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Many experiments and devices in physics use static magnetic fields to guide charged particles from a 
source onto a detector, and we ask the innocent question: What is the distribution of particle intensity 
over the detector surface? One should think that the solution to this seemingly simple problem is well 
known. We show that, even for uniform guide fields, this is not the case, and we present analytical point 
spread functions (PSF) for magnetic transport that deviate strongly from previous results. The “magnetic” 
PSF shows unexpected singularities, which were recently also observed experimentally, and which make 
detector response very sensitive to minute changes of position, field amplitude, or particle energy. In the 
field of low-energy particle physics, these singularities may become a source of error in modern high 
precision experiments, or may be used for instrument tests.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The motion of charged particles in magnetic fields is a highly 
developed subject, treated in numerous papers and books. The 
most frequently investigated case is magnetic focusing, as used in 
electron microscopes, oscilloscopes, electron spectrometers, parti-
cle accelerators, or in mass spectrometers with magnetic sector 
fields. Electron optics was developed early in the past century [1], 
mainly for small angular ranges of particle emission �θ � 1, and 
for trajectories that describe less than one full orbit of gyration 
(n < 1), see also [2] and the books quoted therein. The case of a 
magnetic β-ray spectrometer based on one full orbit (n = 1) was 
treated in [3,4], while a survey on magnetic electron and ion spec-
trometers is given in [5].

In more recent times, magnetic fields are increasingly being 
used to simply guide charged particles, like electrons, muons, ions, 
or other, efficiently from a source to a detector. Such setups are 
found in magnetic photoelectron imaging [6–8], invented in the 
early 1980s, molecular reaction microscopes [9,10] (early nineties), 
retardation spectrometers [11–13] (early nineties), time projection 
chambers [14] (mid-seventies), or in muon [15], neutron [16,17], 
or nuclear decay spectrometers [18], to name just a few exper-
iments and surveys. In these applications, charged particles are 
emitted over a wide range of emission angles (0 < θ ≤ π/2), and 
the number of orbits of gyration may vary widely (0 < n < ∞). 
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This magnetic guidance of charged particle is the topic of the 
present paper.

For particles emitted from a point source, the distribution func-
tion of particle intensity over the detector plane is called a point 
spread function (PSF). Once a PSF is known, the particle distribu-
tion for any type of extended source can be calculated from it. One 
should think that the magnetic PSF for this setup is well known 
and no longer subject of investigation. But this is not the case, and 
we find some striking features in this PSF which, to our knowledge, 
have not been published before, and which may be of interest to a 
wider community.

Our particular interest is on the role of the magnetic PSF in the 
field of low-energy particle physics, which field is entering what 
some call the high-precision era [19–21], often searching for 10−4

effects that might signal new physics beyond the standard model, 
at a level where Monte Carlo simulations often meet difficulties. 
In a recent publication [22] we had sketched the derivation of the 
PSF and its singularities in the context of neutron β-decay, and had 
listed over a dozen neutron decay experiments that use magnetic 
guiding of charged reaction products for high precision measure-
ments.

The present paper shows how the predicted strong singulari-
ties, absent in the conventional treatment of the PSF, appear in the 
true PSF. Some of these singularities move rapidly across the PSF 
when the minimum number n0 of gyration orbits is changed by 
only a small fraction of one orbit. These singularities make detector 
response very sensitive to minute changes of instrumental param-
eters like field amplitude, particle energy, and detector position 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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or angular adjustment. We then extend calculations to anisotropic 
sources and non-uniform guide fields. We sketch a recent experi-
ment [23] done at LANL, in which the resonances predicted in [22]
were observed, and discuss some possible uses of the true mag-
netic PSF.

2. The conventional magnetic point spread function (PSF)

Let a point source of charged particles be placed at position 
x = 0 in a uniform magnetic field of amplitude B , applied along 
axis z. Let the particles on their helical trajectories be intercepted 
by a flat detector installed in the x–y plane at distance z0 to the 
source. We first sketch the conventional approach to the problem, 
which leads to a smooth PSF, used already some 30 years ago [7], 
and still in use up to these days [8].

