scriptions were adequate in both study periods according to recent guidelines. GPA co-prescription with NSAIDs remains greatly suboptimal.

MUSCULAR-SKELETAL DISORDERS – Conceptual Papers & Research Methods

PMS71
DIRECT INTENTION COMPARISONS OF BIOPHARMIC THERAPIES FOR RHEUMATOID ARTHRITIS
Alfonso B, Davine B, Sullivan SD
University of Victoria, Victoria, BC, Canada

OBJECTIVES: To compare the efficacy results of biological therapies for rheumatoid arthritis (RA) using indirect treatment comparisons and meta-regression techniques.

METHODS: We performed a literature search to identify the randomized clinical trials (RCTs) of biological treatment options for RA. Using these studies we created a network and developed two random effects, logistic regression models (6- and 12-months), using the ACR-50 as the primary outcome. We chose mean disease duration and mean baseline HAQ-DI score as meta-regression covariates, to account for heterogeneity between trials, as these have prognostic value in determining the effect of RA treatment.

RESULTS: We included 18 RCTs in the 6-month analysis and 10 RCTs in the 12-month analysis. Eight biologic agents are included in the 6-month analysis and six in the 12-month. The results of the 6-month analysis suggest that the eight biologic agents are significantly more effective than the comparator (p < 0.05): Certolizumab (log odds ratio median = 2.6), rituximab (1.7), adalimumab (1.6), etanercept (1.4), golimumab (1.3), abatacept (1.2), and anakinra (1.0). The results also indicate that methotrexate (MTX) is significantly more effective than placebo (0.7). The parameter values for the 12-month analysis are similar, with the effectiveness of the agents following the same order, but more strongly demonstrated that the observed proportion of complication (P_observed) in patients who completed both STKA operations was 0.557 for various combination of other probabilities.

CONCLUSIONS: Our results suggest that biologic treatments are more effective than MTX or placebo, but they may differ from one another. There are differences in the outcomes depending on whether we evaluate the ACR-50 at 6-months or 12-months. Biologic agents seem to be more effective with longer disease duration.

PMS72
A NEW METHODOLOGY TO ASSESS CLINICAL CHANGE USING CHARTS IN RHEUMATOID ARTHRITIS (RA) PATIENTS ON THE BLOCKERS
Borofede RP, Segal S, Lautzenheiser R, Loveliss J, Watson C, Harrison DJ
Providence Arthritis Center, Portland, OR, USA, Sansum Clinic, Santa Barbara, CA, USA, Indiana University, Indianapolis, IN, USA, Intermountain Orthopedics, Boise, ID, USA, Argen, Newbury Park, CA, USA

BACKGROUND: Charting across practices for RA patients varies greatly and rarely uses formal measures to assess treatment effectiveness outside clinical trials. OBJECTIVES: To develop a tool to assess treatment effectiveness in real-world practice using information commonly found in charts. METHODS: From an ongoing chart audit, a sample of ten de-identified charts of RA patients initiating TNF blocker treatment was reviewed by four clinical rheumatologists to determine useful variables commonly found in charts. National guidelines were reviewed to determine which variables are used to assess treatment effectiveness in clinical trials. A scale was created and defined for each variable. Criteria to assign an overall outcome change score from baseline through follow-up were created. Three additional rheumatologists were added to test the additional criteria. Treatment effectiveness was compared within and between patients. Sufficient inter-rater reliability could not be achieved due to lack of consistent data, so differences in ratings were reconciled by discussion between raters and final scores were assigned by consensus.RESULTS: Key available variables included: patient joint pain, synovitis, patient global assessment, lab markers (CRP and ESR), patient-reported outcomes surveys, and other (fatigue, physician global assessment, morning stiffness, and radiographic information). All variables were scored much worse, worse, no change, better, and much better from the baseline to the follow-up visit. An overall outcome change score was assigned using the same scale. Missing data were considered no change. Clinical judgment was an essential component to the score. Agreement was good and much better from the baseline to the follow-up visit. An overall outcome change score was assigned using the same scale. Missing data were considered no change. Clinical judgment was an essential component to the score. Agreement was good and much better from the baseline to the follow-up visit.

CONCLUSIONS: The model created using charting data had the best fit and was chosen as the preferred mapping model. The prediction error at individual level exceeded the maximal tolerance value (i.e. the minimally important difference of EQ-SD) in about 16% of patients. At group level, the width of 95% CI of prediction errors varied from 0.0176 at a sample size of 400 to 0.0359 at a sample size of 100. CONCLUSIONS: EQ-SD scores can be predicted using WOXM domain scores with an acceptable precision at both the individual and group levels in patients with mild to moderate knee OA.

