u,0), from which we deduce, taking also Proposition 2.2(b) into account, that

dμ(S1,ρ , D2,ρ) = dμ(S1,ρ ,0) = 1

μ
(1 + ρ)μ.

Similarly, through projecting γ on X2, we obtain the other equality.
(b) Let u ∈ S1,ρ , v ∈ D2,ρ , and let γ ∈ Γu,v . Then, u/ρ ∈ S1,1, v/ρ ∈ D2,1, γ /ρ ∈ Γu/ρ,v/ρ , and we

have

1∫
0

(
1 + ∥∥γ (t)

∥∥)μ−1∥∥γ ′(t)
∥∥dt �

1∫
0

(
ρ + ∥∥γ (t)

∥∥)μ−1∥∥γ ′(t)
∥∥dt

= ρμ

1∫
0

(
1 + ∥∥(γ /ρ)(t)

∥∥)μ−1∥∥(γ /ρ)′(t)
∥∥dt

� ρμ dμ(u/ρ, v/ρ) � ρμ dμ(S1,1, D2,1),

so that dμ(S1,ρ , D2,ρ) � ρμ dμ(S1,1, D2,1). The other inequality is proved in a similar way. �
Theorem 2.4. Let f : X → R be continuous and bounded from below on the bounded subsets of X2 , and let
μ > 0. Assume that

lim
h→∞

1

hμ

(
sup
D1,h

f − inf
D2,h

f
)

= 0.

Then, there exists a sequence (uh) ⊂ X such that

inf
X2

f � lim inf
h→∞

f (uh) � lim sup f (uh) � sup
X

f

h→∞ 1
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and

lim
h→∞

|df |(uh)

(1 + ‖uh‖)μ−1
= 0.

Proof. Let dμ be the metric defined in Proposition 2.5, so that, according to this result we have

min
{

dμ(S1,h, D2,h),dμ(S2,h, D1,h)
}

� hμ

α
for all h ∈ N,

where α := μ if μ � 1, and α := (min{dμ(S1,1, D2,1),dμ(S2,1, D1,1)})−1 if μ < 1. Similarly as in the
proof of Theorem 2.3 (to which we refer for details), taking Proposition 2.2 into account, we may
apply Theorem 2.2 in (X,dμ): we find a sequence (uh) ⊂ X such that

inf
D2,h

f − 1

h
� f (uh) � sup

D1,h

f + 1

h

and

|df |(uh)

(1 + ‖uh‖)μ−1
� α

hμ

(
sup
D1,h

f − inf
D2,h

f + 2

h

)
→ 0 as h → +∞,

according to the assumption made. �
Remark 2.2. Note that the case of the Cerami metric, namely, the metric d0 corresponding to the
function β0(s) := 1/(1 + s), is not covered by Theorems 2.3 and 2.4. Indeed, though (X,d0) is not
bounded — as is seen from Proposition 2.2(b) — we have that for i, j = 1,2, i �= j, d0(Si,ρ , D j,ρ)

is bounded with respect to ρ . Indeed, considering u ∈ Si,ρ , v ∈ S j,ρ , and γ (t) := ρ(u + t(v − u))/

‖u + t(v − u)‖, t ∈ [0,1], an easy computation shows that

d0(Si,ρ , D j,ρ) � d0(Si,ρ , S j,ρ) �
1∫

0

‖γ ′(t)‖
1 + ‖γ (t)‖ dt = π

2

ρ

ρ + 1
.

Note also that the sequence (uh) provided by Theorem 2.4 is not truly a Palais–Smale sequence (see
Remark 2.1), since ( f (uh)) may not be bounded. Theorem 2.4 is a variant of some (more involved)
results in [2], see also Schechter [16] in a smooth setting.

3. The semilinear elliptic problem and nonquadraticity conditions

Let Ω be a nonempty, bounded domain in R
n , n � 3, with a smooth boundary ∂Ω . We consider

the Hilbert space H1
0(Ω) endowed with the scalar product

(u, v) :=
∫
Ω

∇u(x) · ∇v(x)dx,

and we denote by ‖·‖ its induced norm. For 1 � p < +∞, we denote by ‖·‖p the norm of L p(Ω),
by p′ = p

p−1 the conjugate of p (for 1 < p < +∞), and we let 2∗ = 2n
n−2 denote the critical Sobolev

exponent for the embedding of H1
0(Ω) in L p(Ω).
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We consider the problem (P ) of the existence of a weak solution u ∈ H1
0(Ω) of the semilinear

equation

−�u = g(·, u) in D′(Ω),

where (and throughout this section) g : Ω × R → R is a Carathéodory function such that for almost
every x ∈ Ω and all s ∈ R,

(g)
∣∣g(x, s)

∣∣ � a(x) + b|s|p−1,

where a ∈ L2∗′
(Ω), b � 0, and 1 < p � 2∗ .

Under this assumption, and letting G(x, s) := ∫ s
0 g(x, t)dt , the functional f defined by

f (u) = 1

2

∫
Ω

∣∣∇u(x)
∣∣2

dx −
∫
Ω

G
(
x, u(x)

)
dx (3.1)

is (well defined and) of class C1 on (H1
0(Ω),‖·‖), with

f ′(u)(v) =
∫
Ω

∇u · ∇v −
∫
Ω

g(x, u)v

(from now on, we drop the “dx”s) so that for every u ∈ H1
0(Ω) we have |df |(u) = ‖ f ′(u)‖H−1(Ω) ,

while

2 f (u) − f ′(u)(u) =
∫
Ω

(
g(x, u)u − 2G(x, u)

)
.

As is well known, existence results for problem (P ) heavily depend on the behavior of the integrand
in the latter equality. Accordingly, a basic condition we shall use here is the following:

There exists a0 ∈ L1(Ω) such that for almost every x ∈ Ω and all s ∈ R,

(G.g)± ±(
g(x, s)s − 2G(x, s)

)
� −a0(x).

This indeed contains two (dual) conditions: (G.g)+ and (G.g)− , which imply that

H±(x) := lim inf|s|→∞
[±(

g(x, s)s − 2G(x, s)
)]

> −∞ for a.e. x ∈ Ω. (3.2)

We set

Ω± := {
x ∈ Ω: H±(x) = +∞}

.

In the remainder of this section, we discuss some conditions on the “size” of the sets Ω+ and Ω− ,
that allow to make appropriate choices of a metric on H1

0(Ω), in order to apply the abstract results
of the previous section to obtain the existence of a weak solution for (P ).