Without loss of generality, let the charged particles be monoen-
ergetic electrons. Their radius of gyration r depends on their polar 
angle of emission θ as

r = r0 sin θ, (1)

and on their kinetic energy E via the maximum radius of gyration 
as

r0 = p/eB =
√

E
(

E + 2mc2
)
/ecB, (2)

with electron charge e, mass m, and relativistic momentum p. We 
assume a uniform magnetic field, for the non-uniform case see 
Section 5. The pitch of the helix is d = 2πr0 cos θ . These formu-
las are found in most textbooks on electromagnetism.

Upon arrival of an electron on the detector, its total number 
of gyration orbits is n′ = z0/d, where the slash reminds us that n′
needs not be an integer. The total phase angle of gyration is hence 
related to the angle of electron emission θ as

α = 2πn′ = z0/(r0 cos θ). (3)

The smallest occurring phase angle, reached for electron emission 
under θ = 0, is

α0 = z0/r0 = 2πn0, where (4)

n0 = eBz0/2π p (5)

is the corresponding minimum number of orbits in the limit θ → 0
(where in fact a gyration is no longer visible). On the detector, the 
electron’s point of impact is displaced from its projected starting 
point, reached for θ = 0, by the distance

R = 2r| sinα/2| = 2r0 sin θ sinα/2′, (6)

where α′ = (α modulo 2π) is the phase angle seen on the surface 
of the detector, with 0 ≤ α′ ≤ 2π .

The conventional approach to the problem is to assume that 
all phase angles occur with the same probability, see [23] for a 
straightforward derivation of the magnetic PSF under this assump-
tion. In this approach, the probability dP/dR for finding an elec-
tron at displacement R no longer depends on R ,

g(R) ≡ dP

dR
= 1

2r0
. (7)

An intermediate result in the derivation of g(R), needed below in 
Section 5, is the distribution
∣∣∣∣

dg

d cos θ

∣∣∣∣ = 2

π
√

4r2
0 sin2 θ − R2

(8)

with respect to the polar emission angle θ at the source.
Fig. 1. Electron displacement R on the detector from Eq. (11), plotted as a function 
of the number of orbits n′ = α/2π (full line). The corresponding angles of emis-
sion θ from Eq. (3) are given on the upper axis. The envelope function 2r0 sin θ(α)

in Eq. (6) is also shown (dotted line). The value α0 = 10 radians, or n0 = α0/2π =
1.6 orbits, is the same as in the experiment [23], in which B ∼ 1/2 T, z0 ∼ 0.1 m, 
and E ∼ 1 MeV, see Section 6. The dashed lines are the invertible approximations 
to R(α) from Eqs. (15) and (22).

For given R and dR , the electrons arrive on the detector within 
an infinitesimal area of size dA = 2π RdR . The radially symmetric 
PSF f (x, y) = f (R), with R = (x2 + y2)1/2 on the detector surface, 
then is the hyperbolic function

f (R) ≡ dP

dA
= g(R)

2π R
= 1

4π Rr0
. (9)

The singularity at R = 0 reflects the fact that all orbits cross the 
origin, for arbitrary values of emission angles θ and ϕ , and of en-
ergy E . Fig. 2 of [24] shows a rough measurement of such an 1/R
response. Note that in [22] we inadvertently called the function 
g(R) the PSF, and not the function f (R).

However, this conventional result cannot be the full truth, be-
cause, in its derivation from Eq. (6), the phase angle α and the 
pitch angle θ were treated as independent variables. In other 
words: for a given emission angle θ , the electron on the detec-
tor is erroneously assumed to run on a circle through all values 
of α.

3. Derivation of the true magnetic PSF

In reality, both angles α and θ are uniquely linked to each other 
by Eqs. (3) and (4) as

cos θ = α0/α. (10)

After emission under θ , the electron hence arrives at one fixed 
and predetermined position on the detector, given by the electron 
displacement

R(α) = 2r0

√
1 − α2

0/α2| sinα/2|, (11)

from Eq. (6). To increase the size of the phase angle α on the de-
tector, one has to increase the emission angle θ at the source, and 
with it the gyration radius r from Eq. (1), such that the trace on 
the detector is no longer a circle but some sort of a spiral.

