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Abstract

A compact finite difference method is designed to obtain quick and accurate solutions to partial differential equation problems.
The problem of pricing an American option can be cast as a partial differential equation. Using the compact finite difference method
this problem can be recast as an ordinary differential equation initial value problem. The complicating factor for American options
is the existence of an optimal exercise boundary which is jointly determined with the value of the option. In this article we develop
three ways of combining compact finite difference methods for American option price on a single asset with methods for dealing with
this optimal exercise boundary. Compact finite difference method one uses the implicit condition that solutions of the transformed
partial differential equation be nonnegative to detect the optimal exercise value. This method is very fast and accurate even when
the spatial step size h is large (h�0.1). Compact difference method two must solve an algebraic nonlinear equation obtained by
Pantazopoulos (1998) at every time step. This method can obtain second order accuracy for space x and requires a moderate amount
of time comparable with that required by the Crank Nicolson projected successive over relaxation method. Compact finite difference
method three refines the free boundary value by a method developed by Barone-Adesi and Lugano [The saga of the American put,
2003], and this method can obtain high accuracy for space x. The last two of these three methods are convergent, moreover all the
three methods work for both short term and long term options. Through comparison with existing popular methods by numerical
experiments, our work shows that compact finite difference methods provide an exciting new tool for American option pricing.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Financial securities (options, futures and forward contracts) have become essential tools for corporations and investors
over the past few decades. Options can be used, for example, to hedge assets and portfolios in order to control the risk
due to the movement in stock prices.

The simplest financial option is the European option which gives the holder of the option the right to buy or sell an
asset at a prescribed price (the Exercise price E) and a prescribed date, the Exercise date T (in years). If the option is
to buy the asset it is a Call option c, if to sell the asset it is a Put option p. From the definition of the European option,
we see that the holder of option has the right without obligation to transact, so the option has some positive value.
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That gives rise to the option pricing problem. We suppose that stock price S satisfies a geometric Brownian motion
(GBM) given by the stochastic differential equation (SDE):

dS(t) = (� − D)S(t) dt + �S(t) dZ(t),

where � is the risk-free interest rate, Z is a standard Wiener process, D is the dividend yield of the asset and � stands
for the volatility in return. In addition we need to specify the risk free interest rate r. The value of a European put
option p(S, t) is a function of underlying asset price S and time t, and satisfies the celebrated Black–Scholes partial
differential equation (PDE):

pt + �2

2
S2pSS + (r − D)SpS − rp = 0, S > 0, t ∈ (0, T ], (1.1)

its final condition is

p(S, T ) = max(E − S, 0), S > 0, (1.2)

and boundary conditions are as follows:

p(S, t) ∼ Ee−r(T −t) as S → 0+, (1.3)

lim
S→∞ p(S, t) = 0 as S → +∞. (1.4)

Here T is the duration (in years) of the option contract, and E is the exercise price. The exact, explicit solution of the
European put option problem (1.1)–(1.4) is well known [39]. In this paper we just deal with put option pricing as call
option prices can be obtained in a similar way.

Most options traded around the world are American options which, unlike European options, can be exercised not
just at expiry but at any time during the life of the option. American options are more complicated to price. We know
that American put option P(S, t) must depend on underlying asset price S and time t. Its value is also determined from
the Black–Scholes equation, but with a different set of boundary conditions:

Pt + �2

2
S2PSS + (r − D)SP S − rP = 0, S ∈ [S∗(t), ∞), t ∈ (0, T ], (1.5)

and the final condition is

P(S, T ) = max(E − S, 0), S ∈ [S∗(T ), ∞), (1.6)

where S∗(t) stands for the free boundary value (the optimal exercise boundary) at the time t and it satisfies

S∗(T ) = max

(
E,

rE

D

)
, (1.7)

P(S∗(t), t) = E − S∗(t), PS(S∗(t), t) = −1, t ∈ (0, T ], (1.8)

and boundary conditions are as follows:

