
http://www.elsevier.com/locate/aim

Advances in Mathematics 190 (2005) 161–195

Central invariants and Frobenius–Schur
indicators for semisimple quasi-Hopf algebras

Geoffrey Masona,1 and Siu-Hung Ngb,c,�

aMathematics Department, University of California, Santa Cruz, CA 95064, USA
bDepartment of Mathematics, Iowa State University, Ames, IA 50011-2064, USA

cMathematics Department, Towson University, Baltimore, MD 21252, USA

Received 7 May 2003; accepted 17 December 2003

Communicated by P. Etingof

Abstract

In this paper, we obtain a canonical central element nH for each semi-simple quasi-Hopf

algebra H over any field k and prove that nH is invariant under gauge transformations. We

show that if k is algebraically closed of characteristic zero then for any irreducible

representation of H which affords the character w; wðnHÞ takes only the values 0, 1 or �1;
moreover if H is a Hopf algebra or a twisted quantum double of a finite group then wðnHÞ is
the corresponding Frobenius–Schur indicator. We also prove an analog of a theorem of

Larson–Radford for split semi-simple quasi-Hopf algebras over any field k: Using this result,
we establish the relationship between the antipode S; the values of wðnHÞ; and certain

associated bilinear forms when the underlying field k is algebraically closed of characteristic

zero.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In the paper [20], Linchenko and Montgomery introduced and studied Frobenius–
Schur indicators for irreducible representations of a semi-simple Hopf algebra H
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over an algebraically closed field of characteristic pa2: If L is the unique normalized
left integral of H; i.e. EðLÞ ¼ 1; set

n ¼ nH ¼
X
ðLÞ

L1L2: ð1:1Þ

Here we have used Sweedler notation DðLÞ ¼
P

ðLÞL1#L2; so that if m is

multiplication in H then n ¼ m3DðLÞ: Then n is a central element of H and the
Frobenius–Schur indicator nw of an irreducible H-module M with character w is

defined via

nw ¼ wðnÞ: ð1:2Þ

In case H is a group algebra k½G�; n ¼ jGj�1
P

gAGg2 and nw ¼ jGj�1
P

gAGwðg2Þ
reduces to the original definition of Frobenius and Schur (cf. [6] or [27], for
example). Generalizing the famous result of Frobenius and Schur for group
algebras, Linchenko and Montgomery show that for general semi-simple H; nw
can take only the values 0; 1; or �1: Moreover nwa0 if, and only if, MDM�;
and in this case M admits a non-degenerate H-invariant bilinear form /	; 	S
satisfying

/u; vS ¼ nw/v; uS ð1:3Þ

for u; vAM: Recall that /	; 	S is H-invariant ifX
ðhÞ

/h1u; h2vS ¼ eðhÞ/u; vS ð1:4Þ

for hAH and u; vAM:
In a recent paper [16] the authors showed how one may effectively compute

Frobenius–Schur indicators for a certain class of Hopf algebras. Their work
applies, in particular, to the case of the quantum double DðGÞ of a finite group G;
and it was shown [16] how the indicators for irreducible modules over DðGÞ may
be given in terms of purely group-theoretic invariants associated to G and
its subgroups. The algebra DðGÞ is of interest in orbifold conformal field theory
[23], indeed in this context there is a more general object, the twisted quantum

double DoðGÞ; that arises naturally [7]. (Here, oAZ3ðG;C
Þ is a normalized
3-cocycle about which we shall have more to say below.) The present work
originated with a natural problem: understand Frobenius–Schur indicators for
twisted quantum doubles.

DoðGÞ is a semi-simple quasi-Hopf algebra (over C; say), but is generally not a
Hopf algebra. One of the difficulties this imposes is that the antipode S is not
necessarily involutive (something that is always true for semi-simple Hopf algebras

by a theorem of Larson and Radford [18]), whereas having S2 ¼ id is fundamental
for the Linchenko–Montgomery approach and therefore for the calculations in [16].

If it happens that S2 ¼ id then Theorem 4.4 of [16] can be used to obtain indicators
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given by

nw ¼ jGj�1
X

x�1gx¼g�1

gxðg; g�1Þygðx; xÞwðeðgÞ#x2Þ: ð1:5Þ

(Undefined notation is explained below; gx and yg are certain 2-cochains determined

by o:)
If G is abelian then DoðGÞ is a Hopf algebra [21], though perhaps with a non-

trivial b element, and for any G it turns out that one can always gauge o; i.e. replace
it by a cohomologous 3-cocycle o0; in such a way that the antipode for Do0 ðGÞ is an
involution. So (1.5) provides a preliminary solution to our problem, but it is
unsatisfactory for the following reason: if we gauge o; the new 3-cocycle o0 will give
new values for the Frobenius–Schur indicators which in general are not the same as
the original values. While this may not be an issue if one is interested in a fixed
DoðGÞ; there are both mathematical and physical reasons for insisting that the FS
indicators for DoðGÞ be robust, that is they depend only on the cohomology class of
o: From this standpoint, (1.5) is generally not what we are looking for. We need a
more functorial approach.

One knows that if o and o0 are cohomologous then DoðGÞ and Do0 ðGÞ are gauge-
equivalent and that therefore the corresponding module categories are tensor
equivalent (cf. [7,8,17]). Indeed, it follows from a result of Etingof and Gelaki [9] that
the converse is also true, so that gauge-equivalence of the twisted doubles is the same

as tensor equivalence of the module categories. So we are looking for invariants of
such module categories with respect to tensor equivalence. Because Hopf algebras
and twisted doubles are not closed with respect to gauge equivalence, this means that
we have to work with the module categories of arbitrary semi-simple quasi-Hopf
algebras.
Peter Bantay has introduced a notion of indicator into rational conformal field

theory from a rather different point-of-view [3,4]. His point of departure is the
Verlinde formula and the S and T matrices associated to a RCFT. To this modular
data together with an irreducible character he associates a certain numerical
expression and shows that it is equal once again to either 0; 1 or �1: It is possible to
evaluate Bantay’s indicator in case the matrices S and T are associated to a twisted
double DoðGÞ [5] and one obtains the expression

jGj�1
X

x�1gx¼g�1

oðg�1; g; g�1Þgxðg; g�1Þygðx; xÞwðeðgÞ#x2Þ: ð1:6Þ

Compared to (1.5), (1.6) contains an extra term oðg�1; g; g�1Þ: Furthermore, it is
easy to see that (1.6) is robust in the previous sense.
Suppose that H is any semi-simple quasi-Hopf algebra, and let M be an

irreducible H-module with character w: In the present paper we will construct a
canonical central element nH of H with the following properties:

(a) nH is invariant under any gauge transformation of H:
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(b) If H is a Hopf algebra then nH coincides with (1.1).
(c) If H ¼ DoðGÞ then wðnHÞ coincides with Bantay’s indicator (1.6).
(d) Assume that k is algebraically closed and char k ¼ 0:

(i) wðnHÞ ¼ 0; 1; or �1:
(ii) wðnHÞa0 if, and only if, �MDM: In this case, M admits a certain non-

degenerate bilinear form /	; 	S such that

/x; yS ¼ /y; g�1xS ð1:7Þ

for all x; yAM: Here, g is a distinguished element of H; which we call the
trace element, which is independent of M:

(iii) TrðSÞ ¼
P

wAIrrðHÞwðnHÞwðg�1Þ:

Part (d) is the analog for general semi-simple quasi-Hopf algebras of the
corresponding result in [20] for Hopf algebras. The bilinear form /	; 	S has a
certain adjointness property with respect to the antipode S of H; and there
are relations to an analog of a theorem of Larson–Radford (S is involutive for
semi-simple Hopf algebras). Namely, we show that for a semi-simple quasi-
Hopf algebra the antipode is involutive up to conjugation. The trace element g

plays an important role in our discussion of (d), in particular its properties lead
to the fact that the category H-modfin of finite-dimensional H-modules is a
pivotal category in the sense of Joyal and Street. For twisted doubles, g

coincides with b; while for Hopf algebras the Larson–Radford theorem implies
that g ¼ 1:
The proof that wðnHÞ takes only the values 0, 1 or �1 is somewhat elaborate.