Fig. 1 shows R in dependence of the total number of electron 
orbits n′ = α/2π . The function starts at the minimum number of 
orbits n0 = α0/2π for emission under θ = 0, and continues, with 
increasing emission angle θ , to α/2π → ∞ for emission under θ =
π/2. One could as well write R as a function of emission angle θ , 
with the same final result for the PSF. However, while θ is the 
more directly accessible variable, the derivation is simpler in terms 
of the variable α.

We now come to the calculation of the true PSF. Often the po-
lar angular distribution of the particles emitted from a source is 
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developed in Legendre polynomials as functions of cos θ . Therefore 
the PSF is best written as

f (R) = 1

2π R

∣∣∣∣
dP

d cos θ

d cos θ

dα

dα

dR

∣∣∣∣. (12)

We first treat the isotropic case dP/d cos θ = 1, for anisotropic 
sources see Section 5. Insertion of d cos θ/dα from Eq. (3) and of 
(dR/dα)−1 from Eq. (11) then leads to

f (α) = 1

2π Rr0

α0(α
2 − α2

0)1/2

|α(α2 − α2
0) cosα/2 + 2α2

0 sinα/2| . (13)

However, we need the PSF not as a function of α, but as a function 
of R . Inversion of the multi-valued function R(α) of Fig. 1 to α(R)

is the main obstacle to arriving at the true magnetic PSF.
While Eq. (13) is still exact, we now use the fact that the dis-

placement R(α), Eq. (11), is the product of a rapidly varying func-
tion | sin(α/2)| and a slowly varying envelope 2r0(1 − α2

0/α2)1/2, 
as seen in the example of Fig. 1. Within a given cycle on the de-
tector, numbered by the integer n, the slow envelope can therefore 
be piecewise approximated by a constant value Rn , which is best 
chosen to be the maximum of R(α) in the nth interval,

Rn = Max[R(α),2πn ≤ α ≤ 2π(n + 1)], (14)

as indicated by the dashed horizontal lines in Fig. 1. The true 
function R(α) from Eq. (11) then is piecewise replaced by the ap-
proximate functions

R(α) ≈ Rn cos[(α − α′
n)/2], (15)

where α′
n is the position where R(α) obtains its maximum Rn , 

each valid between α = 2πn and α = 2π(n + 1). Note that for the 
lowest orbit starting at n0, these equations hold only for integer n0, 
for non-integer n0 see below.

The dashed curves in Fig. 1 show these invertible functions 
Eq. (15), indicating the high quality of the approximation. For each 
orbit, the approximate R(α) can be resolved for α,

α±(R) ≈ α′
n ∓ 2 arccos(R/Rn), (16)

where α+ holds for the rising branches of R(α) in Fig. 1, and α−
for the falling branches.

These approximate α’s then must be inserted in Eq. (13). In this 
way one obtains for every cycle a partial PSF that we call fn . These 
partial PSFs must then be summed up to obtain the magnetic PSF,

f (R) ≈
∞∑

n=n0

fn(R). (17)

For integer n0, one finds in the denominator of Eq. (13)

cos(α/2) ≈ ±
√

1 − R2/R2
n, sin(α/2) ≈ R/Rn, (18)

with the plus sign for the rising branches, the minus sign for the 
falling branches. After Eqs. (18) are inserted in Eq. (13), one can, 
for not too small values of n0, neglect 2 arcsin(R/Rn) in Eq. (16) for 
the other α’s and set αn = 2πn. The nth partial PSF for an isotropic 
source in a uniform magnetic field then reads

fn(R) ≈ fn+(R) + fn−(R), with (19)

fn±(R) = 1

4π Rr0

n0(n2 − n2
0)

1/2

| ± πn(n2 − n2
0)(1 − R2/R2

n)1/2 + n2
0 R/Rn|

.