Let 0 < λ1 < λ2 � · · · � λh → +∞ denote the eigenvalues of −� on H1
0(Ω), counted according to

their multiplicity, and let (e j) j∈N denote corresponding eigenvectors forming a Hilbert basis of H1
0(Ω)

(e1 > 0 on Ω). For j ∈ N, we denote by E j the (finite dimensional) λ j-eigenspace.
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Let S denote the best constant for the embedding H1
0(Ω) ⊂ L2∗

(Ω), that is

S := inf

{ ‖u‖2

‖u‖2
2∗

: u ∈ H1
0(Ω), u �= 0

}
.

We set α1 := 0, and for j ∈ N, j � 2:

α j := |Ω| −
(

S

λ j

)n/2

> 0,

where |·| denotes the Lebesgue measure. (Note that n/2 = (2∗/2)′ .)

Lemma 3.1. Let j ∈ N, and let Ω0 ⊂ Ω with |Ω0| > α j . There exists ε j > 0 such that for every u ∈ H1
0(Ω)

with ‖u‖ � 1 and λ j‖u‖2
2 � 1 − ε j , we have

∣∣{x ∈ Ω0: u(x) �= 0
}∣∣ > 0.

Proof. Assume, for a contradiction, that there is a sequence (uh) in H1
0(Ω) such that for each h,

‖uh‖ � 1, λ j‖uh‖2
2 � 1 − 1

h
, and uh(x) = 0 for a.e. x ∈ Ω0.

Up to a subsequence, we may assume that (uh) converges to some function u, weakly in H1
0(Ω),

strongly in L2(Ω), and almost everywhere in Ω , so that ‖u‖ � 1, λ j‖u‖2
2 � 1, and u(x) = 0 for almost

every x ∈ Ω0. If j = 1, we thus have u ∈ E1 \ {0}, so that u(x) �= 0 for every x ∈ Ω , which contradicts
the fact that |Ω0| > 0. If j � 2, we have

1 � λ j

( ∫
Ω\Ω0

|u|2∗
)2/2∗

|Ω \ Ω0|2/n � λ j

S
|Ω \ Ω0|2/n,

which contradicts the fact that |Ω0| > α j . �
According to the previous lemma, for j ∈ N we consider the two conditions:

(N Q j)
± |Ω±| > α j .

Lemma 3.2. Let j ∈ N, and assume that conditions (G.g)+ and (N Q j)
+ hold. Let ε j > 0 be given by

Lemma 3.1, corresponding to Ω0 := Ω+ . Set

Eε j := {
u ∈ H1

0(Ω): ‖u‖ � 1, λ j‖u‖2
2 � 1 − ε j

}
,

and define a nondecreasing ω j,+ : ]0,+∞[→ R by:

ω j,+(s) := inf

{∫
Ω

(
g(x,ρu)ρu − 2G(x,ρu)

)
: ρ � s, u ∈ Eε j

}
.

Then,

lim
s→+∞ω j,+(s) = +∞.
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Proof. Let (uh) be a sequence in Eε j and 0 < ρh → +∞. Up to a subsequence, (uh) converges to
some function u, weakly in H1

0(Ω), strongly in L2(Ω), and almost everywhere in Ω . Thus, u ∈ Eε j

and, from (N Q j)
+ and Lemma 3.1 we find Ω̃ ⊂ Ω+ with |Ω̃| > 0 such that u(x) �= 0 for every x ∈ Ω̃ .

According to (G.g)+ (recall (3.2)), we may apply Fatou’s lemma to obtain

lim
h→∞

∫
Ω

(
g(x,ρhuh)ρhuh − 2G(x,ρhuh)

)
�

∫
Ω̃

H+ = +∞.

The conclusion follows from the arbitrariness of the sequences (uh) and (ρh). �
Remark 3.1. In a dual way, if conditions (G.g)− and (N Q j)

− hold, then the function
ω j,− : ]0,+∞[→ R defined by:

ω j,−(s) := inf

{∫
Ω

(
2G(x,ρu) − g(x,ρu)ρu

)
: ρ � s, u ∈ Eε j

}
,

also satisfies ω j,−(s) → +∞ as s → +∞.

Lemma 3.3. Let j ∈ N, and assume that |Ω+| > 0 (i.e., condition (N Q 1)
+ holds). There exists ε j > 0 such

that for every u ∈ H1
0(Ω) with ‖u‖ � 1, λ j‖u‖2

2 � 1 − ε j , and d(u, E j) � ε j , we have

∣∣{x ∈ Ω+: u(x) �= 0
}∣∣ > 0.

Proof. Assume, for a contradiction, that there is a sequence (uh) in H1
0(Ω) such that for each h:

‖uh‖ � 1, λ j‖uh‖2
2 � 1 − 1

h , d(uh, E j) � 1
h , and

∣∣{x ∈ Ω+: uh(x) �= 0
}∣∣ = 0.

Then, up to a subsequence, (uh) converges weakly in H1
0(Ω), strongly in L2(Ω), and almost every-

where in Ω , to some function u ∈ E j with ‖u‖ = 1, so that u(x) �= 0 for almost every x ∈ Ω , and
|{x ∈ Ω+: u(x) �= 0}| = 0, so that |Ω+| = 0, contradicting our assumption. �

Arguing in a similar way as in Lemma 3.2 yields the following.

Lemma 3.4. Let j ∈ N, assume that conditions (G.g)+ and (N Q 1)
+ hold, and let ε j > 0 be given by

Lemma 3.3. Set

E
ε j

j := {
u ∈ H1

0(Ω): ‖u‖ � 1, λ j‖u‖2
2 � 1 − ε j, d(u, E j) � ε j

}
,

and define a nondecreasing ω̂ j,+ : ]0,+∞[→ R by

ω̂ j,+(s) := inf

{∫
Ω

(
g(x,ρu)ρu − 2G(x,ρu)

)
: ρ � s, u ∈ E

ε j

j

}
.

Then,

lim
s→+∞ ω̂ j,+(s) = +∞.
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Remark 3.2. (a) Set

H±(x) := lim inf
s→−∞

[±(
g(x, s)s − 2G(x, s)

)]
,

H±(x) := lim inf
s→+∞

[±(
g(x, s)s − 2G(x, s)

)]
.

Arguing similarly as in Lemma 3.3 and in Lemma 3.4, it is easily seen that the latter holds under the
following condition, weaker than (N Q 1)

+:

(N Q j)
+
0 ∀u ∈ E j \ {0}: ∣∣{H+ = +∞, u > 0}∣∣ + ∣∣{H+ = +∞, u < 0}∣∣ > 0.

In a dual way, results similar to the two previous lemmas hold under conditions (G.g)− and (N Q 1)
− ,

or, more generally, under conditions (G.g)− and

(N Q j)
−
0 ∀u ∈ E j \ {0}: ∣∣{H− = +∞, u > 0}∣∣ + ∣∣{H− = +∞, u < 0}∣∣ > 0.