P(S, t) ∼ Ee−r(T −t) as S → 0+, (1.9)

lim
S→∞ P(S, t) = 0 when S → +∞. (1.10)

For an American put option, we know that

Pcomplete =
{

P(S, t), S ∈ [S∗(t), +∞),

max(E − S, 0), S ∈ [0, S∗(t)).
(1.11)

After 30 years of study, five dominant methods for dealing with American options have emerged. Brennan and
Schwartz [7], and Courtadon [11] used finite difference methods for option valuation. Cox et al. [12] first gave the
binomial tree method for option pricing. Since then many other versions of binomial parameters have been proposed
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in the literature, like Jarrow and Rudd [21] and Hull and White [24], Boyle [6] gave the trinomial model for option
pricing which is similar to the binomial method, but approaches an accurate value faster than its binomial counterpart
due to the use of a three-pronged path. Geske and Johnson [17], MacMillan [28] and Barone-Adesi and Whaley [4,2,3],
developed an accurate analytical approximation method. Kim [25], Jacka [20] and Carr et al. [9] provided integral
formulas which express the value ofAmerican option is the sum of corresponding European option and integral function
of free boundary, then use recursive numerical algorithm to solve for optimal exercise boundary and option price. More
recently, Longstaff and Schwartz [27] adapted Monte Carlo simulation methods using least squares techniques to solve
American option pricing problem and obtained very good results. There are also many other methods for American
option pricing problem, like the method of lines by Meyer and Van der Hoek [29] and Carr and Faguet [8].

In this article, we will give “compact” finite difference methods, which are high-order finite difference schemes, for
American option price. Compact finite difference methods trace their origin to the work of Cowell and Crommelin in
1907, Stormer in 1909 or Numerov in 1922, see Refs. [5,18,19,31]. Sometimes, they are also called Padé, Hermitian
or Mehrstellen (“Mehrstellenverfahren”) methods. In recent years, these methods have generated renewed interest and
a variety of techniques have been developed [1,15,40,35,36,16,26,46,10]. Many scholars have applied compact finite
difference methods to various applications [37,42,22,32,31,16,41,46,45,23,44,43].

The idea of standard compact finite difference schemes is to use a linear combination of the values of a function
at three points (or some other small number) to approximate a linear combination of the values of derivatives of the
same function at the same three points (or some other small number) with a high accuracy. A standard compact finite
difference formula of a univariate function for second derivatives is given in the following formula:

a−1fk−1 + a0fk + a1fk+1 = b−1f
′′
k−1 + b0f

′′
k + b1f

′′
k+1, (1.12)

where a−1, a0, a1, b−1, b0, and b1 are constant, the values of a function and its derivative are denoted by fi = f (xi)

and f ′′
i = f ′′(xi), respectively, here i = k − 1, k, k + 1. To yield a fourth order accuracy, we choose

a−1 = 12

h2 , a0 = −24

h2 , a1 = 12

h2 ,

b−1 = 1, b0 = 10, b1 = 1. (1.13)

So a standard fourth-order compact finite difference formula of a univariate function for second derivatives is given in
the following formula:

12

h2 (fk−1 − 2fk + fk+1) = f ′′
k−1 + 10f ′′

k + f ′′
k+1. (1.14)

In the following sections we will show this scheme is quite simple and really works. The compact finite difference
method is used to convert the Black–Scholes PDE to an ordinary differential equation (ODE). The resulting ODE
problem can be solved using excellent built-in ODE solvers in many software packages such as Matlab and Maple. We
use three different ways from [30,2] to deal with optimal exercise boundary in this paper. Then through comparison
with the existing popular methods described above, we find that compact finite difference method can, under some
conditions, be superior.

In the next section, we will demonstrate how to use compact finite difference methods on the European put option
pricing problem. In Section 3, we adapt compact finite difference methods for American option pricing problem.
Numerical results and comparisons with existing methods are given in Section 4. Conclusions are drawn in Section 5.