(20)
Usually n0 is not an integer, in which case special attention 
must be given to the lowest orbit, then numbered by the next-
lower integer n f = floor(n0). The width of the lowest interval in 
Fig. 1 then is less than unity, namely, 2 − 1.6 = 0.4. This requires 
replacing Eq. (14) by

Rn f = Max[R(α),2πn0 ≤ α ≤ 2π(n f + 1)], (21)

and Eq. (15) by

R(α) ≈ Rn f

∣∣∣∣cos
α − α′

n f

2(n f + 1 − n0)

∣∣∣∣, (22)

valid between α = 2πn0 and α = 2π(n f +1), where α′
n f

is the po-
sition where R(α) has its first maximum Rn f . This can be resolved 
for α as

α±(R) ≈ α′
n f

∓ 2(n f + 1 − n0)arccos(R/Rn f ). (23)

Used in Eq. (13), this gives the first partial PSF fn f (R), and the 
sum Eq. (17) starts at n = n f .

At the start of the lowest orbit where α is near α0, it is useful 
to replace Eq. (23) by the approximate inverted function α+(R) ≈
α0[1 + R2/(8 sin2 α/2)]. In Fig. 2b this is done up to R = 0.34. In 
Figs. 2a and 3 this replacement would avoid the little kinks seen 
at low R . Finally, the normalization of g(R) to unity was checked 
by numerical integration of g(R), taken from the general Eq. (17).

4. Properties of the magnetic PSF

Fig. 2a shows the new PSF f (x, y), calculated directly from 
Eq. (13) with (16) and (23) for n0 = 1.6. Strong resonances are 
seen whenever R falls onto one of the maxima Rn in Fig. 1. Sum-
mation of the fn is truncated at n2 = 50. With cos θ = n0/n from 
Eq. (10), this corresponds to a cut off angle θ = 88.2◦ , with no vis-
ible effect to the PSF in Fig. 2a. Fig. 2b shows g(R) = 2π R f (R), 
both for the conventional and the new approach.

The positions and shapes of the resonances can be understood 
by looking at R(α) in Fig. 1. The fluctuating R(α) and its smooth 
envelope | sin θ(α)| coincide near each maximum Rn . This means 
that α and θ in Eq. (6) are strongly correlated there, contrary to 
the conventional assumption of independence of α and θ . There-
fore the deviations of the true PSF from the conventional PSF 
are strongest at R ≈ Rn . They are singular because the derivative 
dα/dR in Eq. (12) diverges whenever R(α) reaches a maximum 
Rn near a half-integer number of revolutions, where R(α) becomes 
stationary. If R is increased above a particular Rn , the correlation 
between α and θ in the corresponding orbit is suddenly lost, cf. 
Fig. 1, and only the rather uncorrelated terms from the higher or-
bits contribute to Eq. (17). Therefore the true PSF descends steeply 
whenever R rises beyond one of the Rn .

In terms of emission angle θ , the ring-shaped singularities 
in Fig. 2 occur at θ1 = 27.6◦ , θ2 = 50.5◦ , θ3 = 63.0◦ , etc., from 
Eqs. (21) and (14) with Eq. (6). For large integer n0 � 1, the first 
few singularities of the PSF occur for emission angles and displace-
ments

θn ≈ √
2(n − n0)/n0, Rn ≈ 2r0

√[
2(n − n0) + 1

]
/n0. (24)

Fig. 3 demonstrates the high sensitivity of the true PSF to 
changes of external parameters that define the minimum number 
of orbits n0, cf. Eq. (5). Note that in Fig. 3, n0 is ten times larger 
than in Figs. 1 or 2. The sensitivity of the PSF to changes of n0 can 
again be understood by looking at the corresponding changes of R
in Fig. 1. For instance, when an integer n0 changes continuously 
to the next higher integer n0 + 1, then the first maximum moves 
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Fig. 2. (a) Magnetic point spread functions f (x, y) from Eq. (13) with (16) and (23), in the first quadrant of the detector, for isotropic particle emission and uniform field. The 
same α0 = 10 radians, or n0 = 1.6 orbits, are used as in Fig. 1. (b) The spiked function labeled 1 is the new probability distribution g(R) = 2π R f (R). The constant function 
labeled 2 is the conventional distribution g(R) = 1/(2r0). The positions of the resonances (dashed vertical lines) coincide with the corresponding maxima Rn in Fig. 1.
Fig. 3. Sensitivity of the probability distributions g(R) = 2π R f (R) to changes of the 
external parameters, cf. Eq. (5). While the conventional distribution (horizontal line) 
does not depend on external parameters, the true distribution is highly parameter 
dependent. The full curve is for α0 = 105 radians, or n0 = 16.7 orbits, the dashed 
curve for a 3% lower value α0 = 102 radians, or n0 = 16.2 orbits. Only the first half 
of the allowed R/r0 interval is shown.

from zero to its peak value (which is R1 = 0.73r0 for the interval 
from n0 = 1 to n0 = 2), and back to zero again. At the same time, 
relative intensities and widths of the resonances may vary consid-
erably.