Indeed, in an earlier version of the present paper [22] this had been left open.
Subsequently, Pavel Etingof alerted us to the existence of his recent preprint with
Nikshych and Ostrik [10] on fusion categories, and suggested that some of the results
obtained there could be used to help settle the issue of the values of our indicator.
More precisely, Etingof pointed out that our trace element g defines an isomorphism

of tensor functors Id-��?: This together with SðgÞ ¼ g�1 are the main ingredients in
the proof.
The paper is organized as follows: we cover some basic facts about quasi-Hopf

algebras in Section 2, including several strategically important elements in H#H

introduced by Hausser and Nill [15]. In Sections 3 and 4 we define the central
element nH and establish that the family of Frobenius–Schur indicators wðnHÞ is a
gauge invariant for semi-simple quasi-Hopf algebras. In Section 5 we show that our
indicators coincide with those of Bantay in the case of a twisted double. In Section 6
we introduce the trace element g and establish the analog of the Larson–Radford
theorem, while Section 7 is devoted to further properties of g as discussed above.
Section 8 covers the relation of indicators to bilinear forms and completes the proof
of (d)(i), and in Section 9 we return to the case of twisted doubles to complete the
analysis in that case. For simplicity, we will only work over algebraically closed fields
of characteristic zero in Sections 7–9.
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2. Quasi-Hopf algebras

In this section we recall the definition of quasi-Hopf algebras and their properties
described in [8,17]. Moreover, we recall some interesting results recently obtained in
[13–15,25]. In the sequel, we will use the notation introduced in this section.
Throughout this paper, we will always assume that k is a field and any algebras and
vector spaces are over k: In Sections 7–9, we will further assume k to be an
algebraically closed field of characteristic zero.
A quasi-bialgebra over k is a 4-tuple ðH;D; E;FÞ; in which H is an algebra over k;

D:H-H#H and E:H-k are algebra maps, and F is an invertible element in
H#H#H satisfying the following conditions:

ðE#idÞDðhÞ ¼ h ¼ ðid#EÞDðhÞ; ð2:1Þ

FðD#idÞDðhÞF�1 ¼ ðid#DÞDðhÞ for all hAH; ð2:2Þ

ðid#id#DÞðFÞðD#id#idÞðFÞ ¼ ð1#FÞðid#D#idÞðFÞðF#1Þ; ð2:3Þ

ðid#E#idÞðFÞ ¼ 1#1: ð2:4Þ

The maps D; E and F are, respectively, called the diagonal map, counit, and
associator of the quasi-bialgebra. If there is no ambiguity, we will simply write H for
the quasi-bialgebra ðH;D; E;FÞ: Using (2.3), one can also easily see that

ðE#id#idÞðFÞ ¼ 1#1 ¼ ðid#id#EÞðFÞ: ð2:5Þ

Moreover, the module category H-mod of the quasi-bialgebra H is a tensor category
(cf. [8,17] for the details).
Following [17], a gauge transformation on a quasi-bialgebra H ¼ ðH;D; E;FÞ is an

invertible element F of H#H such that

ðE#idÞðFÞ ¼ 1 ¼ ðid#EÞðFÞ:

Using a gauge transformation on H; one can define an algebra map DF :H-H#H

by

DF ðhÞ ¼ FDðhÞF�1 ð2:6Þ

for any hAH; and an invertible element FF of H#H#H by

FF ¼ ð1#FÞðid#DÞðFÞFðD#idÞðF�1ÞðF�1#1Þ: ð2:7Þ

Then HF ¼ ðH;DF ; E;FF Þ is also a quasi-bialgebra.
Two quasi-bialgebras A and B are said to be gauge equivalent if there exists a

gauge transformation F on B such that A and BF are isomorphic as quasi-bialgebras.
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If A and B are gauge equivalent quasi-bialgebras, A-mod and B-mod are equivalent
tensor categories (cf. [17]). Conversely, if A; B are finite-dimensional semi-simple
quasi-bialgebras such that A-mod and B-mod are equivalent tensor categories, then A

and B are gauge equivalent quasi-bialgebras (cf. [9]).
A quasi-bialgebra ðH;D; E;FÞ is called a quasi-Hopf algebra if there exist an anti-

algebra automorphism S of H and elements a; bAH such that for all element hAH;
we have X

ðhÞ
Sðh1Þah2 ¼ EðhÞa;

X
ðhÞ

h1bSðh2Þ ¼ EðhÞb ð2:8Þ

and X
i

XibSðYiÞaZi ¼ 1;
X

i

Sð %XiÞa %YibSð %ZiÞ ¼ 1; ð2:9Þ

where F ¼
P

iXi#Yi#Zi; F�1 ¼
P

i
%Xi# %Yi# %Zi and

P
ðhÞh1#h2 ¼ DðhÞ: We

shall write ðH;D; E;F; a; b;SÞ for the complete data of the quasi-Hopf algebra; S

is called the antipode of H: When the context is clear, we will simply write H for the
quasi-Hopf algebra ðH;D; E;F; a; b;SÞ: One can easily see that a Hopf algebra is a
quasi-Hopf algebra with F ¼ 1#1#1 and a ¼ b ¼ 1:
Unlike a Hopf algebra, the antipode for a quasi-Hopf algebra is generally not

unique.

Proposition 2.1 (Drinfel’d [8, Proposition 1.1]). Let H ¼ ðH;D; E;F; a; b;SÞ be a

quasi-Hopf algebra. If u is a unit of H then Hu ¼ ðH;D; E;F; ua; bu�1;SuÞ is also a

quasi-Hopf algebra, where SuðhÞ ¼ uSðhÞu�1 for all hAH: Conversely, for any

a0; b0AH and for any algebra anti-automorphism S0 of H such that H 0 ¼
ðH;D; E;F; a0; b0;S0Þ is a quasi-Hopf algebra, then there exists a unique invertible

element u of H such that

Hu ¼ H 0:

If F is a gauge transformation on the quasi-Hopf algebra H ¼ ðH;D; E;F; a; b;SÞ;
we can define aF and bF by

aF ¼
X

i

SðdiÞaei and bF ¼
X

i

fibSðgiÞ;

where F ¼
P

i fi#gi and F�1 ¼
P

idi#ei: Then, HF ¼ ðH;DF ; E;FF ; aF ; bF ;SÞ is

also a quasi-Hopf algebra.
The antipode of a Hopf algebra is known to be an anti-coalgebra map. For a

quasi-Hopf algebra H; this is true up to conjugation. Following [8], we define
g; dAH#H by the formulae

g ¼
X

i

SðUiÞaVi#SðTiÞaWi; ð2:10Þ
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d ¼
X

j

KjbSðNjÞ#LjbSðMjÞ; ð2:11Þ

where X
i

Ti#Ui#Vi#Wi ¼ ð1#F�1Þðid#id#DÞðFÞ;

X
j

Kj#Lj#Mj#Nj ¼ ðD#id#idÞðFÞðF�1#1Þ:

Then,

FH ¼
X

i

ðS#SÞðDopð %XiÞÞ 	 g 	 Dð %YibSð %ZiÞÞ ð2:12Þ

is an invertible element of H#H; where F�1 ¼
P

i
%Xi# %Yi# %Zi: Moreover,

FHDðSðhÞÞF�1
H ¼ ðS#SÞDopðhÞ

for all hAH:
The category of finite-dimensional left H-modules of a quasi-Hopf algebra H with

antipode S; denoted by H-modfin is a rigid tensor category. Let M be a finite-
dimensional left H-module and M 0 its k-linear dual. Then the H-action on M 0;
given by

ðh 	 f ÞðmÞ ¼ f ðSðhÞmÞ

for any fAM 0 and mAM; defines a left H-module structure on M 0: We shall denote
by �M the left dual of M in H-modfin: Similarly, the right dual of M; denoted by M�;
is the H-module with the underlying k-linear space M 0 with the H-action given by

ðh 	 f ÞðmÞ ¼ f ðS�1ðhÞmÞ

for any fAM 0 and mAM (cf. [8]).
In [13–15], Frank Hausser and Florian Nill introduced some interesting elements

in H#H for any arbitrary quasi-Hopf algebra H ¼ ðH;D; E;F; a; b;SÞ in the course
of studying the corresponding theories of quantum double, integral and the
fundamental theorem for quasi-Hopf algebras. These elements of H#H are
given by

qR ¼
X

Xi#S�1ðaZiÞYi; pR ¼
X

%Xi# %YibSð %ZiÞ; ð2:13Þ

qL ¼
X

Sð %XiÞa %Yi# %Zi; pL ¼
X

YiS
�1ðXibÞ#Zi; ð2:14Þ
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where F ¼
P

iXi#Yi#Zi and F�1 ¼
P

i
%Xi# %Yi# %Zi: One can show easily (cf. [15])

that they obey the relations (for all aAH)

ða#1ÞqR ¼
X

ð1#S�1ða2ÞÞqRDða1Þ; ð2:15Þ

ð1#aÞqL ¼
X

ðSða1Þ#1ÞqLDða2Þ; ð2:16Þ

pRða#1Þ ¼
X

Dða1ÞpRð1#Sða2ÞÞ; ð2:17Þ

pLð1#aÞ ¼
X

Dða2ÞpLðS�1ða1Þ#1Þ; ð2:18Þ

where DðaÞ ¼
P

a1#a2: Suppressing the summation symbol and indices, we write

qR ¼ q1R#q2R; etc. These elements also satisfy the identities (cf. [15]):

Dðq1RÞpRð1#Sðq2RÞÞ ¼ 1#1; ð2:19Þ

ð1#S�1ðp2RÞÞqRDðp1RÞ ¼ 1#1; ð2:20Þ

Dðq2LÞpLðS�1ðq1LÞ#1Þ ¼ 1#1; ð2:21Þ

ðSðp1LÞ#1ÞqLDðp2LÞ ¼ 1#1: ð2:22Þ

We will use these equations in the sequel.