2. Compact finite difference method

In this part, we will show how to apply the compact finite difference method on the European put option problem
(1.1)–(1.4). It is well known that European option pricing problems (1.1)–(1.4) have an explicit solution, here we only
show the idea of how to apply compact finite difference methods to solve them numerically since European option
pricing problems are easily understood. In the next section, we will adapt these schemes to American case. Refs. [13,14]
give a compact finite difference method to solve the nonlinear Black–Scholes equation, however, their methods are
hard to extend to American option pricing problems.
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Before discussing the compact finite difference method, we introduce the following transformation [30]:

� = �2(T − t)/2, (2.1)

x = ln(S/E) + (k2 − 1)�, (2.2)

u(x, �) = ek1�(p(S, t) + S − E)/E (2.3)

to simplify the European put option problem, where k1=2r/�2 and k2=2(r−D)/�2. With the aid of this transformation,
we can rewrite the European put option pricing problem (1.1)–(1.4) in the following simple form:

u� = uxx + g(x, �), (2.4)

where x ∈ (−∞, +∞), � ∈ (0, (�2/2) T ) and

g(x, �) = ek1�((k1 − k2)e
x−(k2−1)� − k1).

This problem has initial and boundary conditions as follows:

u(x, 0) = max(ex − 1, 0), x ∈ (−∞, +∞), (2.5)

lim
x→+∞ u(x, �) = ek1�(ex−(k2−1)� − 1), (2.6)

lim
x→−∞ u(x, �) = 1 + ek1�(ex−(k2−1)� − 1). (2.7)

To solve the above problem, we need to truncate space x into a finite domain. Standard probabilistic arguments may
be employed to imply that using −2 and 2 as the lower and upper bounds is adequate, and numerical experiments
confirm these hypotheses.

Next we explain the compact finite difference method and how to apply this method to the European case. As in
the method of lines, we discretize only space, xi = ih − 2 and ui = u(xi), where i = 0, 1, . . . , (N + 1), x0 = −2 and
xN+1 = 2. We can derive the second derivative of u(�) with respect to x as follows:

c0u
′′
1(�) + u′′

2(�) = 1

12h2 ((10c0 − 1)u0(�) − (15c0 − 1)u1(�) − 2(2c0 + 15)u2(�)

+ 2(7c0 + 8)u3(�) − (6c0 + 1)u4(�) + c0u5(�)), (2.8)

where c0 is a parameter to be decided below.

u′′
i−1(�) + 10u′′

i (�) + u′′
i+1(�) = 12

h2 (ui−1(�) − 2ui(�) + ui+1(�)), (2.9)

and Eq. (2.9) is true for i = 2, . . . , (N − 1). When i = N , we have

u′′
N−1(�) + 10u′′

N(�) = 1

12h2 (10uN−4(�) − 61uN−3(�) + 156uN−2(�)

− 70uN−1(�) − 134uN(�) + 99uN+1(�)). (2.10)

All formulae are O(h4), and can be obtained using Taylor expansions. Eqs. (2.8)–(2.10) can be written in the following
compact matrix form:

AU ′′(�) = MU(�) + H(�), (2.11)
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where

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 1 0 · · · 0

1 10 1
...

0
. . .

. . .
. . . 0

... 1 10 1

0 · · · 0 1 10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N×N

and U ′′ :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u′′
1(�)

u′′
2(�)

...

u′′
N−1(�)

u′′
N(�)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M := 12

h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 − 15c0)

144
−2(2c0 + 15)

144

2(7c0 + 8)

144
− (6c0 + 1)

144

c0

144
0 · · · 0

1 −2 1 0 0 0
...

0 1 −2 1
. . .

. . .
. . . 0

... 0 0 0 1 −2 1

0 · · · 0
10

144

−61

144

156

144

−70

144

−134

144

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

H := 1

12h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(10c0 − 1)u0(�)

0

...