(b) The conditions (N Q j)
± originate from the work of Furtado and Silva [10]. Precisely, conditions

(N Q )± in [10] read: “|Ω±| > 0 and (G.g)± holds”; while the assumption that |Ω±| > α j is delayed
there until the verification of the compactness condition for the functional f mentioned in Remark 2.1
— which points up the difference of approach evoked in that remark. Also, our singling out conditions
(G.g)± is justified by the specific role these are to play in the coming section. The stronger conditions

(H)± lim|s|→∞
[±(

g(x, s)s − 2G(x, s)
)] = +∞ uniformly for a.e. x ∈ Ω

(implying Ω± = Ω , and (G.g)± , due to uniformity) were considered by Costa and Magalhães [7], who
introduced such nonquadraticity conditions. See Remark 4.3 below for further comments.

4. A weakly doubly resonant problem

In the remainder of the paper, f : H1
0(Ω) → R is the functional defined by (3.1). In this section,

g : Ω × R → R is a Carathéodory function satisfying (g). Using standard notations, for x ∈ Ω we let

L±(x) := lim inf
s→±∞

2G(x, s)

s2
, K±(x) := lim sup

s→±∞
2G(x, s)

s2
,

and set L := min{L+, L−}, K := max{K+, K−}. We first point out the following consequence of condi-
tions (G.g)± , building on a technical device from [7, Lemma 4].

Lemma 4.1.

(a) Assume (G.g)+ . Then,

2G(x, s) � K (x)s2 + a0(x) for a.e. x ∈ Ω and for all s ∈ R.

(b) Assume (G.g)− . Then,

2G(x, s) � L(x)s2 − a0(x) for a.e. x ∈ Ω and for all s ∈ R.

Proof. We show (a), the proof of (b) is similar. For almost every x ∈ Ω and every s �= 0 we have

s3 d

ds

(
G(x, s)

s2

)
= g(x, s)s − 2G(x, s) � −a0(x),
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so that for every t with ts > 0 and |t| > |s| we obtain

G(x, s)

s2
� G(x, t)

t2
+ a0(x)

2

(
1

s2
− 1

t2

)
(4.1)

which, taking the upper limits on the right-hand side as t → ±∞, and the definition of K into ac-
count, yields the result. �
Remark 4.1. Observe that, taking the lower limits on the right-hand side of (4.1), as t → ±∞, then
the upper limits on the left-hand side, as s → ±∞, we indeed obtain K+ = L+ and K− = L− . That is,
under condition (G.g)+ (or under condition (G.g)− as well), there exist

�+(x) := lim
s→+∞

2G(x, s)

s2
and �−(x) := lim

s→−∞
2G(x, s)

s2

(and, of course, L = min{�+, �−}, K = max{�+, �−}).

For j ∈ N, we set

X−
j := span{e1, . . . , e j} and X+

j := span{e j, e j+1, . . .},

so that

‖u‖2 � λ j‖u‖2
2 for u ∈ X−

j and ‖u‖2 � λ j‖u‖2
2 for u ∈ X+

j , (4.2)

and we consider the following one-sided growth conditions on G:
There exists δ j ∈ L1(Ω) such that for almost every x ∈ Ω and all s ∈ R,

(G j)
± ±2G(x, s) � ±λ j s

2 + δ j(x).

Taking (4.2) into account, we see that (G j)
± (respectively) imply

±2 f (u) = ±‖u‖2 ∓
∫
Ω

2G(x, u) � −‖δ j‖1 for every u ∈ X
±
j . (4.3)

We now consider the following conditions, weaker than (G j)
±:

There exist a1 ∈ L1(Ω) and b1 ∈ Ln/2(Ω) such that for almost every x ∈ Ω and all s ∈ R,

(G)± ±2G(x, s) � a1(x) + b1(x)s2.

Notation. For a function u defined on Ω , we set as usual: u+ := max{u,0}, u− := max{−u,0}. More-
over, equalities or large inequalities between functions defined on Ω are hereafter meant to hold in
almost everywhere sense.

Lemma 4.2. Let (ûh) be a sequence in H1
0(Ω) with ‖ûh‖ = 1 for every h, and weakly convergent to a func-

tion u, let 0 < ρh → +∞, and let j ∈ N. We have:

(a) If (G)+ holds, then

lim sup
h→∞

∫
2G(x,ρhûh)

ρ2
h

�
∫ (

K+
(
u+)2 + K−

(
u−)2)

. (4.4)
Ω Ω
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If, moreover, K � λ j , u ∈ X+
j , and

lim inf
h→∞

f (ρhûh)

ρ2
h

� 0, (4.5)

then u ∈ E j \ {0} and (λ j − K+)u+ + (λ j − K−)u− = 0 (whence K = λ j).
(b) If (G)− holds, then

lim inf
h→∞

∫
Ω

2G(x,ρhûh)

ρ2
h

�
∫
Ω

(
L+

(
u+)2 + L−

(
u−)2)

.

If, moreover, L � λ j , (ûh) converges strongly to u ∈ X−
j , and

lim sup
h→∞

f (ρhûh)

ρ2
h

� 0,

then u ∈ E j \ {0} and (L+ − λ j)u+ + (L− − λ j)u− = 0 (whence L = λ j ).

Proof. (a) Up to a subsequence, we may assume that ûh → u almost everywhere in Ω . Then, accord-
ing to (G)+ ,

2G(·,ρhûh)

ρ2
h

� a1

ρ2
h

+ b1û2
h → b1u2 strongly in L1(Ω),

while

lim sup
h→∞

2G(x,ρhûh(x))

ρ2
h

� K+(x)
(
u+(x)

)2 + K−(x)
(
u−(x)

)2

for almost every x ∈ Ω , and (4.4) follows from Fatou’s lemma. If (4.5) holds, we thus have

0 � lim inf
h→∞

2 f (ρhûh)

ρ2
h

= 1 − lim sup
h→∞

∫
Ω

2G(x,ρhûh)

ρ2
h

� 1 −
∫
Ω

(
K+

(
u+)2 + K−

(
u−)2)

,

so that, if K � λ j , if u ∈ X+
j , and taking (4.2) into account, we have

‖u‖2 � 1 �
∫
Ω

(
K+

(
u+)2 + K−

(
u−)2) � λ j‖u‖2

2 � ‖u‖2.

It follows that u ∈ E j with ‖u‖ = 1, and that
∫
Ω

((λ j − K+)(u+)2 + (λ j − K−)(u−)2) = 0, so that
(λ j − K+)u+ + (λ j − K−)u− = 0. Since u(x) �= 0 for almost every x ∈ Ω , we obtain in particular that
K = λ j .