3. Central gauge invariants for semi-simple quasi-Hopf algebras

Suppose that H ¼ ðH;D; E;F; a; b;SÞ is a finite-dimensional quasi-Hopf algebra.
A left integral of H is an element l of H such that hl ¼ EðhÞl for all hAH: A right
integral of H can be defined similarly. It follows from [15] that the subspace of left
(right) integrals of H is of dimension 1. Moreover, if H is semi-simple, the subspace
of left integrals is identical to the space of right integrals of H and EðLÞa0 for any
non-zero left integral L of H (see also [25]). We will call the two-sided integral L of
H normalized if EðLÞ ¼ 1:
Let L be a left integral of H: Then for any aAH;

EðaÞDðLÞ ¼ DðaÞDðLÞ: ð3:1Þ
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Similarly, if L0 is a right integral of H; then we have

EðaÞDðL0Þ ¼ DðL0ÞDðaÞ: ð3:2Þ

We then have the following lemma.

Lemma 3.1. Let H ¼ ðH;D; E;F; a; b;SÞ be a finite-dimensional quasi-Hopf algebra.

(i) If L is a left integral of H; then for any aAH;

ð1#aÞqRDðLÞ ¼ ðSðaÞ#1ÞqRDðLÞ; ð3:3Þ

ð1#aÞqLDðLÞ ¼ ðSðaÞ#1ÞqLDðLÞ; ð3:4Þ

and ðb#1ÞqLDðLÞ ¼ ðb#1ÞqRDðLÞ ¼ DðLÞ: ð3:5Þ

(ii) If L0 is a right integral of H; then for any aAH;

DðL0ÞpRða#1Þ ¼ DðL0ÞpRð1#SðaÞÞ; ð3:6Þ

DðL0ÞpLða#1Þ ¼ DðL0ÞpLð1#SðaÞÞ; ð3:7Þ

and DðL0ÞpLð1#aÞ ¼ DðL0ÞpRð1#aÞ ¼ DðL0Þ: ð3:8Þ

Proof. (i) By Eqs. (3.1) and (2.15), for any aAH;

ða#1ÞqRDðLÞ ¼ ð1#S�1ða2ÞÞqRDða1ÞDðLÞ

¼ ð1#S�1ða2Eða1ÞÞÞqRDðLÞ

¼ ð1#S�1ðaÞÞqRDðLÞ:

Hence, by substituting a with SðaÞ; we prove Eq. (3.3). Here the summation symbols
are suppressed. Now we have

DðLÞ ¼ ð1#S�1ðp2RÞÞqRDðp1RÞDðLÞ ðby ð2:20ÞÞ

¼ ð1#S�1ðp2REðp1RÞÞqRDðLÞ ðby ð3:1ÞÞ

¼ ð1#S�1ðbÞÞqRDðLÞ ðby ð2:5ÞÞ

¼ ðb#1ÞqRDðLÞ ðby ð3:3ÞÞ:
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The remaining formulae in (i) and (ii) can be proved similarly using Eqs. (2.5),
(2.15)–(2.22), (3.1) and (3.2). &

Lemma 3.2. Let H ¼ ðH;D; E;F; a; b;SÞ be a finite-dimensional quasi-Hopf algebra

and F a gauge transformation on H: Suppose that qF
R; qF

L; pF
R; pF

L are the corresponding

p’s and q’s for HF defined in (2.13) and (2.14).

(i) If L is a left integral of H; then

qF
RDF ðLÞ ¼ qRDðLÞF�1 and qF

LDF ðLÞ ¼ qLDðLÞF�1:

(ii) If L0 is a right integral of H; then

DF ðL0ÞpF
R ¼ FDðL0ÞpR and DF ðL0ÞpF

L ¼ FDðL0ÞpL:

Proof. (i) Let F�1 ¼
P

j
%Xj# %Yj# %Zj ; F ¼

P
ifi#gi and F�1 ¼

P
ldl#el : Then, we

obtain

F�1
F ¼ðF#1ÞðD#idÞðFÞF�1ðid#DÞðF�1Þð1#F�1Þ

¼ ðF#1Þ
X
i;j;l

fi;1 %Xjdl#fi;2 %Yjel;1#gi %Zjel;2

 !
ð1#F�1Þ;

where DðfiÞ ¼
P

fi;1#fi;2 and DðelÞ ¼
P

el;1#el;2: Thus, we have

qF
LDF ðLÞ

¼
X

Sðfi0fi;1 %XjdlÞaF gi0 fi;2 %Yjel;1#gi %Zjel;2

� �
F�1FDðLÞF�1

¼
X

Sðfi;1 %XjdlÞafi;2 %Yjel;1#gi %Zjel;2

� �
DðLÞF�1 ðsince

X
Sðfi0 ÞaF gi0 ¼ aÞ

¼
X

Sðfi;1 %XjdlEðelÞÞafi;2 %Yj#gi %Zj

� �
DðLÞF�1 ðby ð3:1ÞÞ

¼
X

Sðfi;1 %XjÞafi;2 %Yj#gi %Zj

� �
DðLÞF�1 ðsince

X
dlEðelÞ ¼ 1HÞ

¼
X

Sð %XjÞaEðfiÞ %Yj#gi %Zj

� �
DðLÞF�1 ðsince

X
Sðfi;1Þafi;2 ¼ EðfiÞaÞ

¼
X

Sð %XjÞa %Yj# %Zj

� �
DðLÞF�1 ðsince

X
EðfiÞgi ¼ 1HÞ

¼ qLDðLÞF�1:

The other three equations can be proved similarly. &
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Theorem 3.3. Let H ¼ ðH;D; E;F; a; b;SÞ be a finite-dimensional quasi-Hopf algebra.

Suppose that L is a two-sided integral of H: Then, the elements

qRDðLÞpR; qRDðLÞpL; qLDðLÞpR; and qLDðLÞpL

in H#H are invariant under gauge transformations. Moreover,

mðqRDðLÞpRÞ ¼ mðqRDðLÞpLÞ ¼ mðqLDðLÞpRÞ ¼ mðqLDðLÞpLÞ;

where m denotes the multiplication of H: In addition, mðqRDðLÞpRÞ is a central element

of H:

Proof. It follows from Lemma 3.2 that for any gauge transformation F on H;

qF
�DF ðLÞ ¼ q�DðLÞF�1; and DF ðLÞpF

� ¼ FDðLÞp�;

where qF
� ¼ qF

L or qF
R and pF

� ¼ pF
L or pF

R: Thus we have

qF
�DF ðLÞpF

� ¼ q�DðLÞF�1pF
�

¼ q�F�1DF ðLÞpF
�

¼ q�F�1FDðLÞp�

¼ q�DðLÞp�:

Let m denote the multiplication of H and let mRR; mRL; mLR and mLL denote the
elements

mðqRDðLÞpRÞ;mðqRDðLÞpLÞ;mðqLDðLÞpRÞ; and mðqLDðLÞpLÞ;

respectively. Then for any aAH;

SðaÞmRR ¼mððSðaÞ#1ÞqRDðLÞpRÞ

¼mðð1#aÞqRDðLÞpRÞ by Lemma 3:1ðiÞ

¼mðqRDðLÞpRða#1ÞÞ

¼mðqRDðLÞpRð1#SðaÞÞÞ by Lemma 3:1ðiiÞ

¼mRRSðaÞ:

As S is an automorphism, the above equation implies that mRR is in the center of H:
Using the same kind of arguments, one can show that mRL;mLR and mLL are each in
the center of H:
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Let QR; QL; PR and PL denote the elements

mðqRDðLÞÞ;mðqLDðLÞÞ;mðDðLÞpRÞ; and mðDðLÞpLÞ;

respectively. Then, we have

mRR ¼
X

q1RL1p
1
Rq2RL2p

2
R

¼
X

Sðp1RÞq1RL1q
2
RL2q

2
R by Lemma 3:1ðiÞ

¼Sðp1RÞQRp2R

¼
X

j

Sð %XjÞQRb %YjSð %ZjÞ ð3:9Þ

and

mRR ¼
X

q1RL1p
1
Rq2RL2p

2
R

¼
X

q1RL1p
1
RL2p

2
RSðq2RÞ by Lemma 3:1ðiiÞ

¼ q1RPRSðq2RÞ

¼
X

XiPRSðYiÞaZi; ð3:10Þ

where F�1 ¼
P

j
%Xj# %Yj# %Zj and F ¼

P
iXi#Yi#Zi: Similarly,

mLL ¼ Sð %XjÞa %YjPLSð %ZjÞ ¼
X

XibSðYiÞQLZi: ð3:11Þ

By (3.5) and (3.8), we have

QR ¼ mRLa; QL ¼ mLRa;

PL ¼ bmRL; PR ¼ bmLR: ð3:12Þ

Therefore, using Eq. (2.9), we have

mRR ¼ Sð %XjÞmRLa %YjbSð %ZjÞ ¼ mRLSð %XjÞa %YjbSð %ZjÞ ¼ mRL:

Similarly, using Eqs. (3.10)–(3.12) we can prove

mRR ¼ mLR ¼ mLL: &
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In [15,25], it is shown that a finite-dimensional quasi-Hopf algebra H is semi-simple
if, and only, if there exists a unique normalized two-sided integral. In this case, we
have the following:

Definition 3.4. Let H ¼ ðH;D; E;F; a; b;SÞ be a finite-dimensional semi-simple quasi-
Hopf algebra and let L be the unique normalized two-sided integral of H:We denote
by nH the central element

mðqLDðLÞpLÞ

discussed in Theorem 3.3.