0

99uN+1(�)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

N×N

and U :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1(�)

u2(�)

...

uN−1(�)

uN(�)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note the above formula we derive is always true for any value of parameter c0. By carefully choosing the c0 (we
choose c0 = 5 + 2

√
6 in [10], the other choice c0 = 5 − 2

√
6 leads to an unstable recurrence), we can ensure that matrix

A factors exactly into A = L0U0 = LDLT, where

L0 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

k 1 0
...

0
. . .

. . .
. . . 0

... k 1 0

0 · · · 0 k 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, U0 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 1 0 · · · 0

0 c0 1
...

0
. . .

. . .
. . . 0

... 0 c0 1

0 · · · 0 0 c0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with k = 1/c0, and D = diag(c0, c0, . . . , c0). Then the solution (use u(�) to express u′′(�)) to AU ′′ = b(b = MU + H)

can be solved very efficiently and accurately at a cost of just O(n) flops:

AU ′′ = (L0U0)U
′′ = L0(U0U

′′) = b, (2.12)

by first solving for the vector Y such that

L0Y = b, (2.13)

i.e.,

y1 = b1, yi = bi − kyi−1, i = 2, 3, . . . , N , (2.14)
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and then solving

U0U
′′ = Y , (2.15)

i.e.,

u′′
N = kyN, u′′

i = k(−u′′
i+1 + yi), i = N − 1, N − 2, . . . , 1, (2.16)

where

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2

...

yN−1

yN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We can obtain the values of U ′′ very efficiently in term of U by using LU decomposition of the matrix A. This avoids
floating-point divisions in the recurrence equation solutions, and thus can be expected to be faster. We can always
pre-factor the matrix A into L0 and U0 as we have done here, we need not even store matrices L0, U0 and A. We see
that errors decrease in the above recurrences by the fact that |L0,i,i−1| = k < 1, i = 2, 3, . . . , N , and |U0,i,i | = c0 > 1,
i = 1, 2, . . . , N .

From the above, we can see that the compact finite difference method for Eq. (2.11) can obtain a high order accuracy,
while it only uses the time complexity of N to solve the matrix equations.

We explain the procedure to solve the European option pricing problem with the compact finite difference method:

1. Set initial conditions: u(0) by Eq. (2.5).
2. Suppose we know the values of u(�) at time step m, and want to compute for the time step m + 1. We solve the

system of linear equations AU ′′(�m)= b(�m) and b(�m)=MU(�m)+H(�m) by compact finite difference method,
say U ′′(�m) = �(Um) at each time step. Vector H(�m) is known since the boundary conditions (2.6) and (2.7) on
truncated bounds [−2, 2] are known. Then the matrix form of Eq. (2.4) can be rewritten

U� = �(Um) + G(�m), (2.17)

here

G(�m) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

g(x1, �m)

g(x2, �m)

...

g(xN−1, �m)

g(xN, �m)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The above is just an ODE with the initial condition Um. We solve problem (2.17) to get Um+1. Because we observe
that the ODE is stiff when � is very small, we implement the algorithm using the Matlab’s powerful ode15s solver
[33,34]. ode15s is a variable order solver based on numerical differentiation formulae, especially to solve a stiff
differential-algebraic problem. In our implementation, we set RelTol =1e−6, AbsTol =1e−6, MaxStep=1e−5
and stats = off for the ode15s solver in Matlab 7.0.