(b) The first conclusion is obtained similarly as in (a). Using it, under the further assumptions
made, and taking (4.2) into account, we obtain

λ j‖u‖2
2 �

∫
Ω

(
L+

(
u+)2 + L−

(
u−)2) � 1 = ‖u‖2 � λ j‖u‖2

2.

It follows that u ∈ E j , and then, that (L+ − λ j)u+ + (L− − λ j)u− = 0. �
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Corollary 4.1. Let j ∈ N.

(a) If (G)+ holds, if K � λ j , and if (λ j − K+)u+ + (λ j − K−)u− �= 0 for every u ∈ E j \{0}, then f (u) → +∞
as ‖u‖ → ∞, u ∈ X+

j .

(b) If (G)− holds, if L � λ j , and if (L+ − λ j)u+ + (L− − λ j)u− �= 0 for every u ∈ E j \ {0}, then f (u) → −∞
as ‖u‖ → ∞, u ∈ X−

j .

Proof. Assume, for a contradiction, that there is a sequence (uh) in X+
j (resp., in X−

j ) with 0 <

ρh := ‖uh‖ → ∞ and sup( f (uh)) < +∞ (resp., inf( f (uh)) > −∞). Setting ûh := uh
ρh

, so that, up to a

subsequence, (ûh) converges weakly in X+
j (resp., strongly in (the finite dimensional) X−

j ), Lemma 4.2
yields a contradiction. �
Remark 4.2. Lemma 4.2 and Corollary 4.1 are adaptations of classical arguments, see, e.g., [14,
Lemma 1].

In view of the previous result and of Remark 4.1, we are led to consider the following condition,
for j ∈ N:

(E j) (λ j−�+)u++(λ j−�−)u− �= 0 for every u ∈ E j \ {0}.
(Note that (E1) just reads: �+ �= λ1 �= �− .)

The following is the main result of this section.

Theorem 4.1. Assume (g) with p < 2∗ . Let further i ∈ N, assume that

(W R)i,i+1 λi � L � K � λi+1,

and that conditions (G.g)+ , (N Q i+1)
+ , and either (Gi)

− or (Ei) and (G)− , hold. Then, problem (P ) has a
weak solution.

Proof. Considering the decomposition

H1
0(Ω) = X1 ⊕ X2 with X1 := X−

i and X2 := X⊥
1

(= X+
i+1

)
, (4.6)

we first show that

−∞ < inf
X2

f � sup
X1

f < +∞. (4.7)

Indeed, K � λi+1 and (G.g)+ imply that (Gi+1)
+ holds (with δi+1 := a0), according to Lemma 4.1(a),

so that f is bounded below on X2 according to (4.3). Likewise, (4.3) yields that f is bounded above
on X1 if (Gi)

− holds. Finally, if (Ei) and (G)− hold, and since L � λi , f is anticoercive on X1 according
to Corollary 4.1(b), so that again supX1

f < +∞.
Thanks to (G.g)+ and (N Q i+1)

+ , letting Eεi+1 and ωi+1,+ =: ω be defined as in Lemma 3.2, con-
sider βω : [0,+∞[ → ]0,+∞[ given by Proposition 2.4. Applying Theorem 2.3, we obtain a sequence
(uh) ⊂ H1

0(Ω) such that

(
f (uh)

)
is bounded and

f ′(uh)

βω(‖uh‖) → 0. (4.8)

We show that (uh) is bounded. Arguing by contradiction, assume that, up to a subsequence, 0 < ρh :=
‖uh‖ → ∞ and ûh := uh

ρ strongly converges in L2(Ω). Since (Gi+1)
+ holds (as already said), we have
h
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1 = lim
h→∞

(
1 − 2 f (uh)

ρ2
h

)
= lim

h→∞

∫
Ω

2G(x,ρhûh)

ρ2
h

� λi+1 lim
h→∞

‖ûh‖2
2, (4.9)

so that ûh ∈ Eεi+1 for large h. Thus, from the definition of ω and from Proposition 2.4(a), we obtain

2 f (uh)− f ′(uh)(uh) =
∫
Ω

(
g(x,ρhûh)ρhûh−2G(x,ρhûh)

)
� ω(ρh) � ρ2

h βω(ρh)
2

for large h. Taking Proposition 2.4(b) into account, this yields

2 f (uh) − f ′(uh)(uh)

ρhβω(ρh)
� ρhβω(ρh) → +∞,

while, on the other hand, (4.8) yields

2 f (uh) − f ′(uh)(uh)

ρhβω(ρh)
→ 0,

which is the desired contradiction.
Thus, (uh) is a bounded sequence with f ′(uh) → 0, so that, since p < 2∗ , we conclude in a standard

way (see, e.g., [15, Proposition B.35]) that (uh) has a strongly convergent subsequence, the limit of
which is a weak solution of (P ). �

In a (an essentially) symmetric way, we have the following result.

Theorem 4.2. Assume (g) with p < 2∗ . Let further i ∈ N, assume that

λi � L � K � λi+1,

and that conditions (G.g)− , (N Q i+1)
− , and either (Gi+1)

+ or (Ei+1) and (G)+ , hold. Then, problem (P ) has
a weak solution.

Proof. If condition (Gi+1)
+ holds, the proof is quite similar to that of Theorem 4.1, observing that

L � λi and (G.g)− imply (Gi)
− , and using the function ωi+1,− of Remark 3.1 in place of ωi+1,+ . If

conditions (Ei+1) and (G)+ hold, we further have to observe, first, that f , which is coercive on X2
according to Corollary 4.1(a), is bounded on bounded subsets of H1

0(Ω), so that infX2 f > −∞; then,
in order to obtain the estimate (4.9), we now use (4.4) together with K � λi+1. �

The following is an immediate corollary of both Theorems 4.1 and 4.2.

Corollary 4.2. Assume (g) with p < 2∗ . Assume further that for some i ∈ N we have

L = K = λi,

and that one of the following sets of conditions is satisfied:

(i) i � 2, (G.g)+ , (N Q i)
+ , and (G)−;

(ii) (G.g)− , (N Q i+1)
− , and (G)+ .

Then, problem (P ) has a weak solution.
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(Indeed, in case (i) we may assume that λi−1 < λi , so that (Ei−1) holds, while in case (ii) we may
assume that λi < λi+1, so that (Ei+1) holds.)