This parameter sensitivity of n0 may average out the singu-
larities of the PSF: These singularities are no longer individually 
resolved experimentally if n0 changes by �n0 > 1. This happens 
when either �B/B (e.g., for extended sources), or �z0/z0 (for 
axially extended sources), or |�p/p| (for continuous spectra) in 
Eq. (5) exceeds 1/n0. Note that often �n0 can be kept small by 
additional time-of-flight measurements and energy sensitive de-
tection.

5. Anisotropic sources and non-uniform guide fields

This section treats two extensions of our analytic PSF calcu-
lations. The first extension is to non-isotropic sources. Often the 
polar angular distribution dP/d cos θ in Eq. (12) can be developed 
in associated Legendre polynomials, involving terms

dP

d cos θ
∼ cosl−m θ sinm θ, (25)

with integer m ≤ l. An example is particle emission from atoms or 
nuclei that carry a vector or tensor polarization, see for instance 
Chapters 19.3 and 20.5 in [25].

We begin with the conventional PSFs for anisotropic sources. If 
variations of �n0 are so large as to average out the singularities 
in the PSF, we can insert the distribution (25) into the integrand 
Eq. (8). The conventional PSF for anisotropic sources then is

f l
m(R) = gl

m(R)/2π R, with (26)

gl
m(R) = (1/r0)

[
1 − R2/4r2

0

](l−m)/2

× 2 F1
(−m/2, (l − m + 1)/2;
(l − m + 2)/2;1 − R2/4r2

0

)
, (27)

with the hypergeometric function 2 F1. For the normalization of 
this function to gl

m(0) = 1, see the preprint [26].
For m = 0, which involves only ordinary Legendre polynomials 

with terms cosl θ , one finds gl
0(R) = (1 − R2/4r2

0)l/2/2r0. For l = 0
this coincides with the result (7) for isotropic sources. For l = 1 this 
last equation gives the PSFs for angular correlation functions, like 
the parity violating β asymmetry, see [22] for details, and again 
[26] for further examples.

To obtain the true PSF for anisotropic sources, we insert cosθ =
n0/n into Eq. (25) and multiply each partial PSF in the sum (17)
by the resulting (n0/n)l−m[1 − (n0/n)2]m/2. This gives the true PSFs 
f l
m(R), which again show singularities for every R = Rn . When 

these singularities are averaged out, the corresponding conven-
tional solution from Eq. (27) is recovered.

Our second extension treats the case that the magnetic field, 
while still axially symmetric, is not uniform. In many experi-
ments the field decreases continuously from B at the source to 
B ′ at the detector, which avoids glancing incidence on the detec-
tor for particles emitted near θ = π/2. In the experiments [3–18]
cited in the introduction, non-adiabatic transitions are strictly sup-
pressed because their angle dependent energy losses would cor-
rupt the measurements. In the adiabatic approximation, for B ′ <

B the inverse magnetic mirror effect makes the gyration radius 
widen from r at the source to r′ = r/(B ′/B)1/2 on the detec-
tor, while the pitch angle decreases from θ to θ ′ , with sin θ ′ =
(B ′/B)1/2 sin θ .