3. Repeat Step 2 until �m+1 = (�2/2)T , then recast u(x, �) as option price p(S, t) by the transformations (2.1)–(2.3).

The above scheme is unconditionally stable and of high order accuracy O(h4). In [38], boundary value methods and
fourth order compact difference scheme are combined to solve the heat equations. The authors of [38] get the same
fourth order compact finite difference formula as we do. They call it “high order compact boundary value method”.
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3. Compact finite difference method for American option pricing

American option pricing problems (1.5)–(1.10) contain a complicated partial differential equation which makes hard
to apply compact finite difference schemes directly. While Pantazopoulos [30] introduced transformations which make
the partial differential equation into a simple heat equation. By using his transformations (2.1)–(2.3) as above and
adding a new transformation equation for the optimal free boundary

X∗ = ln(S∗/E) + (k2 − 1)�, (3.1)

Eqs. (1.5)–(1.10) are transformed into the following equations:

u� = uxx + g(x, �), (3.2)

where x ∈ (X∗(�), +∞), � ∈ (0, (�2/2) T ] and

g(x, �) = ek1�((k1 − k2)e
x−(k2−1)� − k1),

with initial and boundary conditions:

u(x, 0) = max(ex − 1, 0), (3.3)

X∗(0) = min(0, ln(r/D)), (3.4)

u(X∗(�), �) = 0, (3.5)

ux(X
∗(�), �) = 0, (3.6)

lim
x→+∞ u(x, �) = ek1�(ex−(k2−1)� − 1). (3.7)

To solve the American option pricing PDE, we need to decide the free boundary value X∗(�) at each time step �.
Depending on how we compute the location of this free boundary, we develop three compact finite difference methods.
Compact finite difference method one uses an implicit condition that the solutions of transformed PDE are nonnegative
to detect the optimal exercise value. This method is very fast and obtains first order accuracy for space x when h is large
(h�0.1). Compact finite difference method two needs to solve an algebraic nonlinear equation [30] at every time step.
This method can obtain second order accuracy for space x and consumes decent time, so it is comparable with Crank
Nicolson projected successive over relaxation (SOR) method. Compact finite difference method three refines the free
boundary value based on compact difference method two by a method developed by Barone-Adesi and Lugano [4,2,3],
then use the compact finite difference method. This method is also accurate and is easily parallelized. We all call the
ode15s for the three compact finite difference methods in our implementation.

We know that the original American option pricing problem (1.5)–(1.10) has the payoff function max(E − S, 0),
and the fact

P(S, t)� max(E − S, 0), S > 0, t ∈ (0, T ], (3.8)

if P(S, t) = max(E − S, 0), which means S < S∗ and if P(S, t) > max(E − S, 0), which means S�S∗. The transfor-
mations (2.1)–(2.3) can be used to obtain the new payoff function:

u(x, �)� ek1�

E
max(ex−(k2−1)� − 1, 0), (3.9)

where x ∈ (−∞, +∞), � ∈ (0, (�2/2)T ]. The next three compact finite difference methods all use this condition to
update the new values of u(x, �).

3.1. Compact finite difference method one

We develop compact finite difference method one for American option pricing problem based on the fact that u(x, �)
is always positive since the right side of the inequality (3.9) is always non-negative. If u(x, �) is negative, it is an
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indication that this option should be exercised. We use this fact to implicitly detect optimal exercise values during the
implementation.

Combining the implicit identification of the free boundary values and the compact finite difference method, we add
the following steps as steps 3 and 4 after steps 1 and 2 in Section 2 to solve the American option pricing problem:

3. Detect the location of free boundary value: record the last location of the solution um+1, say at the ith point
um+1

i such that um+1
i �0. Because um+1 is increasing in x, we know um+1

k > 0, ∀k > i. Reset the values um+1
k = 0,

k=1, . . . , i. Then save the free boundary value for time step m+1, if um+1
i =0, then save xi as the free boundary value;

otherwise hold um+1
i < 0, and um+1

i+1 > 0, we use the zero point of the unique linear equation through points (xi, u
m+1
i )

and (xi+1, u
m+1
i+1 ) to approximate the free boundary value. Note we use the monotonicity [30] of ui when we locate

free boundary values.
4. Repeat steps 2 and 3 until �m+1 = (�2/2)T , then back transform u(x, �) to option price P(S, t) by the transfor-

mations (2.1)–(2.3).
From the algorithm above, we see compact finite difference method one uses an implicit condition to detect the

optimal exercise value and that this method is very fast. The free boundary values we get by this method can obtain first
order accuracy, and the accuracy of option prices is low for stock prices near the free boundary values. This method
does not converge for the propagation of errors.