Remark 4.3. (a) Theorems 4.1 and 4.2 extend the results of Furtado and Silva [10, Theorems 1.3,
4.1] where, using our notations, it is assumed that (Gi)

− (resp., (Gi+1)
+) holds whenever L = λi

(resp., K = λi+1), while the two-sided version of (G)± (that is, (G)+ and (G)−) is assumed, the latter
being combined with the fact that g is assumed continuous on Ω × R in order to get, in a rather
involved way, the conclusions of Corollary 4.1. On the other hand, we note that Furtado and Silva
were mainly concerned with the existence of a nontrivial solution, see [10, Theorem 1.2] (involving
further assumptions on g), which is obtained using a Morse theoretic approach in the spirit of [11].
This type of result can probably also be revisited in the light of nonsmooth Morse theory — in that
respect, see [4]. After this remark, we conclude the section with a refinement of [10, Theorem 1.4],
concerning the existence of a nontrivial solution in the case i = 1 (resonance at the first eigenvalue).

(b) Theorems 4.1 and 4.2 also extend Costa and Magalhães’ [7, Theorem 2], where (W R)i,i+1 holds
uniformly for almost every x ∈ Ω (which implies (G)+ and (G)−), and either L �= λi and (H)+ holds,
or K �= λi+1 and (H)− holds (recall Remark 3.2(b)). It is indeed shown in [7] — using also the uni-
formity in (W R)i,i+1 — that under condition (H)+ (resp., (H)−), the functional f is coercive on X2
(resp., anticoercive on X1), and satisfies the Palais–Smale condition (recall Remark 2.1) in (H1

0(Ω),d0),
where d0 is the Cerami metric (recall Remark 2.2). Thus, a solution of problem (P ) can be obtained
by applying the saddle point theorem of Rabinowitz [15, Theorem 4.6] in (H1

0(Ω),d0) (see [5, The-
orem 3.7] for a general, metric version of the latter). We also note that an example of a function g
which is not sublinear, but with a subquadratic potential G is given in [7].

Theorem 4.3. Assume (g) with p < 2∗ , and that K � λ1 . Assume further that one of the following sets of
conditions is satisfied:

(i) (G.g)+ and (N Q 1)
+;

(ii) (G.g)− , (N Q 1)
− , and either (G1)

+ or (E1) and (G)+ .

Then, problem (P ) has a weak solution.

Proof. In both cases, arguing as in the proofs of Theorem 4.1 and 4.2, we see that the functional f
is bounded below (H1

0(Ω) = X+
1 ). Still arguing as in the proof of Theorem 4.1 (boundedness of the

sequence (uh)), we see that f indeed satisfies the (PS)c condition at any level c in the (complete)
metric space (H1

0(Ω), d̃), where d̃ is the metric of Proposition 2.2 corresponding to the function βω

in Proposition 2.4, with ω := ω1,+ given by Lemma 3.2 in case (i), and with ω := ω1,− given by
Remark 3.1 in case (ii).

Thus, the functional f attains its global minimum at some u ∈ H1
0(Ω), which is a weak solution of

problem (P ). �
Slightly refining the arguments in [10, Theorem 1.4], it is possible to obtain a nontrivial solution

in the previous result, through additional assumptions on the behavior of G(x, s) for s > 0 and small.
Namely, set

L0(x) := lim inf
s→0+

2G(x, s)

s2
,

and consider the local conditions:
For almost every x ∈ Ω and for all s > 0 and small,

(G1)
0 2G(x, s) � λ1s2;
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There exists b0 ∈ L1(Ω) such that for almost every x ∈ Ω and for all s > 0 and small,

(G)0 2G(x, s) � −b0(x)s2.

Lemma 4.3. Let 0 < sh → 0. If (G)0 holds, then

lim inf
h→∞

∫
Ω

2G(x, she1)

s2
h

�
∫
Ω

L0e2
1.

If, moreover, L0 � λ1 and lim suph→∞ f (she1)

s2
h

� 0, then L0 = λ1 .

Proof. The first conclusion follows from Fatou’s lemma. Under the further assumptions made, we thus
obtain

‖e1‖2 � lim inf
h→∞

∫
Ω

2G(x, she1)

s2
h

�
∫
Ω

L0e2
1 � λ1‖e1‖2

2 = ‖e1‖2,

so that L0 = λ1. �
In the following result, L0 �� λ1 means that L0 � λ1 and L0 �= λ1.

Corollary 4.3. Under the assumptions of Theorem 4.3, assume further that either (G1)
0 holds, or L0 �� λ1 and

(G)0 holds. Then, problem (P ) has a nontrivial weak solution.

Proof. If (G1)
0 holds, since e1 is a bounded, positive function on Ω , we have

2 f (se1) =
∫
Ω

(
λ1s2e2

1 − 2G(x, se1)
)
� 0

for s > 0 and small enough. In the other case, it follows from Lemma 4.3 that f (se1) < 0 for all
s > 0 and small enough. Thus, the functional f attains its minimun at a nonzero u ∈ H1

0(Ω) (since
f (0) = 0). �
Remark 4.4. In [10, Theorem 1.4], it is assumed that (G)0 holds with b0 := 0, while only case (i) of
Theorem 4.3 is considered, under the additional (explicit) assumption that (G)+ holds. As a matter of
fact, (G.g)+ and K � λ1 imply (G1)

+ (with δ1 := a0), which is stronger than (G)+ .

5. A strongly doubly resonant problem

In this section, g : Ω × R → R is a Carathéodory function such that for almost every x ∈ Ω and all
s ∈ R,

(ĝ)
∣∣g(x, s)

∣∣ � a(x) + b(x)|s|,

where a ∈ Lr1(Ω) and b ∈ Lr2(Ω), with r1 � 2∗′ and r2 � (2∗/2)′ . Set

r := min

{
r1,

2∗r2

2∗ + r

}
.

2
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Since 2∗r2
2∗+r2

= ( 1
2∗ + 1

r2
)−1 � ( 1

2∗ + 1
(2∗/2)′ )

−1 = 2∗′ , we have r � 2∗′ , and

r > 2∗′ ⇐⇒ r1 > 2∗′ and r2 >
(
2∗/2

)′
.

We shall use the standard notations l := min{l+, l−}, k := max{k+,k−}, where

l±(x) := lim inf
s→±∞

g(x, s)

s
, k±(x) := lim sup

s→±∞
g(x, s)

s
.

It is easy to see that l± � L± � K± � k± (L± and K± as defined in the previous section). Arguing
as in the proof of Lemma 4.2, but using condition (ĝ) in place of condition (G)± , readily yields the
following.

Lemma 5.1. Let (ûh) be a sequence in H1
0(Ω), weakly convergent to a function u, and let 0 < ρh → +∞.