We expect that the usual adiabatic invariants, on which these 
equations are based, guarantee that the overall particle distribu-
tion on the detector remains unchanged, stretched, however, by a 
factor (B/B ′)1/2. Although this conjecture sounds reasonable, we 
checked it analytically in [26] and found that the PSFs for a uni-
form (B = B ′) and for a non-uniform field (B 
= B ′) indeed are 
related as f ′(R ′) = f (R

√
B ′/B ).
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6. Experimental verification, and possible applications of the 
new PSF

A recent experiment [23], done at the Los Alamos National Lab-
oratory on the ultracold neutron decay spectrometer UCNA [27], 
has meanwhile confirmed the predicted presence of resonances in 
the true PSF. In this work, an isotropic 207Bi conversion electron 
source (E = 976 keV and 432 keV) in a uniform magnetic guide 
field was placed at 10 cm distance to a position sensitive Si detec-
tor of 10 cm diameter and 0.8 cm2 pixel size. The field amplitude 
B then was varied between 0.1 and 0.6 T, thus varying r0 from 
4.0 cm down to 0.7 cm. Every time one of the resonances of the 
PSF from Fig. 2a entered or left a pixel, there was a sudden jump 
in the count rate from this pixel. Small changes of the magnetic 
field induced large changes in relative count rates (up to a factor of 
five), see Figs. 7 and 8 in [23], where the conventional PSF would 
predict a very smooth response. The agreement with simulated ex-
pectations is excellent. The Monte Carlo result in their Fig. 4 can be 
compared to our result in Fig. 2b, calculated with identical param-
eters, namely, n0 = 1.6. Note that our resonances are narrower and 
steeper than the Monte Carlo result from [23]. Hence care must 
be taken when applying these calculations to possibly inherently 
broadened experimental data.

What are the possible benefits of having a new PSF? First, 
knowledge on the ring-shaped singularities in the PSF may pro-
mote understanding of experimental data and avoid surprises, for 
instance in reaction microscopy or similar experiments. Second, 
even when these rings remain unresolved, one must investigate 
their effect in high precision experiments, as was done for neu-
tron decay in [22,23]. Third, these rings may serve as an analyt-
ical tool to assess the proper working of magnetic guiding sys-
tems.

As an example for this last point, we take the retardation spec-
trometer of the neutrino mass experiment KATRIN [13]. Its length 
from the effective 3H source to the electron detector is z0 =
51.8 m. Although KATRIN’s minimum field is well below 1 mT, 
its relevant average field is B̄ z = 1 T, as deduced from [28]. For 
the 976 keV conversion line of a 207Bi test source, installed on-
axis at the entrance of the spectrometer, Eq. (5) gives n0 = 2000
orbits to the detector, all fully contained in the detector volume. 
Each conversion electron crosses the instrument axis at every cy-
cle of gyration. KATRIN’s ring-shaped electron detector, installed at 
the end of the instrument, can then measure the resulting PSF to 
check whether it is properly shaped. The Bi-source should be in-
stalled somewhat upstream of the initial field maximum to limit 
θmax, and the detector should be moved further downstream of 
the pitch field region to adapt gyration radii to detector size. In 
this way the entire spectrometer volume could be probed for pos-
sible discrepancies. These thoughts serve merely to remind the 
reader that new insights may generate new opportunities.1 Sim-
ilar studies could be done on the neutron decay spectrometers 
PERC [29] with n0 = 200, Nab [30] with n0 = 170, or Perkeo-III 
[31] with n0 = 15. Note added: A recent preprint [32] combines 
our initial approach with a special numerical method and finds 
results that coincide precisely with our result in Fig. 2b. The dis-
crepancies mentioned in this paper refer to the first version of 

1 In the meantime I learned from C. Weinheimer that at 976 keV, adiabatic trans-
port is no longer guaranteed in the KATRIN spectrometer.
our preprint [26] where a less precise approximation had been 
used.

7. Conclusions

We calculated the point spread functions for charged particles 
in magnetic guide fields, which differ significantly from previ-
ously used results, as seen in Fig. 2b. Algebraic results are derived 
for isotropic and anisotropic point sources, for uniform and non-
uniform guide fields, valid also for sources rather close to the 
detector. The singularities found move rapidly across the PSF when 
the number of gyration orbits is changed by as little as a fraction 
of one orbit, see Fig. 3. A recent experiment done at LANL corrob-
orates these results.

Acknowledgements

This work was supported by the Priority Programme SPP 
1491 of Deutsche Forschungsgemeinschaft. I thank L. Raffelt, 
B. Märkisch, F. Friedl, and H. Abele for helpful discussions on the 
applications of magnetic PSFs in neutron decay.