3.2. Compact finite difference method two

From Section 3.1, we see that to improve the accuracy of option price, we need to know the optimal exercise values
more accurately. To meet this end, we use a method called explicit front tracking method from [30]. This method to
decide free boundary value needs to solve the follow nonlinear equation at every time step:

�(p, �) = uNm + (pmh)2

2
g(D− + (Nm + pm)h, �) = 0, (3.10)

where D− and D+ are the lower bound and upper bound of truncation interval, respectively. The free boundary value
X∗(�m+1) = D− + (Nm + pm)h and the number of space step Nm+1 = floor(D+ − X∗(�m+1)), m = 1, 2, . . . . This
nonlinear equation has second order accuracy for space x.

With this we are ready to define the algorithm for compact finite difference method two as follows:

1. Set initial conditions: u(0), X∗(0), and N0 = floor(D+ − X∗(0)).
2. Suppose we know the values of u(�m), Nm and X∗(�m) at time step m, and want to compute for the time step

m + 1. Solve the nonlinear equation (3.10) by Newton method to get the pm, then we get the free boundary value
for m+1 time step by X∗(�m+1)=D− + (Nm +pm)h. Update Nm+1 =floor(D+ −X∗(�m+1)) and ui(�m+1)=0,
1� i�Nm+1.

3. We just need to solve the subsystem of linear equations (3.2) at time step m+1 by compact finite difference method
since we already know the values ui(�m+1) = 0 when 1� i�Nm+1 in step 2. In the last part of step 3, all vectors
contain only the last (N − Nm+1) entries of original vectors, but to simplify the notation, we still use the same
names for them. Solve AU ′′(�m)= b(�m) and b(�m)=MU(�m)+H(�m), say U ′′(�m)=�(Um) at each time step.
Then the matrix form of Eq. (3.2) can be rewritten

U� = �(Um) + G(�m), (3.11)

again we get an ODE with the initial condition Um, then we solve the problem (3.11) to get the last (N − Nm+1)

entries of Um+1.
4. Same with step 4 of the algorithm in Section 3.1.

3.3. Compact finite difference method three

The free boundary values obtained from compact finite difference method two are still not accurate enough. So we
need to find a way to get optimal exercise value more accurately.
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Table 1
American put option price (T = 1)

x Stock European Binomial Trinomial Crank LS Integral Analytic Compact Compact Compact True
price option method method Nicolson Monte equation approx. method method method values
S price PSOR Carlo method method 1 2 3

r = 0.04 D = 0.02
−0.3 75.9572 24.3973 25.33949 25.32663 25.3265 25.43516 25.3722 25.4509 25.10042 25.32570 25.32739 25.329862
−0.2 83.9457 18.9060 19.49101 19.49863 19.4918 19.61486 19.5288 19.6617 19.34597 19.49193 19.49383 19.496910
−0.1 92.7743 13.9057 14.27957 14.26916 14.2561 14.39809 14.2838 14.4477 14.16375 14.25707 14.25914 14.262648