METHODS FOR INTERPRETING TUMOR NECROSIS FACTOR (TNF) BLOCKER DOSING AND TREATMENT PATTERNS FROM PHARMACY AND PROFESSIONAL CLAIMS
Mako C, Sibartire V, Harrison DJ, Goodman S
PMS73
METHOD FOR USING A DISEASE-SPECIFIC INSTRUMENT IN ECONOMIC EVALUATIONS: MAPPING WOMAC ON THE EQ-5D UTILITY INDEX
Xie F, Pullenaygam F, Li SC
1PATH Research Institute, McMaster University, Hamilton, ON, Canada, 2McMaster University, Hamilton, ON, Canada, 3University of Newcastle, School of Biomedical Sciences, Callaghan, NSW, Australia

OBJECTIVES: To map the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) onto the EQ-5D utility index in patients with knee osteoarthritis (OA). METHODS: A consecutive sample of patients (n = 238) with diagnosed knee OA completed both the WOMAC and EQ-5D. Regression models with ordinary least squares (OLS) or the censored least absolute deviations (CLAD) as the estimator were used to establish the mapping function. The WOMAC was represented as explanatory variables in four ways: (a) total score; (b) domain scores (i.e., pain, stiffness, and physical function); (c) domain scores plus pairwise interaction terms to account for possible nonlinearities; and (d) individual item scores. Goodness-of-fit criteria included mean absolute error (MAE, the primary criterion) and root mean squared error (RMSE) obtained using an iterative random sampling procedure. Prediction precision was evaluated at individual patient level and at the group level. RESULTS: The model using OLS estimator and WOMAC domain scores as explanatory variables had the best fit and was chosen as the preferred mapping model. The prediction error at individual level exceeded the maximal tolerance value (i.e. the minimally important difference of EQ-SD) in about 16% of patients. At group level, the width of 95% CI of prediction errors varied from 0.0176 at a sample size of 400 to 0.0359 at a sample size of 100. CONCLUSIONS: EQ-SD scores can be predicted using WOMAC domain scores with an acceptable precision at both the individual and group levels in patients with mild to moderate knee OA.

IMPLEMENTATION OF A DISEASE-SPECIFIC INSTRUMENT IN ECONOMIC EVALUATIONS: MAPPING WOMAC ON THE EQ-5D UTILITY INDEX
Xie F, Pullenaygam F, Li SC
1PATH Research Institute, McMaster University, Hamilton, ON, Canada, 2McMaster University, Hamilton, ON, Canada, 3University of Newcastle, School of Biomedical Sciences, Callaghan, NSW, Australia

OBJECTIVES: To map the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) onto the EQ-5D utility index in patients with knee osteoarthritis (OA). METHODS: A consecutive sample of patients (n = 238) with diagnosed knee OA completed both the WOMAC and EQ-5D. Regression models with ordinary least squares (OLS) or the censored least absolute deviations (CLAD) as the estimator were used to establish the mapping function. The WOMAC was represented as explanatory variables in four ways: (a) total score; (b) domain scores (i.e., pain, stiffness, and physical function); (c) domain scores plus pairwise interaction terms to account for possible nonlinearities; and (d) individual item scores. Goodness-of-fit criteria included mean absolute error (MAE, the primary criterion) and root mean squared error (RMSE) obtained using an iterative random sampling procedure. Prediction precision was evaluated at individual patient level and at the group level. RESULTS: The model using OLS estimator and WOMAC domain scores as explanatory variables had the best fit and was chosen as the preferred mapping model. The prediction error at individual level exceeded the maximal tolerance value (i.e. the minimally important difference of EQ-SD) in about 16% of patients. At group level, the width of 95% CI of prediction errors varied from 0.0176 at a sample size of 400 to 0.0359 at a sample size of 100. CONCLUSIONS: EQ-SD scores can be predicted using WOMAC domain scores with an acceptable precision at both the individual and group levels in patients with mild to moderate knee OA.

OPERATIVE RISK OF STAGED BILATERAL KNEE REPLACEMENT IS UNDER-ESTIMATED IN RETROSPECTIVE STUDIES
Kim S, Meehan JP, White RH
University of California, Davis, Sacramento, CA, USA

OBJECTIVES: Surgical options for patients with symptomatic bilateral knee osteoarthritis are (1) simultaneous bilateral total knee arthroplasty (BTKA) under one anesthesia and (2) staged total knee arthroplasty (STKA) with two distinct operations separated by a few days up to one year. A number of studies have compared post-operative complications after BTKA versus STKA by simple collecting and then contrasting outcomes collected retrospectively. However, this methodology is biased because it fails to account for the patients who had STKA planned but who never completed the second stage because they died or developed a serious post-operative complication after the first operation, leading to cancellation of the second STKA. The purpose of this study was to develop an unbiased comparison bias associated with simply comparing operative outcomes after BTKA versus STKA. METHODS: To demonstrate the bias, a mathematical derivations and graphical presentation were developed. RESULTS: First, we demonstrated that the observed proportion of complication (P/observed) in patients who completed both STKA operations underestimates the true proportion of complication (P/true). Second, we graphically demonstrated that STKA always appears to be safer than BTKA even if the proportion of post-operative complications observed is held constant. When data are simulated using a true odds ratio of 1, the observed odds ratio ranged from 0.899 to 0.557 for various combination of other probabilities. CONCLUSIONS: Most published studies have reported that post-operative complications are lower for STKA compared with BTKA. However, our study suggests that the published data from retrospective analysis of subjects who successfully completed STKA is biased because it includes only cases that recovered after the first operation rather than all of the patients that had STKA planned. Absent a prospective study, the only fair and unbiased comparison of post-operative complications between STKA and BTKA requires adjustments to account for this bias.