Corollary 3.5. Let H ¼ ðH;D; E;F; a; b;SÞ be a finite-dimensional semi-simple quasi-

Hopf algebra and L the normalized two-sided integral of H: Then nH is invariant under

gauge transformations, that is

nH ¼ nHF

for any gauge transformation F on H: Moreover,

banH ¼ nHba ¼
X

ðL1L2Þ;

where
P

L1#L2 ¼ DðLÞ: In particular, if both a and b are units of H; then

nH ¼
X

ðL1L2ÞðbaÞ�1 ¼ ðbaÞ�1
X

ðL1L2Þ:

Proof. The first statement follows immediately from Theorem 3.3. By Eqs. (3.5) and
(3.8), we have bnHa ¼

P
ðL1L2Þ: Since nH is central, then the result follows. &

Corollary 3.6. Let H ¼ ðH;D; E;F; a; b;SÞ; H 0 ¼ ðH 0;D0; E0;F0; a0; b0;S0Þ be semi-

simple quasi-Hopf algebras. If H and H 0 are gauge equivalent quasi-bialgebras via the

gauge transformation F on H and the quasi-bialgebra isomorphism s:HF-H 0; then

sðnHÞ ¼ nH 0 :

In particular, if u is a unit of H; then nHu
¼ nH :

Proof. Since HF and H 0 are isomorphic quasi-bialgebras, ðH 0;D0; E0;F0;sðaF Þ;
sðbF Þ; sSs�1Þ is a quasi-Hopf algebra. By Proposition 2.1, there exists a unit u of
H 0 such that

sSs�1ðaÞ ¼ uS0ðaÞu�1; sðaF Þ ¼ ua0 and sðbF Þ ¼ b0u�1 ð3:13Þ

for all aAH 0: Then, we have

sS�1s�1ðaÞ ¼ S0�1ðuÞS0�1ðaÞS0�1ðu�1Þ: ð3:14Þ
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Let L be the normalized two-sided integral of H: Since s is a quasi-bialgebra
isomorphism, sðLÞ is then a two-sided integral of H 0 and

E0ðsðLÞÞ ¼ EðLÞ ¼ 1:

Therefore, L0 ¼ sðLÞ is the unique normalized integral of H 0: In particular, we have

ðs#sÞDF ðLÞ ¼
X

L0
1#L0

2 and ðs#s#sÞðFF Þ ¼ F0;

where
P

L0
1#L0

2 ¼ D0ðL0Þ: Let

FF ¼
X

X F
i #Y F

i #ZF
i ; F�1

F ¼
X

%XF
j # %YF

j # %ZF
j ;

F0 ¼
X

X 0
i#Y 0

i#Z0
i; F0�1 ¼

X
%X0

j# %Y0
j# %Z0

j;

and DF ðLÞ ¼
X

LF
1#LF

2 :

Then,

sðnHÞ ¼ sðnHF
Þ ðby Corollary 3:5Þ

¼ s
X

X F
i L

F
1
%XF

j S�1ðaF ZF
i ÞY F

i L
F
2
%YF

j bF Sð %ZF
j Þ

� �
¼
X

X 0
iL

0
1
%X0

jðsS�1ÞðaF ZF
i ÞY 0

iL
0
2
%Y0

jsðbF ÞðsSÞð %ZF
j Þ

¼
X

X 0
iL

0
1
%X0

jðsS�1s�1ÞðZ0
iÞðsS�1s�1ÞðsðaF ÞÞY 0

iL
0
2
%Y0

jsðbF ÞðsSs�1Þð %Z0
jÞ

¼
X

X 0
iL

0
1
%X0

jS
0�1ðuÞS0�1ðZ0

iÞS0�1ða0ÞY 0
iL

0
2
%Y0

jb
0S0ð %Z0

jÞu�1 ðby Eqs: ð3:13Þ and ð3:14ÞÞ

¼
X

X 0
iL

0
1
%X0

jS
0�1ða0Z0

iÞY 0
iL

0
2
%Y0

jb
0S0ð %Z0

jÞuu�1 ðby Lemma 3:1ðiiÞÞ

¼ nH 0 :

For any unit u of H; H and Hu are obviously gauge equivalent as quasi-bialgebras
under the gauge transformation 1#1 and the quasi-bialgebra isomorphism idH :
Hence, the second statement follows. &

4. Frobenius–Schur indicators

Let ðH;D; E;F; a; b;SÞ be a semi-simple quasi-Hopf algebra over the field k: Let M

be an irreducible H-module with character w: We call wðnHÞ the Frobenius–Schur
indicator of w (or M). The family of Frobenius–Schur indicators fwðnHÞg is in fact an
invariant of the tensor category H-mod for any semi-simple quasi-Hopf algebra H:
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Theorem 4.1. Let H ¼ ðH;D; E;F; a; b;SÞ and H 0 ¼ ðH 0;D0; E0;F0; a0; b0;S0Þ be finite-

dimensional semi-simple quasi-Hopf algebras over an algebraically closed field k of

characteristic zero. If H-mod and H 0-mod are equivalent as k-linear tensor categories,
then the families of Frobenius–Schur indicators for H and H 0 are identical.

Proof. If H-mod and H 0-mod are equivalent as k-linear tensor categories, then, by
Etingof and Gelaki [9, Theorem 6.1], H and H 0 are gauge equivalent quasi-
bialgebras. Suppose that F is a gauge transformation on H and s:HF-H 0 is a quasi-
bialgebra isomorphism. It follows from Corollary 3.5 that

sðnHÞ ¼ nH 0 :

Let IrrðHÞ; IrrðH 0Þ be the sets of irreducible characters of H and H 0 respectively.
Then, the map w0/w03s is a bijection from IrrðH 0Þ onto IrrðHÞ: Moreover, for any
irreducible character w0 of H 0;

w03sðnHÞ ¼ w0ðnH 0 Þ:

Thus, fw0ðnH 0 Þgw0AIrrðH 0Þ is identical to the family fwðnHÞgwAIrrðHÞ: &

Remark 4.2. If H is a semi-simple Hopf algebra, then F ¼ 1#1#1 and a ¼ b ¼ 1:
It follows from Corollary 3.5 that

nH ¼
X

L1L2;

where
P

L1#L2 ¼ DðLÞ and L is the normalized two-sided integral of H: Thus,
wðnHÞ coincides with the Frobenius–Schur indicator defined in [20].

As an application of Theorem 4.1, we give a simple alternative proof of the fact
that C½Q8�-mod and C½D8�-mod are not equivalent as C-linear tensor categories where
Q8 and D8 are the quaternion group and the dihedral group of order 8, respectively
(cf. [28]).

Proposition 4.3 (Tambara and Yamagami [28]). The C-linear categories C½Q8�-mod
and C½D8�-mod are not equivalent as tensor categories.

Proof. Let G ¼ D8 or Q8: Then, G has four degree 1 characters and one degree 2
irreducible character w2: Let z be the non-trivial central element of G: Then w2ðzÞ ¼
�2 and wðzÞ ¼ 1 for any character w of G of degree 1. Since nG ¼ 1

8

P
gAGg2; one can

easily obtain that

nQ8
¼ 1

8
ð6z þ 2eÞ and nD8

¼ 1
8
ð2z þ 6eÞ;

where e is the identity of the group. Thus, the family of Frobenius–Schur indicators
for Q8 is f1; 1; 1; 1;�1g but the family of Frobenius–Schur indicators for D8 is
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f1; 1; 1; 1; 1g: By virtue of Theorem 4.1, C½Q8�-mod and C½D8�-mod are not equivalent
as C-linear tensor categories. &

5. Bantay’s formula for indicators of twisted quantum doubles

In this section, we will show that if H is a twisted quantum double of a finite group

G over the field k such that jGj�1 exists in k; then for any irreducible character w of
H; wðnHÞ is identical to Bantay’s formula (1.6). We begin with the definition of
twisted quantum doubles of finite groups.
Let G be a finite group and o:G 
 G 
 G-k
 a normalized 3-cocycle; that is a

function such that oðx; y; zÞ ¼ 1 whenever one of x; y or z is equal to the identity
element 1 of G and which satisfies the functional equation

oðg; x; yÞoðg; xy; zÞoðx; y; zÞ ¼ oðgx; y; zÞoðg; x; yzÞ for any g; x; y; zAG: ð5:1Þ

For any gAG; define the functions yg; gg:G 
 G-k
 as follows:

ygðx; yÞ ¼ oðg; x; yÞoðx; y; ðxyÞ�1gxyÞ
oðx; x�1gx; yÞ ; ð5:2Þ

ggðx; yÞ ¼ oðx; y; gÞoðg; g�1xg; g�1ygÞ
oðx; g; g�1ygÞ : ð5:3Þ

Let feðgÞ j gAGg be the dual basis of the canonical basis of k½G�: The twisted

quantum double DoðGÞ of G with respect to o is the quasi-Hopf algebra with

underlying vector space k½G�0#k½G�: The multiplication, comultiplication and
associator are given, respectively, by