0.0 102.5315 9.6391 9.87092 9.85271 9.83652 9.96446 9.85631 10.0278 9.78167 9.83789 9.84000 9.843537
0.1 113.3148 6.2552 6.35580 6.37390 6.35927 6.46336 6.3727 6.53401 6.32881 6.36044 6.36241 6.365579
0.2 125.2323 3.7773 3.84473 3.83792 3.82849 3.91709 3.83686 3.97728 3.81244 3.82898 3.83064 3.833369
0.3 138.4031 2.1112 2.14801 2.13808 2.13483 2.17167 2.13937 2.25467 2.12653 2.13452 2.13578 2.137839

r = 0.02 D = 0.04
−0.3 79.0571 24.89017 24.88553 24.90369 24.8932 25.50118 24.896 24.9164 24.89236 24.89269 24.89269 24.895250
−0.2 87.3716 19.28794 19.29966 19.29948 19.2861 19.75011 19.2903 19.3055 19.28640 19.28651 19.28648 19.290010
−0.1 96.5605 14.18661 4.21335 14.19473 14.1819 14.53676 14.1875 14.1983 14.18321 14.18322 14.18315 14.187428

0.0 106.716 9.83381 9.82141 9.83571 9.82785 10.13364 9.83412 9.84164 9.82971 9.82968 9.82958 9.834102
0.1 117.939 6.38155 6.39237 6.37552 6.3758 6.61808 6.38165 6.38679 6.37752 6.37748 6.37740 6.381553
0.2 130.343 3.85361 3.86812 3.84058 3.84916 3.97671 3.85364 3.85711 3.85015 3.85014 3.85011 3.853583
0.3 144.051 2.15388 2.13629 2.13713 2.15117 2.21886 2.15389 2.15622 2.15125 2.15126 2.15129 2.153912

Note the parameters for American options: E = 100, � = 0.3, � = T · �2/2. The binomial method is based on time step �t = 0.01. The trinomial
method is based on time step �t = 0.01. The Crank Nicolson projected SOR method is based on space step h = 0.02. The least square Monte
Carlo method is based on 100, 000 sample paths and time step �t = 0.005. Integral method and analytical approximations are based on time step
�t = 0.02. Compact finite difference method one and two are based on space step h = 0.02. Compact finite difference method three is based on
h = 0.02 space step for option price and time step �t = 0.0005 for the free boundary values using the method of Barone-Adesi and Lugano [2].
The true option values are based on trinomial method using time step �t = 0.00005.

Barone-Adesi and Lugano [4,2,3] proposed a method to get a remarkably accurate free boundary by solving the
system of the following equations:

A = −p + E − S∗, (3.12)

� = −N(d)S∗/A, (3.13)

�2

2
�(� − 1) − r − (r − D)� − F = 0, (3.14)

with d = (ln(S/E) + (r − D + �2/2)�)/(�
√

�), F = (�p/�t)/A, and p(S, t) is the European put option price with the
same parameters with American put. After obtaining the values of A, S∗, and � from above, then obtain option price by

P(S, t) = A(t)(S/S∗)� for S�S∗. (3.15)

Using (3.12)–(3.14) can yield accurate free boundary values, but option prices using the formula (3.15) are not very
accurate for the approximation in Eqs. (3.12)–(3.15) deteriorates quickly moving away from free boundary values (see
our numerical experiments in the next section). So in this method, we combine method (3.12)–(3.14) and the compact
finite difference method to obtain a new accurate method for American option pricing. The algorithm for compact finite
difference method three is almost same as that of compact finite difference method two, except that we use the free
boundary values from Eqs. (3.12)–(3.14), instead of Eq. (3.10) in step 2 of the algorithm in Section 3.2.

Nonlinear equation (3.10) depends on values of option price at the last time step, while Eqs. (3.12)–(3.14) are
independent of this, which means that we can compute free boundary values in advance or use parallel computing in
compact finite difference method three to save time.
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4. Comparisons of results

In this section, we compare compact finite difference methods with the existing popular methods in option pricing.
We first focus on the accuracy issue for space x, not only for option prices, but also for the free boundary values, then
look at computational time.

The binomial method we use is from Cox et al. [12], and trinomial method is from Hull’s book [24]. For the
finite difference method, we use the Crank Nicolson scheme and projected SOR algorithm [39] to obtain second order
accuracy for space x.We also implement the integral method of Kim [25], the analytical approximations of Barone-Adesi
and Whaley [4,2,3] and the least square Monte Carlo simulation method of Longstaff and Schwartz [27]. Binomial,
trinomial and integral equation method all converge, but only with first order of accuracy for space x. Least square
Monte Carlo method converges very slowly and the accuracy is only 1/

√
n, where n is the number of sample paths.