References

[1] H. Busch, Ann. Phys. (Leipz.) 386 (1926) 974.
[2] V. Kumar, Am. J. Phys. 77 (2009) 737.
[3] C.M. Witcher, Phys. Rev. 60 (1941) 32.
[4] J.W.M. Dumond, Ann. Phys. 2 (1957) 283.
[5] K. Siegbahn (Ed.), Alpha-, Beta- and Gamma-Ray Spectroscopy, Elsevier, Ams-

terdam, 1955, p. 52.
[6] G. Beamson, H.Q. Porter, D.W. Turner, Nature 290 (1981) 556.
[7] P. Kruit, F.H. Read, J. Phys. E 16 (1983) 313.
[8] R. Browning, Rev. Sci. Instrum. 85 (2014) 033705.
[9] R. Moshammer, et al., Phys. Rev. Lett. 73 (1994) 3371.

[10] J. Ullrich, et al., Rep. Prog. Phys. 66 (2003) 1463.
[11] G. Drexlin, et al., Adv. High Energy Phys. 2013 (2013) 293986.
[12] V.N. Aseev, et al., Phys. Rev. D 84 (2011) 112003.
[13] E.W. Otten, C. Weinheimer, Rep. Prog. Phys. 71 (2008) 086201.
[14] J.N. Marx, D.R. Nygren, Phys. Today 31 (1978) 10.
[15] J. Kaulard, et al., Phys. Lett. B 422 (1998) 334.
[16] H. Abele, Prog. Part. Nucl. Phys. 60 (2008) 1.
[17] D. Dubbers, M.G. Schmidt, Rev. Mod. Phys. 83 (2011) 1111.
[18] M. Beck, et al., Eur. Phys. J. A 47 (2011) 45.
[19] K. Blaum, H. Müller, N. Severijns, Ann. Phys. (Leipz.) 525 (2013) A111.
[20] V. Cirigliano, S. Gardner, B. Holstein, Prog. Part. Nucl. Phys. 71 (2013) 93.
[21] A.S. Kronfeld, R.S. Tschirhart (Eds.), U. Al-Binni, et al., arXiv:1306.5009 [hep-ex].
[22] D. Dubbers, et al., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. 

Detect. Assoc. Equip. 763 (2014) 112.
[23] S.K.L. Sjue, et al., Rev. Sci. Instrum. 86 (2015) 023102.
[24] H. Kollmus, et al., Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. 

Mater. Atoms 124 (1997) 377.
[25] D. Dubbers, H.-J. Stöckmann, Quantum Physics: The Bottom-Up Approach – 

From the Simple Two-Level System to Irreducible Representations, Springer, 
Heidelberg, 2013.

[26] D. Dubbers, arXiv:1501.05131v2 [physics.ins-det].
[27] M.P. Mendenhall, et al., Phys. Rev. C 87 (2013) 032501.
[28] F. Glück, et al., New J. Phys. 15 (2013) 083025.
[29] D. Dubbers, et al., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. 

Detect. Assoc. Equip. 596 (2008) 238.
[30] S. Baeßler, et al., arXiv:1209.4663 [nucl-ex].
[31] B. Märkisch, et al., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. 

Detect. Assoc. Equip. 611 (2009) 216.
[32] H. Backe, arXiv:1503.07064v1 [physics.ins-det].

http://refhub.elsevier.com/S0370-2693(15)00514-6/bib31s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib32s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib33s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib34s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib35s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib35s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib36s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib37s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib38s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib39s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3130s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3131s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3132s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3133s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3134s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3135s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3136s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3137s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3138s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3139s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3230s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3231s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3232s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3232s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3233s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3234s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3234s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3235s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3235s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3235s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3236s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3237s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3238s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3239s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3239s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3330s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3331s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3331s1
http://refhub.elsevier.com/S0370-2693(15)00514-6/bib3332s1

	Magnetic guidance of charged particles
	1 Introduction
	2 The conventional magnetic point spread function (PSF)
	3 Derivation of the true magnetic PSF
	4 Properties of the magnetic PSF
	5 Anisotropic sources and non-uniform guide ﬁelds
	6 Experimental veriﬁcation, and possible applications of the new PSF
	7 Conclusions
	Acknowledgements
	References