ðeðgÞ#xÞðeðhÞ#yÞ ¼ ygðx; yÞdg;xhx�1eðgÞ#xy; ð5:4Þ

DðeðgÞ#xÞ ¼
X
hk¼g

gxðh; kÞeðhÞ#x#eðkÞ#x; ð5:5Þ

F ¼
X

g;h;kAG

oðg; h; kÞ�1eðgÞ#1#eðhÞ#1#eðkÞ#1: ð5:6Þ

The counit and antipode are given by

EðeðgÞ#xÞ ¼ dg;1 ð5:7Þ
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and

SðeðgÞ#xÞ ¼ yg�1ðx; x�1Þ�1gxðg; g�1Þ�1eðx�1g�1xÞ#x�1; ð5:8Þ

where dg;1 is the Kronecker delta. The corresponding elements a and b are 1DoðGÞ andP
gAGoðg; g�1; gÞeðgÞ#1; respectively (cf. [7]). Verification of the details involves the

following identities, which result from the 3-cocycle identity for o:

yzða; bÞyzðab; cÞ ¼ ya�1zaðb; cÞyzða; bcÞ; ð5:9Þ

yyða; bÞyzða; bÞgaðy; zÞgbða�1ya; a�1zaÞ ¼ yyzða; bÞgabðy; zÞ; ð5:10Þ

gzða; bÞgzðab; cÞoðz�1az; z�1bz; z�1czÞ ¼ gzðb; cÞgzða; bcÞoða; b; cÞ; ð5:11Þ

for all a; b; c; y; zAG:

Remark 5.1. The algebra DoðGÞ is semi-simple (cf. [7]). If o ¼ 1; then the twisted
quantum double DoðGÞ identical to the Drinfeld double of the group algebra k½G�:
However, DoðGÞ is not a Hopf algebra in general. Moreover, even if o; o0 differ by

a coboundary, DoðGÞ and Do0 ðGÞ are not isomorphic as quasi-bialgebras.
Nevertheless, they are gauge equivalent. In addition, if G is abelian, DoðGÞ also
admits a Hopf algebra structure with the same underlying D; E and S (cf. [21]).

Let

L ¼ 1

jGj
X
xAG

eð1Þ#xADoðGÞ: ð5:12Þ

It is straightforward to show that L is a left integral of DoðGÞ: Moreover,

EðLÞ ¼ 1:

After [15,26], this gives another proof of the semi-simplicity of DoðGÞ: Note that

DðLÞ ¼
X

L1#L2 ¼
1

jGj
X

g;xAG

gxðg; g�1ÞeðgÞ#x#eðg�1Þ#x:

Since ba ¼ b is invertible, it follows from Corollary 3.5 that

nDoðGÞ

¼ 1

jGj
X
gAG

oðg; g�1; gÞ�1eðgÞ#1

 ! X
g;xAG

gxðg; g�1ÞðeðgÞ#xÞðeðg�1Þ#xÞ
 !
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¼ 1

jGj
X
gAG

oðg�1; g; g�1ÞeðgÞ#1

 ! X
x�1gx¼g�1

gxðg; g�1Þygðx; xÞeðgÞ#x2

0
@

1
A

¼ jGj�1
X

x�1gx¼g�1

oðg�1; g; g�1Þgxðg; g�1Þygðx;xÞðeðgÞ#x2Þ:

Here we have used the equality

oðg; g�1; gÞ�1 ¼ oðg�1; g; g�1Þ

which is readily derived from Eq. (5.1). Thus for any irreducible character w of
DoðGÞ; the Frobenius–Schur indicator of w is

wðnDoðGÞÞ ¼ jGj�1
X

x�1gx¼g�1

oðg�1; g; g�1Þgxðg; g�1Þygðx; xÞwðeðgÞ#x2Þ;

as given by Bantay.

6. Trace elements and antipodes of semi-simple quasi-Hopf algebras

It is proved by Larson and Radford [18,19] that if char k ¼ 0; the antipode of a
semi-simple Hopf algebra over k is an involution. However, the antipode of a semi-
simple quasi-Hopf algebra H could be of any order. Nevertheless, we prove an
analog of the Larson–Radford theorem for split semi-simple quasi-Hopf algebras H

over any field k: there exists a unit uAH such that the antipode of Hu is an
involution. To this end we introduce the trace element g of a semi-simple quasi-Hopf
algebra. This element will play a rôle throughout the remaining sections of the paper.
Let H ¼ ðH;D; E;F; a; b;SÞ be a finite-dimensional semi-simple quasi-Hopf

algebra over k and L the normalized two-sided integral of H: By Hausser and
Nill [15], there exists a functional lAH 0; called the normalized left cointegral of H;
given by the formula

lðxÞ ¼
X

i

biðxS2ðbiÞSðbÞaÞ ð6:1Þ

for all xAH; where fbig is a basis of H and fbig is its dual basis (see [15] for the
details of cointegral). The normalized left cointegral l admits the following
properties:

(i) lðLÞ ¼ 1:
(ii) lðabÞ (a; bAH) defines a non-degenerate bilinear form on H:
(iii) For all a; bAH;

lðabÞ ¼ lðbS2ðaÞÞ: ð6:2Þ
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Let wreg denote the character of the left regular representation of H: The bilinear

form on H defined by /a; bSreg :¼ wregðabÞ is then symmetric and non-degenerate.

By the non-degeneracy of l; there exists a unique element g of H such that

wregðxÞ ¼ lðxgÞ ð6:3Þ

for all xAH: We call g the trace element.

Example 6.1. If char k ¼ 0; and H is a finite-dimensional semi-simple Hopf algebra

over k; then S2 ¼ idH : By (6.1),

lðxÞ ¼
X

i

biðxbiÞ ¼ wregðxÞ:

Thus, the trace element of H is 1.

Lemma 6.2. Let H ¼ ðH;D; E;F; a; b;SÞ be a finite-dimensional semi-simple quasi-

Hopf algebra. Then the trace element g of H is invertible and

S2ðaÞ ¼ g�1ag

for all aAH: Moreover, gSðgÞ is in the center of H and gSðgÞ ¼ SðgÞg:

Proof. By (6.3), the left annihilator of g in H is a subset of ker wreg: Since H is semi-

simple, ker wreg does not contain any non-trivial left ideals of H: Therefore, the left

annihilator of g is trivial. Since the left regular representation of H is faithful and
finite-dimensional, g is invertible. Thus, we have

lðabÞ ¼ lðabg�1gÞ ¼ wregðabg�1Þ ¼ wregðbg�1aÞ ¼ lðbg�1agÞ

for all a; bAH: By the non-degeneracy of l and (6.2), we obtain

S2ðaÞ ¼ g�1ag

for all aAH: In particular,

Sðg�1agÞ ¼ S3ðaÞ ¼ g�1SðaÞg:

Therefore,

gSðgÞSðaÞ ¼ SðaÞgSðgÞ ð6:4Þ

for all aAH and hence gSðgÞ is in the center of H: Taking a ¼ g�1 in (6.4), the result
in the last statement follows. &

Lemma 6.3. Let A be a finite-dimensional split semi-simple algebra over k and S an

algebra anti-automorphism on A such that S2 is inner. Then there exists a unit uAA
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such that S2
u ¼ idA where

SuðxÞ ¼ uSðxÞu�1

for all xAA:

Proof. Without loss of generality, we can assume that A is a direct sum of full matrix

rings over k; say A ¼ "d
i¼1Mni

ðkÞ: Let ii denote the natural embedding from Mni
ðkÞ

into A; pi the natural surjection from A onto Mni
ðkÞ; and Ai the image of ii: Then,

A1;y;Ad is the complete set of minimal ideals of A: Since S is an algebra anti-
automorphism, there exists a permutation s on f1;y; dg such that SðAiÞ ¼ AsðiÞ for

all i ¼ 1;y; d: As S2 is inner, S2ðAiÞ ¼ Ai for all i and so s2 ¼ id:
Since SðAiÞ ¼ AsðiÞ; Mni

ðkÞ ¼ MnsðiÞ ðkÞ: Moreover, pj3S3ii ¼ 0 for jasðiÞ and

psðiÞ3S3ii is an algebra anti-automorphism on Mni
ðkÞ: By the Skolem–Noether

theorem, there exists an invertible matrix uiAMnsðiÞ ðkÞ such that psðiÞ3S3iðxÞ ¼
u�1

i xtui for any xAMni
ðkÞ where xt is the transpose of x:

Let u ¼
Pd

i¼1isðiÞðuiÞ: Since ui is invertible in MnsðiÞ ðkÞ for all i; u is invertible in A:

Since SðAiÞ ¼ AsðiÞ is an ideal of A; SuðAiÞ ¼ AsðiÞ: Then for any xAMni
ðkÞ;

psðiÞðSuðiiðxÞÞÞ ¼ uiðpsðiÞ3S3iiðxÞÞu�1
i ¼ xt:

Thus,

isðiÞðxtÞ ¼ isðiÞ3psðiÞðSuðiiðxÞÞÞ ¼ SuðiiðxÞÞ;

and hence

S2
uðiiðxÞÞ ¼ SuðisðiÞðxtÞÞ ¼ is2ðiÞððxtÞtÞ ¼ iiðxÞ

as s2 ¼ id: Therefore, S2
uðaÞ ¼ a for all aAAi; i ¼ 1;y; d: Since

A ¼ A1"?"Ad ; S2
u ¼ idA: &

Theorem 6.4. Let H ¼ ðH;D; E;F; a; b;SÞ be a finite-dimensional split semi-simple

quasi-Hopf algebra over k: Then there exists an invertible element u of H such that the

antipode of Hu is an involution.