Then:

(a) For every v ∈ L2∗
(Ω) with v � 0, we have

lim sup
h→∞

∫
Ω

g(x,ρhûh)v

ρh
�

∫
Ω

(
k+u+ − l−u−)

v,

lim inf
h→∞

∫
Ω

g(x,ρhûh)v

ρh
�

∫
Ω

(
l+u+ − k−u−)

v;

(b) We have:

lim sup
h→∞

∫
Ω

2G(x,ρhûh)

ρ2
h

�
∫
Ω

(
K+

(
u+)2 + K−

(
u−)2)

,

lim inf
h→∞

∫
Ω

2G(x,ρhûh)

ρ2
h

�
∫
Ω

(
L+

(
u+)2 + L−

(
u−)2)

.

The following lemma builds on some well-known facts (see, e.g., [1,13]).

Lemma 5.2. Let i ∈ N, let (ûh) be a sequence in H1
0(Ω) with ‖ûh‖ = 1 for every h, and weakly convergent to

a function u, and let 0 < ρh → +∞. Assume that

f ′(ρhûh)

ρh
→ 0.

Then:

(a) u �= 0, and if λi � l � k � λi+1 then, either u ∈ Ei and (l+ − λi)u+ + (l− − λi)u− = 0 (whence l = λi ),
or u ∈ Ei+1 and (λi+1 − k+)u+ + (λi+1 − k−)u− = 0 (whence k = λi+1).

(b) If r > 2∗′ , ûh → u strongly in H1
0(Ω). Moreover, if λi � l � k � λi+1 and if

f (ρhûh)

ρ2
→ 0,
h
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then, either u ∈ Ei and (L+ − λi)u+ + (L− − λi)u− = 0 (whence L = λi ), or u ∈ Ei+1 and (λi+1 −
K+)u+ + (λi+1 − K−)u− = 0 (whence K = λi+1).

Proof. (a) Since

|g(·,ρhûh)ûh|
ρh

� a|ûh|
ρh

+ bû2
h → bu2 strongly in L1(Ω),

assuming that u = 0 yields the contradiction

1 = ‖ûh‖2 = f ′(ρhûh)(ûh)

ρh
+

∫
Ω

g(x,ρhûh)ûh

ρh
→ 0.

Moreover, we have

∥∥∥∥ g(·,ρhûh)

ρh

∥∥∥∥
r
� ‖a‖r

ρh
+ C‖b‖r2‖ûh‖2∗ � C

(for some constants C > 0), so that, up to a subsequence,

g(·,ρhûh)

ρh
→ z weakly in Lr(Ω) (5.1)

(for some function z). It follows that for every v ∈ H1
0(Ω):

∫
Ω

∇u · ∇v = lim
h→∞

∫
Ω

∇ûh · ∇v

= lim
h→∞

[
f ′(ρhûh)(v)

ρh
+

∫
Ω

g(x,ρhûh)v

ρh

]

=
∫
Ω

zv

while, according to Lemma 5.1(a), we have

l+u+ − k−u− � z � k+u+ − l−u−. (5.2)

If λi � l � k � λi+1, we thus have z = mu for some (measurable) function m such that λi � m � λi+1,
so that

−�u = mu in D′(Ω). (5.3)

It follows that either m = λi , or m = λi+1 — for, otherwise, denoting by λ̂ j(m) the eigenvalues of the
weighted eigenvalue problem (5.3), the monotonicity property of these eigenvalues with respect to m
yields

λ̂i(m) < λ̂i(λi) = 1 = λ̂i+1(λi+1) < λ̂i+1(m),
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contradicting the fact that u is an eigenfunction of (5.3). Thus, (5.3) reads u ∈ Ei ∪ Ei+1, and the
fact that (l+ − λi)u+ + (l− − λi)u− = 0, or (λi+1 − k+)u+ + (λi+1 − k−)u− = 0 (depending on which
eigenspace u belongs to) follows from (5.2) again.

(b) If r > 2∗′ , up to a subsequence we have ûh → u strongly in Lr′
(Ω) and we obtain from (5.1)

and the fact that f ′(ρh ûh)
ρh

→ 0, that

‖u‖2 = lim
h→∞

∫
Ω

∇ûh · ∇u

= lim
h→∞

∫
Ω

g(x,ρhûh)u

ρh

= lim
h→∞

∫
Ω

g(x,ρhûh)ûh

ρh

= lim
h→∞

‖ûh‖2 (= 1),

so that ûh → u strongly in H1
0(Ω).

If λi � l � k � λi+1, we know from part (a) that u ∈ Ei ∪ Ei+1, and the alternative follows as in
Lemma 4.2, thanks to Lemma 5.1(b). �
Remark 5.1. The conclusion of Lemma 5.2(b) also holds in the case r = 2∗′ provided l = k. Indeed, if
m := l = k, we have

g(·,ρhûh)

ρh
→ mu strongly in L2∗′

(Ω),

which yields ‖ûh‖ → ‖u‖ as in the above proof, so that again ûh → u in H1
0(Ω). Observe that if l = k,

the alternative in part (b) of Lemma 5.2 is the same as in part (a).

Theorem 5.1. Assume (ĝ) with r > 2∗′ and (G.g)+ . Let further i ∈ N, assume that

(S R)i,i+1 λi � l � k � λi+1,

and that one of the following sets of conditions is satisfied:

(i) (N Q 1)
+ , and (Gi)

−;
(ii) (N Q i+1)

+
0 and (Ei).

Then, problem (P ) has a weak solution.

Proof. Consider the decomposition (4.6). Arguing as in the proof of Theorem 4.1 (note that in case (ii),
the second inequality in Lemma 5.1(b) yields the conclusion of Corollary 4.1(b)), we have (4.7) again.

In case (i), let, for j := i, i + 1, E
ε j

j and ω̂ j,+ be the set and function defined in Lemma 3.4, set
ω := min{ω̂i,+, ω̂i+1,+}, and let βω be given by Proposition 2.4. Applying Theorem 2.3, we find a
sequence (uh) ⊂ H1

0(Ω) such that

(
f (uh)

)
is bounded and

f ′(uh) → 0, (5.4)

βω(‖uh‖)
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and we show that (uh) is bounded. Arguing by contradiction, assume that, up to a subsequence,
0 < ρh := ‖uh‖ → ∞ and ûh := uh

ρh
converges weakly in H1

0(Ω) to some function u. Recalling that βω

is bounded, (5.4) yields

f (ρhûh)

ρ2
h

→ 0 and
f ′(ρhûh)

ρh
→ 0,

so that, according to Lemma 5.2(b), (ûh) strongly converges to u and u ∈ Ei ∪ Ei+1. Thus, ‖u‖ = 1, and
either λi‖u‖2

2 = 1, or λi+1‖u‖2
2 = 1, so that ûh ∈ Eεi

i ∪ E
εi+1
i+1 for large h. We conclude similarly as in

the proof of Theorem 4.1.
In case (ii), taking Remark 3.2 into account, we proceed as above, but with ω := ω̂i+1,+ only, since

condition (Ei) excludes the possibility that u ∈ Ei (recall also Remark 4.1). �
In a dual way, we have the following result.

Theorem 5.2. Assume (ĝ) with r > 2∗′ and (G.g)− . Let further i ∈ N, assume that

λi � l � k � λi+1,

and that one of the following sets of conditions is satisfied:

(i) (N Q 1)
− , and (Gi+1)

+;
(ii) (N Q i)

−
0 and (Ei+1).

Then, problem (P ) has a weak solution.

Remark 5.2. In view of Remark 5.1, if l = k, Theorems 5.1 and 5.2 hold also with r = 2∗′ . In particular,
we have the following, which complements Corollary 4.2 and Theorem 4.3.

Corollary 5.1. Assume (ĝ). Assume further that for some i ∈ N we have

l = k = λi,

and that one of the following sets of conditions is satisfied:

(i) i � 2, (G.g)+ , and (N Q i)
+
0 ;

(ii) (G.g)− and (N Q i)
−
0 .

Then, problem (P ) has a weak solution.

Remark 5.3. In the classical case λi � l � k � λi+1 with L �= λi and K �= λi+1, the problem (P w) of the
existence of a weak solution u ∈ H1

0(Ω) of the semilinear equation

−�u = g(·, u) + w in D′(Ω), (5.5)

can be studied for any w ∈ H−1(Ω). Precisely, assuming (ĝ) and (S R)i,i+1, and one of the following
sets of conditions:

(i) r > 2∗′ , (L+−λi)u++(L−−λi)u− �= 0 for every u ∈ Ei \{0}, and (λi+1 − K+)u++(λi+1 − K−)u− �=0
for every u ∈ Ei+1 \ {0} ;

(ii) (l+ − λi)u+ + (l− − λi)u− �= 0 for every u ∈ Ei \ {0}, and (λi+1 − k+)u+ + (λi+1 − k−)u− �= 0 for
every u ∈ Ei+1 \ {0},



J.-N. Corvellec et al. / J. Differential Equations 248 (2010) 2064–2091 2087
then, for any w ∈ H−1(Ω) problem (P w) has a weak solution. Indeed, according to Corollary 4.1 (but
using (ĝ) instead of (g) and (G)±), the functional f is coercive on X2 and anticoercive on X1, while
according to Lemma 5.2, f satisfies the Palais–Smale condition in (H1

0(Ω),‖·‖) (the “usual” Palais–
Smale condition); whence it is clear that for every w ∈ H−1(Ω), the functional f − w also satisfies
these properties. Thus, the saddle point theorem of Rabinowitz provides a solution to problem (P w):
see, e.g., Costa and Oliveira [8, Theorem 1] (where it is assumed that (S R)i,i+1 holds uniformly with
respect to x).

6. A result of mixed type

In this section as in the previous one, the Carathéodory function g : Ω × R → R satisfies (ĝ). Let
0 < μ � 2. We consider the conditions:

There exist aμ ∈ L1(Ω) and bμ ∈ L(2∗/μ)′ (Ω) such that for almost every x ∈ Ω and all s ∈ R,

(G.g)±μ ±(
g(x, s)s − 2G(x, s)

)
� −aμ(x) − bμ(x)|s|μ.

For x ∈ Ω , we define

Hμ,±(x) := lim inf
s→−∞

±(g(x, s)s − 2G(x, s))

|s|μ ,

Hμ,±(x) := lim inf
s→+∞

±(g(x, s)s − 2G(x, s))

|s|μ ,

and we consider the conditions

(N Q )±μ Hμ,±(x) := min
{

Hμ,±(x), Hμ,±(x)
}

> 0 for a.e. x ∈ Ω.

Lemma 6.1. Let 0 < μ � 2, let (ûh) be a sequence in H1
0(Ω), weakly convergent to a function u, and let

0 < ρh → +∞. If (G.g)+μ holds, then

lim inf
h→∞

1

ρ
μ
h

∫
Ω

(
g(x,ρhûh)ρhûh−2G(x,ρhûh)

)
�

∫
Ω

(
Hμ,+

(
u+)μ+Hμ,+

(
u−)μ)

.

Proof. Argue as in the proof of (4.4) (just note that bμ|ûh|μ → bμ|u|μ strongly in L1(Ω)). �
For j ∈ N, we further consider the conditions:

(G j)
±
μ

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

• There exist ãμ∈L1(Ω) and b̃μ∈L(2∗/μ)′(Ω) such that for almost every x ∈ Ω and
for all s ∈ R,

±2G(x, s) � ±λ j s
2 + b̃μ(x)|s|μ + ãμ(x);

• lim sup
|s|→∞

±(2G(x, s) − λ j s2)

|s|μ � 0 for a.e. x ∈ Ω.

(N Q j)
±
μ

∫
Ω

(
Hμ,±

(
u+)μ + Hμ,±

(
u−)μ)

> 0 for every u ∈ E j \ {0}.

Remark 6.1. (a) If μ < 2, arguing as in Lemma 4.1 and in Remark 4.1 shows again that conditions
(G.g)±μ imply K+ = L+ and K− = L− . Moreover, the first properties in (G j)

±
μ respectively imply
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K � λ j , L � λ j . On the other hand, for every 0 < μ � 2, the second properties in (G j)
±
μ do (re-

spectively) imply K � λ j , L � λ j — while the converse is true only when μ = 2. A condition which is
stronger than (G j)

±
μ is the following:

For every ε > 0, there exists aμ,ε ∈ L1(Ω) such that for almost every x ∈ Ω and for all s ∈ R,

±2G(x, s) � ±λ j s
2 + ε|s|μ + aμ,ε(x).

(b) Conditions (N Q )±μ are (respectively) stronger than conditions (N Q j)
±
μ; indeed, intermediate prop-

erties are:

Hμ,± � 0 and
∣∣{x ∈ Ω: Hμ,±(x) > 0

}∣∣ > 0.

Lemma 6.2. Let 0 < μ � 2, let j ∈ N, let (ûh) ⊂ H1
0(Ω) be a weakly convergent sequence, and let 0 < ρh →

+∞. If (G j)
+
μ holds, then

lim inf
h→∞

1

ρ
μ
h

∫
Ω

(
λ jρ

2
h û2

h − 2G(x,ρhûh)
)
� 0, (6.1)

so that

lim inf
h→∞

(
1

hμ
inf
D2,h

f

)
� 0, (6.2)

where D2,h denotes the closed ball in X+
j , centered at the origin and of radius h.