Proof. It follows from Lemma 6.2 or [15, Proposition 5.6] that S2 is inner. By
Lemma 6.3, the result follows. &

Remark 6.5. Suppose u is an invertible element of H and M a finite-dimensional left

H-module. Let þM; �M denote the left dual of M in Hu-modfin and H-modfin
respectively. Then, þM and �M are isomorphic left H-modules under the map

fu:
þM-�M defined by

fuðf ÞðxÞ ¼ f ðuxÞ
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for all xAM and fAM 0: In particular, MD�M if, and only if, MDþM as left H-
modules (cf. [8, p. 1425]). &

7. Pivotal category structure of H-modfin

We begin with Etingof’s observation (Theorem 7.1) that the trace element g of a
finite-dimensional semi-simple quasi-Hopf algebra H ¼ ðH;D; E;F; a; b;SÞ over an
algebraically closed field of characteristic zero defines an isomorphism of tensor
functors

j:Id-��?:

Moreover, we prove that SðgÞ ¼ g�1; a fact that we will need in Section 8. A direct
result of this is that H-modfin is a pivotal category in the sense of Joyal and Street (cf.
[11]). For the remainder of this paper we will assume that k is an algebraically closed
field of characteristic zero.
For simplicity, we write C for the semi-simple rigid tensor category H-modfin in

this section. Obviously, C is a fusion category over k (cf. [10]). Recall from [2] that if
VAC and f :V-��V then the categorical trace of f is the scalar trV ðf Þ defined by

ev�V 3ðf#idÞ3coevV ; ð7:1Þ

where evV :
�V#V-k and coevV :k- V#�V are evaluation and coevaluation maps.

Following [24], for any simple object V in C and an isomorphism f :V-��V ; we
define

jV j2 ¼ trV ðf Þtr�V ð�ðf �1ÞÞ: ð7:2Þ

Clearly, jV j2 is independent of the choice of f :
By Etingof et al. [10], there exists an isomorphism of tensor functors

j:Id-��?

such that for any simple object V of C;

trV ðjÞ ¼ FPdimðVÞ ¼ dimðVÞ ð7:3Þ

where FPdimðVÞ is the Frobenius–Perron dimension of V : Moreover,

jV j2 ¼ dimðVÞ2: ð7:4Þ

Let a be the unique invertible element of H such that

jHð1Þðf Þ ¼ f ðaÞ ð7:5Þ
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for all fA�H: By the naturality of j; one can show that

S2ðxÞ ¼ axa�1 for all xAH; ð7:6Þ

and for any VAC; j:V-��V is given by

jV ðxÞðf Þ ¼ f ðaxÞ ð7:7Þ

for all xAV and fA�V : Thus, by (7.1)–(7.3), for any simple objective V in C with
character w;

dimðVÞ ¼ wðabSðaÞÞ ð7:8Þ

and

jV j2 ¼ wðabSðaÞÞwða�1SðbÞaÞ: ð7:9Þ

Hence, by (7.8) and (7.4), we also have

dimðVÞ ¼ wða�1SðbÞaÞ ð7:10Þ

In fact, a�1 is the trace element of H:

Theorem 7.1 (Etingof). Let H ¼ ðH;D; E;F; a; b;SÞ be a finite-dimensional semi-

simple quasi-Hopf algebra over k and g the trace element of H: Then the natural

isomorphism jV :V-��V for any V in H-modfin; given by

jV ðxÞðf Þ ¼ f ðg�1xÞ

for all xAV and fA�V ; defines an isomorphism of the tensor functors Id and ��? such

that

dimðVÞ ¼ wðg�1bSðaÞÞ

for any simple H-module V with character w:

Proof. By the preceding discussion, it suffices to show that the element a defined in

(7.5) is identical to g�1: By Lemma 6.2 and (7.6), ag is in the center of H: Therefore,
it is enough to show that for any simple H-module V with character w;

wðabSðaÞÞ ¼ wðg�1bSðaÞÞ:

Let eV be the central idempotent of H such that

wðxÞdimðVÞ ¼ wregðeV xÞ
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for all xAH: Thus, we obtain

wðg�1bSðaÞÞdimðVÞ ¼ wregðeV g�1bSðaÞÞ

¼ wregðeVbSðaÞg�1Þ

¼ lðeVbSðaÞÞ;

where l is the normalized left cointegral of H: Let fbig be the dual basis of the basis
fbig of H: Then, we have

wðg�1bSðaÞÞdimðVÞ ¼
X

i

biðeVbSðaÞS2ðbiÞSðbÞaÞ

¼ wregðeVbSðaÞabia
�1SðbÞaÞ

¼ wðbSðaÞaÞwða�1SðbÞaÞ

¼ jV j2 ¼ dimðVÞ2 by ð7:9Þ and ð7:4Þ:

Therefore, by (7.8), we obtain

wðg�1bSðaÞÞ ¼ dimðVÞ ¼ wðabSðaÞÞ: &

Theorem 7.2. Let H ¼ ðH;D; E;F; a; b;SÞ be a finite-dimensional semi-simple quasi-

Hopf algebra over k and g the trace element of H: Then SðgÞ ¼ g�1; and hence

�ðjV Þ3j�V ¼ id�V ð7:11Þ

for any VAH-modfin:

Proof. Since gSðgÞ is central, gSðgÞ acts on any simple H-module V as

multiplication by a scalar cVAk: In order to show that SðgÞ ¼ g�1; it suffices to
prove that

cV ¼ 1

for any simple H-module V :
Let V be a simple H-module with character w: Then the character of �V is �w given

by

�w ¼ w3S:

By Theorem 7.1, (7.8) and (7.10), we have

dimð�VÞ ¼ �wðgSðbÞaÞ ¼ wðSðaÞS2ðbÞSðgÞÞ
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¼ wðSðaÞg�1bgSðgÞÞ ¼ cVwðSðaÞg�1bÞ

¼ cV dimðVÞ

Therefore, cV ¼ 1: Eq. (7.11) follows easily from SðgÞ ¼ g�1: &

Theorem 7.1 and (7.11) implies that H-modfin is indeed a pivotal category as
defined by Joyal–Street (cf. [11]). Nikshych also pointed out that (7.11) can be
proved using weak Hopf algebras.

8. Frobenius–Schur indicators via bilinear forms with adjoint S

Let H ¼ ðH;D; E;F; a; b;SÞ be a finite-dimensional semi-simple quasi-Hopf
algebra over k; and g the trace element of H: In this section, we will prove that
for any simple left H-module M with character w; the Frobenius–Schur indicator
wðnHÞ of w can only be 0, 1 or �1: It is non-zero if, and only if MD�M: Moreover in
this case, M admits a non-degenerate bilinear form /	; 	S such that /hu; vS ¼
/u;SðhÞvS for all hAH; u; vAM; and

/u; vS ¼ wðnHÞ/v; g�1uS:

Definition 8.1. Let H ¼ ðH;D; E;F; a; b;SÞ be a quasi-Hopf algebra over k; M be a
left H-module and /	; 	S a bilinear form on M:

(i) The form is said to be H-invariant ifX
/h1u; h2vS ¼ EðhÞ/u; vS

for all hAH and u; vAV where
P

h1#h2 ¼ DðhÞ:
(ii) The antipode S is said to be the adjoint of the form if

/hu; vS ¼ /u;SðhÞvS

for all hAH and u; vAV :

Lemma 8.2. Let H ¼ ðH;D; E;F; a;b;SÞ be a quasi-Hopf algebra over k and M a

simple left H-module. If /	; 	S1 and /	; 	S2 are non-degenerate bilinear forms on M

with the same adjoint S; then there exists a non-zero element cAk such that

/u; vS1 ¼ c/u; vS2

for all u; vAM:
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Proof. Define Ji:M-�M (i ¼ 1; 2) by

JiðuÞðvÞ ¼ /u; vSi

for u; vAM: Since /	; 	S1 and /	; 	S2 are non-degenerate bilinear forms on M with
the adjoint S; J1; J2 are isomorphisms of H-modules. In particular, M and �M are
isomorphic simple H-modules. By Schur’s lemma, J1 ¼ cJ2 for some non-zero
element cAk and so the result follows. &

Lemma 8.3. Let H ¼ ðH;D; E;F; a; b;SÞ be a finite-dimensional semi-simple quasi-

Hopf algebra, L the normalized two-sided integral of H and g the trace element of H:
Suppose that

qRDðLÞpR ¼
Xn

i¼1
xi#yi;

where fxig is a basis of H: Then fSðxiÞg�1; yig is a pair of dual bases with respect to

/	; 	Sreg:

Proof. Following [15], we define the elements U ;VAH#H by

U ¼ F�1
H ðS#SÞðq21R Þ; ð8:1Þ

V ¼ ðS�1#S�1ÞðF21
H p21R Þ; ð8:2Þ

where FH ; qR; pRAH#H are defined in (2.12) and (2.13). By Hausser and Nill [15,
(7.3) and (7.4)],

qRDðLÞpR ¼ðq2L#1ÞVDðS�1ðq1LÞÞDðLÞDðSðp1LÞÞ Uðp2L#1Þ

¼ ðq2LEðS�1ðq1LÞÞ#1ÞVDðLÞUðEðSðp1LÞÞp2L#1Þ:

By Drinfel’d [8, Remark 7], E3S ¼ E ¼ E3S�1: Therefore,

q2LEðS�1ðq1LÞÞ ¼ EðaÞ1H and EðSðp1LÞÞp2L ¼ EðbÞ1H :

It follows from (2.9) that EðabÞ ¼ 1 and so

qRDðLÞpR ¼ EðaÞEðbÞVDðLÞU ¼ VDðLÞU :

Let l be the normalized left cointegral of H: By Hausser and Nill [15, Proposition
5.5], X

i

SðxiÞlðyiaÞ ¼ a
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for all aAH: In particular,

a ¼ ðagÞg�1 ¼
X

i

SðxiÞg�1lðyiagÞ ¼
X

i

SðxiÞg�1wregðyiaÞ:

Since fSðxiÞg�1g is also a basis of H; wregðyiSðxjÞg�1Þ ¼ dij and so fSðxiÞg�1; yig is a
pair of dual bases of H with respect to /	; 	Sreg: &

Lemma 8.4. Let A be a finite-dimensional semi-simple algebra over k and fai; big a

pair of dual bases with respect to the form /	; 	Sreg: Then

X
i

aibi ¼ 1A:

Proof. Without loss of generality, we may assume that A ¼ "d
i¼1Mni

ðkÞ: Then
wregðxÞ ¼

Pd
i¼1ni triðxÞ; where triðxÞ is the trace of the ith component matrix of x: Let

fei
lmg be the set of matrix units for the ith summand Mni

ðkÞ of A: Following [20],

fn�1
i ei

lm; ei
mlg is a pair of dual bases with respect to /	; 	Sreg: Thus,X

i;l;m

n�1
i ei

lmei
ml ¼

X
i;l

ei
ll ¼ 1A:

It follows from [20, Lemma 2.6] thatX
i

aibi ¼
X
i;l;m

n�1
i ei

lmei
ml ¼ 1A: &

Corollary 8.5. Let H ¼ ðH;D; E;F; a; b;SÞ be a finite-dimensional semi-simple quasi-

Hopf algebra over k: Then the trace element g of H is given by

g ¼ mtðS#idÞðqRDðLÞpRÞ;

where L is the normalized integral of H; m is multiplication and t the usual flip map.

Proof. Let

qRDðLÞpR ¼
X

i

xi#yi:

By Lemmas 8.3 and 8.4, we haveX
i

yiSðxiÞg�1 ¼ 1

and so the result follows. &
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Let fai; big be dual bases of the semi-simple quasi-Hopf algebra H with respect to the
form /	; 	Sreg discussed in Lemma 8.3. For any k-involution I on H and for any

character w of H; we define

m2ðw;IÞ ¼ w
X

i

IðaiÞbi

 !
:

Remark 8.6. Since
P

iaibi ¼ 1H by Lemma 8.4, the m2 defined in [20, Theorem 2.7]

with respect to the k-involution I is given by

wð1HÞ
w
P

iaibi

� � w X
i

IðaiÞbi

 !
¼ w

X
i

IðaiÞbi

 !

which coincides with m2ðw;IÞ:

Lemma 8.7. Let H ¼ ðH;D; E;F; a; b;SÞ be a finite-dimensional semi-simple quasi-

Hopf algebra over k; g the trace element of H; and M an irreducible H-module with

character w: Then for any unit uAH such that Su is an involution,

m2ðw;SuÞ ¼ cwðnHÞ;

where c is the non-zero scalar given by

c ¼ wðuSðu�1Þg�1Þ
dim M

:

Proof. If u is a unit of H such that Su is an involution, then for any xAH;

x ¼ S2
uðxÞ ¼ uSðu�1ÞS2ðxÞSðuÞu�1;

or equivalently

S2ðxÞ ¼ SðuÞu�1xuSðu�1Þ:

By Lemma 6.2, uSðu�1Þg�1 is in the center of H: Thus, uSðu�1Þg�1 acts on M as
multiplication by the non-zero scalar

c ¼ wðuSðu�1Þg�1Þ
dimM

:

Suppose that

qRDðLÞpR ¼
X

i

xi#yi
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as in Lemma 8.3, where L is the normalized two-sided integral of H: Then we have

m2ðw;SuÞ ¼ w
X

i

SuðSðxiÞg�1Þyi

 !

¼ w
X

i

uSðg�1ÞS2ðxiÞu�1yi

 !

¼ w
X

i

uSðg�1Þg�1xigu�1yi

 !

¼ w
X

i

uSðg�1Þg�1Sðu�1ÞSðgÞxiyi

 !
ðby Lemma 3:1Þ

¼ w
X

i

uSðu�1Þg�1xiyi

 !
ðby Lemma 6:2Þ

¼ cwðnHÞ: &

Theorem 8.8. Let H ¼ ðH;D; E;F; a; b;SÞ be a finite-dimensional semi-simple quasi-

Hopf algebra over k; g the trace element of H; and M a simple H-module with

character w: Then the Frobenius–Schur indicator wðnHÞ of w satisfies the following

properties:

(i) wðnHÞa0 if, and only if, MD�M as left H-modules.
(ii) For any non-zero kAk; wðnHÞ ¼ k if, and only if, M admits a non-degenerate

bilinear form /	; 	S with the adjoint S such that

/x; yS ¼ k/y; g�1xS

for all x; yAM:
(iii) The values of wðnHÞ can only be 0; 1 or �1:

Moreover,

TrðSÞ ¼
X

wAIrrðHÞ
wðnHÞwðg�1Þ:

Proof. By Theorem 6.4, there exists a unit uAH such that Su is an involution. As in

the proof of Lemma 8.7, uSðu�1Þg�1 is a central unit of H: Thus, uSðu�1Þg�1 acts on
M as multiplication by the non-zero scalar

c ¼ wðuSðu�1Þg�1Þ
dimM

:

Also, by Linchenko and Montgomery [20, Theorem 2.7] and Remark 8.6, the

element m2ðw;SuÞa0 if, and only if MDþM as left H-modules where þM is the left
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H-module with underlying space M 0 and the H-action given by

ðhf ÞðxÞ ¼ f ðSuðhÞxÞ

for all fAM 0 and hAH: Actually, þM is the left dual of M in Hu-modfin: It follows
from Remark 6.5 that m2ðw;SuÞa0 if, and only if MD�M as left H-modules. Hence,
by Lemma 8.7, statement (i) follows.
If wðnHÞa0; then m2ðw;SuÞa0 by Lemma 8.7. By Remark 8.6 and [20, Theorem

2.7(ii)], M admits a non-degenerate bilinear form ð	; 	Þ with adjoint Su such that

ðx; yÞ ¼ m2ðw;SuÞðy; xÞ

for any x; yAM: Define

/x; yS ¼ ðx; uyÞ

for any x; yAM: One can easily see that /	; 	S is a non-degenerate bilinear form on
M with adjoint S: Moreover, for any x; yAM;

/x; yS ¼ ðx; uyÞ ¼ m2ðw;SuÞðuy;xÞ ¼ m2ðw;SuÞðy;SuðuÞxÞ:

Thus, by Lemma 8.7, we obtain

/x; yS ¼ cwðnHÞðy;SuðuÞxÞ ¼ wðnHÞ/y;SðuÞu�1cxS ¼ wðnHÞ/y; g�1xS:

Conversely, suppose M admits a non-degenerate bilinear form /	; 	S with adjoint S

and that there exists a non-zero element k of k such that

/x; yS ¼ k/y; g�1xS

for all x; yAM: Then the map J:M-�M; defined by

JðxÞðyÞ ¼ /x; yS; x; yAM

is an isomorphism of left H-modules. Thus, by (i), wðnHÞa0: Hence, by above
arguments, M admits a non-degenerate bilinear form /	; 	S0 with adjoint S such
that

/x; yS0 ¼ wðnHÞ/y; g�1xS0

for all x; yAM: By Lemma 8.2, /	; 	S is a non-zero scalar multiple of /	; 	S0:
Therefore,

k ¼ wðnHÞ

and this finishes the proof statement (ii).
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(iii) If M is a simple H-module with character w such that wðnHÞa0; by (ii), M

admits a non-degenerate bilinear form /	; 	S with adjoint S such that

/x; yS ¼ wðnHÞ/y; g�1xS

for all x; yAM: Thus, we have

/x; yS ¼ wðnHÞ2/g�1x; g�1yS ¼ wðnHÞ2/x;Sðg�1Þg�1yS

¼ wðnHÞ2/x; yS ðby Theorem 7:2Þ:

Therefore, wðnHÞ2 ¼ 1 or equivalently wðnHÞ ¼ 71:
Let

P
ixi#yi ¼ qRDðLÞpR; where L is the normalized two-sided integral of H: By

Lemma 8.3, fSðxiÞg�1; yig is a pair of dual bases of H with respect to the form
/	; 	Sreg on H: Therefore, we obtain

TrðSÞ ¼
X

i

/SðSðxiÞg�1Þ; yiSreg

¼
X

i

wregðSðg�1ÞS2ðxiÞyiÞ

¼
X

i

wregðSðg�1Þg�1xigyiÞ

¼
X

i

wregðSðg�1Þg�1SðgÞxiyiÞ by Lemma 3:1

¼
X

i

wregðg�1xiyiÞ by Lemma 6:2

¼ wregðg�1nHÞ:

Since nH is in the center of H; for any irreducible H-module M with character w; nH

acts on M as a multiplication by the scalar

cw ¼ wðnHÞ=wð1HÞ:

Since wreg ¼
P

wAIrrðHÞwð1HÞw; we have

TrðSÞ ¼
X

wAIrrðHÞ
wð1HÞwðg�1nHÞ

¼
X

wAIrrðHÞ
wð1HÞcwwðg�1Þ

¼
X

wAIrrðHÞ
wðnHÞwðg�1Þ: &
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Remark 8.9. In [12], Fuchs et al. also define a notion of Frobenius–Schur indicator
for simple objects in a sovereign C�-category C such that

id: �M-M�

defines an isomorphism of the tensor functors �? and ?�: Let kM :M-ð�MÞ� ¼ ��M

be the natural isomorphism of the underlying autonomous structure of C: Then for
any simple object M in C; the Frobenius–Schur indicator cM of M is defined to be 0
if MD/ �M and c if there exists an H-module isomorphism J:M-�M; where c is
given by the equation

J�
3kM ¼ cJ: ð8:3Þ

Then the values of cM can only be 0, 1 or �1:
The category H-modfin is not of this kind in general. Nevertheless, if one replaces

kM in (8.3) by jM :M-��M; given by

jMðf ÞðxÞ ¼ f ðg�1xÞ for all xAM and fA�M;

one can still define Frobenius–Schur indicator cM for any simple H-module M to be 0
if MD/ �M and c if there exists a H-module isomorphism J:M-�M where c given by
the equation

J�
3jM ¼ cJ:

Theorem 8.8(i) and (ii) implies cM ¼ wðnHÞ: &

Before closing this section, we will show that if a is a central unit, a bilinear form
on an H-module M is H-invariant if, and only if, S is the adjoint of the form. Both
semi-simple Hopf algebras over k and twisted quantum doubles of finite groups are
of this type.

Proposition 8.10. Let H ¼ ðH;D; E;F; a; b;SÞ be a quasi-Hopf algebra over k and M

an H-module. Then, the set InvðMÞ of H-invariant forms on M and the set AdjSðMÞ of

forms on M with adjoint S are isomorphic as k-spaces. In addition, if a is a central unit

of H; then

InvðMÞ ¼ AdjSðMÞ:

Proof. Note that both InvðMÞ and AdjSðMÞ are k-subspaces of ðM#MÞ�: We

define f:AdjSðMÞ-ðM#MÞ� and c:InvðMÞ-ðM#MÞ� by

fðbÞðx#yÞ ¼ bðx#ayÞ; ð8:4Þ

cðb0Þðx#yÞ ¼ b0ðpLðx#yÞÞ ð8:5Þ
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for any x; yAM; bAAdjSðMÞ and b0AInvðMÞ: Using (2.8), one can easily see that

ImðfÞDInvðMÞ:

By (2.18), cðb0Þ has adjoint S for any H-invariant form b0 on M and so

ImðcÞDAdjSðMÞ:

It follows easily from (2.21) that for any b0AInvðMÞ and x; yAM;

b0ðx#yÞ ¼ b0ðDðq2LÞpLðS�1ðq1LÞx#yÞÞ

¼ b0ðpLðS�1ðq1LEðq2LÞÞx#yÞ

¼cðb0ÞððS�1ðaÞx#yÞ:

Since cðb0ÞAAdjSðMÞ;

f3c ¼ idInvðMÞ:

On the other hand, by (2.9), for any bAAdjSðMÞ and x; yAM;

c3fðbÞðx#yÞ ¼ bðp1Lx#ap2LyÞ ¼ bðx#Sðp1LÞap2LyÞ ¼ bðx#yÞ:
Therefore, f:AdjSðMÞ-InvðMÞ is a k-linear isomorphism.
If a is a central unit, we consider the quasi-Hopf algebra Ha�1 : Then, the

corresponding f is the identity map and so

AdjSa�1
ðMÞ ¼ InvðMÞ:

Since Sa�1 ¼ S; the second statement follows. &

9. Frobenius–Schur indicators of twisted quantum doubles of finite groups

We showed in Section 5 that for any simple module M of DoðGÞ with character w;
Bantay’s formula for the indicator of w is wðnDoðGÞÞ: In this section, we will prove that
the trace element of DoðGÞ is b and the Frobenius–Schur indicator wðnDoðGÞÞ of w is
non-zero if, and only if, �MDM: Moreover, the indicator of w is 1 (respectively �1)
if and only if M admits a b�1-symmetric (resp. b�1-skew symmetric) non-degenerate
DoðGÞ-invariant bilinear form /	; 	S; that is

/x; yS ¼ /y; b�1xS ðresp: /x; yS ¼ �/y; b�1xSÞ

for all x; yAM:
We first need the following formula (cf. [1]) to compute the trace element of

DoðGÞ:
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Lemma 9.1. Let o:G 
 G 
 G-k
 be a normalized 3-cocycle of a finite group G and

let S be the antipode of the quasi-Hopf algebra DoðGÞ defined in Section 5. Then for

any g; xAG;

S2ðeðgÞ#xÞ ¼oðgx; ðg�1Þx; gxÞ
oðg; g�1; gÞ eðgÞ#x;

¼ b�1ðeðgÞ#xÞb:

Proof. It follows from (5.8) that

S2ðeðgÞ#xÞ ¼ ðyg�1ðx;x�1Þgxðg; g�1Þygxðx�1; xÞgx�1ððg�1Þx; gxÞÞ�1eðgÞ#x; ð9:1Þ

where gx denotes the product x�1gx: By the normality of o and (5.9),

ygðx; x�1Þ ¼ ygxðx�1;xÞ:

Thus, we have

yg�1ðx; x�1Þgxðg; g�1Þygxðx�1; xÞgx�1ððg�1Þx; gxÞ

¼ yg�1ðx; x�1Þygðx; x�1Þgxðg; g�1Þgx�1ððg�1Þx; gxÞ:

By the normality of o and Eq. (5.10), we have

yg�1ðx; x�1Þgxðg; g�1Þygxðx�1; xÞgx�1ððg�1Þx; gxÞ

¼ gxðg; g�1Þgx�1ððg�1Þx; gxÞ
gxðg; g�1Þgx�1ðgx; ðg�1ÞxÞ

¼ gx�1ððg�1Þx; gxÞ
gx�1ðgx; ðg�1ÞxÞ:

By Eq. (5.11), for any z; aAG we have

gzða; a�1Þoðaz; ða�1Þz; azÞ ¼ gzða�1; aÞoða; a�1; aÞ:

Hence we have

gx�1ððg�1Þx; gxÞ
gx�1ðgx; ðg�1ÞxÞ ¼

oððgxÞx�1
; ððg�1ÞxÞx�1

; ðgxÞx�1
Þ

oðgx; ðg�1Þx; gxÞ

¼ oðg; g�1; gÞ
oðgx; ðg�1Þx; gxÞ: ð9:2Þ

The second equation in the statement of the lemma follows immediately from
(5.4). &
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Proposition 9.2. Let o:G 
 G 
 G-k
 be a normalized 3-cocycle of a finite group G:
Then the trace element of the quasi-Hopf algebra DoðGÞ is b:

Proof. Using (5.8), SðbÞ ¼ b�1: Suppose that ffg;xgg;xAG is the dual basis of

feðgÞ#xgg;xAG: Then, by (6.1), the normalized left cointegral of DoðGÞ is given by

lðeðgÞ#xÞ ¼
X

h;yAG

fh;yððeðgÞ#xÞS2ðeðhÞ#yÞb�1Þ:

Using Lemma 9.1, we have

lðeðgÞ#xÞ ¼
X

h;yAG

fh;yððeðgÞ#xÞb�1ðeðhÞ#yÞÞ

¼ wregððeðgÞ#xÞb�1Þ

¼ lððeðgÞ#xÞb�1gÞ:

By the non-degeneracy of l; b�1g ¼ 1 and so g ¼ b: &

Corollary 9.3. Let o:G 
 G 
 G-k
 be a normalized 3-cocycle of a finite group G:
Suppose that M is a simple DoðGÞ-module with character w: Then the Frobenius–Schur

indicator wðnDoðGÞÞ of w satisfies the following properties:

(i) wðnDoðGÞÞ ¼ 0; 1; or �1:
(ii) wðnDoðGÞÞa0 if, and only if, �MDM:

(iii) wðnDoðGÞÞ ¼ 1 (respectively �1) if and only if M admits a b�1-symmetric (resp.

b�1-skew symmetric) non-degenerate DoðGÞ-invariant bilinear form.

Moreover,

TrðSÞ ¼
X

wAIrrðDoðGÞÞ
wðnDoðGÞÞwðb�1Þ:

Proof. Statements (i), (ii) and the last statement are immediate consequences of
Theorem 8.8. Since a ¼ 1; by Proposition 8.10, a bilinear form /	; 	S on M is
DoðGÞ-invariant if, and only if, S is the adjoint of /	; 	S: Thus, by Theorem 8.8 (ii),
the result in statement (iii) follows. &
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