Proof. Once again, arguing as in the proof of (4.4) yields (6.1); using it with ûh := uh
h and ρh := h,

where uh ∈ D2,h is such that f (uh) � infD2,h f + 1
h , and taking (4.2) into account, we obtain

2 lim inf
h→∞

(
1

hμ
inf
D2,h

f

)
= lim inf

h→∞
2 f (uh)

hμ
� lim inf

h→∞

∫
Ω

λ ju2
h − 2G(x, uh)

hμ
� 0,

establishing (6.2) (where indeed, the lower limit is a limit). �
Before stating the main result of this section, we introduce a last condition, for j ∈ N:

(E j)
− L � λ j, and (L+−λ j)u++(L−−λ j)u− �= 0 for every u ∈ E j \ {0}.

Theorem 6.1. Let 0 < μ � 2 and i ∈ N. Assume that conditions (ĝ), (G.g)+μ , (Gi+1)
+
μ , and either (Gi)

− or
(Ei)

− , hold, as well as one of the following:

(i) (N Q )+μ;
(ii) (S R)i,i+1 , (N Q i)

+
μ , and (N Q i+1)

+
μ .

Then, problem (P ) has a weak solution.
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Proof. Consider again the decomposition (4.6). As in the proof of Theorem 4.1, using either (Gi)
− or

(Ei)
− we have that f is bounded above on X1. On the other hand, from (Gi+1)

+
μ we have (6.2) (with

j := i + 1). Thus, applying Theorem 2.4, we obtain a sequence (uh) ⊂ H1
0(Ω) such that

lim sup
h→∞

f (uh) � sup
X1

f and
f ′(uh)

(1 + ‖uh‖)μ−1
→ 0. (6.3)

We show that (uh) is bounded. Arguing by contradiction, assume that, up to a subsequence, 0 < ρh :=
‖uh‖ → ∞ and ûh := uh

ρh
converges weakly in H1

0(Ω) to some function u. Since μ � 2, we see from
(6.3) that

f ′(ρhûh)

ρh
→ 0,

so that, according to Lemma 5.2(a), u �= 0, and u ∈ Ei ∪ Ei+1 if λi � l � k � λi+1. On the other hand,
from (6.3) and Lemma 6.1 we have

0 � lim inf
h→∞

2 f (uh) − f ′(uh)(uh)

‖uh‖μ
= lim inf

h→∞
1

ρ
μ
h

∫
Ω

(
g(x, uh)uh − 2G(x, uh)

)

�
∫
Ω

(
Hμ,+

(
u+)μ+Hμ,+

(
u−)μ)

, (6.4)

which contradicts (N Q )+μ in case (i), (N Q i)
+
μ and (N Q i+1)

+
μ in case (ii). �

Remark 6.2. As in the previous sections, we obtain results dual to Lemmas 6.1 and 6.2, and to Theo-
rem 6.1, by appropriately inverting the “minus” and the “plus” conditions. Theorem 6.2 below, dealing
with weak resonance at the first eigenvalue, features such dual conditions. Several variants of our
results can also be stated: for example, we can replace condition (N Q i)

+
μ in (ii) of Theorem 6.1 by

(l+ − λi)u+ + (l− − λi)u− �= 0 for every u ∈ Ei \ {0}
(recall Lemma 5.2(a)), in which case (Ei)

− is also automatically satisfied.

For 0 < μ � 2, we consider the condition

(G1)μ

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

• There exist ãμ∈L1(Ω) and b̃μ∈L(2∗/μ)′(Ω) such that for almost every x ∈ Ω and
for all s ∈ R,∣∣2G(x, s) − λ1s2

∣∣ � b̃μ(x)|s|μ + ãμ(x);

• lim|s|→∞
2G(x, s) − λ1s2

|s|μ = 0 for a.e. x ∈ Ω.

Of course, (G1)μ is equivalent to (G1)
+
μ and (G1)

−
μ .

Lemma 6.3. Let 0 < μ � 2, and assume that (G1)
+
μ holds. Then,

lim inf‖u‖→∞
f (u)

‖u‖μ
� 0.
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Proof. Taking (4.2) into account, for u ∈ H1
0(Ω), u �= 0, we have

2 f (u)

‖u‖μ
� − 1

‖u‖μ

∫
Ω

(
2G(x, u) − λ1u2),

while, arguing as in Lemma 6.2, (G1)
+
μ implies

lim sup
‖u‖→∞

1

‖u‖μ

∫
Ω

(
2G(x, u) − λ1u2) � 0. �

Theorem 6.2. Let 0 < μ � 2, and assume that conditions (ĝ), (G.g)−μ , (G1)μ , and (N Q )−μ hold. We have:

(a) Problem (P ) has a weak solution;
(b) If 1 < μ � 2, then for every w ∈ H−1(Ω), problem (P w) (recall (5.5)) has a weak solution.

Proof. Considering the decomposition H1
0(Ω) = X−

1 ⊕ X+
2 , we obtain from (G1)μ that

lim inf
h→∞

(
1

hμ
inf
D2,h

f

)
� 0 and lim sup

h→∞

(
1

hμ
sup
D1,h

f

)
� 0.

Indeed, the first inequality follows from (G2)
+
μ (see Lemma 6.2), which is of course weaker than

(G1)
+
μ , and the second one similarly follows from (G1)

−
μ . Note that if 1 < μ � 2, these inequalities

also hold replacing f by f − w , for arbitrary w ∈ H−1(Ω). In that case, applying Theorem 2.4 to the
functional f − w , we obtain a sequence (uh) ⊂ H1

0(Ω) such that

f ′(uh) − w

(1 + ‖uh‖)μ−1
→ 0. (6.5)

We need to show that (uh) is bounded. Assume, for a contradiction, and up to a subsequence, that
0 < ρh := ‖uh‖ → ∞, and that ûh := uh

ρh
converges weakly in H1

0(Ω) to some function u. As in the

proof of Theorem 6.1, we have u �= 0 and we deduce from (6.5), Lemma 6.3, and (G.g)−μ that

0 � lim inf
h→∞

f ′(uh)(uh) − 2 f (uh)

‖uh‖μ
(6.6)

= lim inf
h→∞

1

ρ
μ
h

∫
Ω

(
2G(x, uh) − g(x, uh)uh

)

�
∫
Ω

(
Hμ,−

(
u+)μ+Hμ,−

(
u−)μ)

,

which contradicts (N Q )−μ . In the case 0 < μ � 1, we have (6.5) for w = 0, and the rest of the proof
is the same. �
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