We must point out we are only interested in the accuracy for space x instead of time, so for all methods we choose time
step �t is quite small comparing with space step h so that space errors dominate computational errors.

To compare these methods, we choose the option prices obtained by the trinomial method with �t = 0.00005 as
the benchmark since we know this method converges. Tables 1 and 2 are the computational results from these various
methods.

Table 1 is for the short term option T = 1. From the computational results of the table, we can tell that the results
by our compact finite difference method two and compact finite difference method three are closer to “correct” option
values than other methods. Table 2 is for the long term option T = 6. Our three compact finite difference methods all
still work very well, while the Crank Nicolson projected SOR method fails for this case.

We know that Crank Nicolson projected SOR method has second order accuracy for space x and convergence. We
determine the accuracy of our compact finite difference method by comparing with the Crank Nicolson projected SOR
method and compact finite difference methods since other methods, for example the binomial tree method, are hard

Table 2
American put option price (T = 6)

x Stock European Binomial Trinomial Crank* LS* Integral Analytic Compact Compact Compact True
price option method method Nicolson Monte equation approx. method method method values
S price PSOR Carlo method method 1 2 3

r = 0.04 D = 0.02
−0.4 77.8800 26.28780 30.76587 30.68724 46.3654 32.2179 31.2276 31.3954 30.17890 30.75338 30.74339 30.75650
−0.3 86.0708 23.39922 26.97866 26.97421 37.7104 28.5394 27.4241 27.7339 26.52391 27.00252 26.99423 27.00561
−0.2 95.1229 20.61936 23.53280 23.49592 30.7142 25.0031 23.8659 24.298 23.10647 23.50196 23.49518 23.50498
−0.1 105.127 17.97918 20.29196 20.25361 25.0334 21.6594 20.5713 21.1012 19.94109 20.26464 20.25919 20.26757

0.0 116.183 15.50560 17.26721 17.26848 20.3951 18.6213 17.5538 18.1551 17.03865 17.30079 17.29647 17.30356
0.1 128.402 13.22031 14.65062 14.56766 16.5866 15.7984 14.8218 15.4689 14.40649 14.61680 14.61344 14.61936
0.2 141.907 11.13906 12.24709 12.20728 13.4445 13.2624 12.3777 13.0473 12.04753 12.21455 12.21199 12.21686
0.3 156.831 9.27125 10.05998 10.09738 10.8441 10.9940 10.2188 10.8907 9.95974 10.09095 10.08905 10.09297

r = 0.02 D = 0.04
−0.6 81.0584 36.3671 37.03809 37.00901 79.2291 46.20171 37.1093 37.559 36.86963 37.00108 36.99784 37.00241
−0.5 89.5834 32.9808 33.49474 33.44970 63.8027 41.91451 33.5653 34.0223 33.37438 33.47467 33.47208 33.47601
−0.4 99.005 29.6394 29.98593 29.97654 51.4668 37.66625 30.0946 30.5495 29.94423 30.01987 30.01780 30.02114
−0.3 109.417 26.3825 26.71774 26.67299 41.602 33.26973 26.733 27.1778 26.61586 26.67222 26.67059 26.67336
−0.2 120.925 23.2483 23.49694 23.48207 33.6944 29.33670 23.5148 23.9432 23.42466 23.46615 23.46487 23.46748
−0.1 133.643 20.2715 20.37046 20.42939 27.3282 25.57870 20.4718 20.8787 20.40314 20.43332 20.43231 20.43479
−0.0 147.698 17.4825 17.63880 17.54145 22.1737 22.05123 17.6312 18.0132 17.57949 17.60117 17.60037 17.60271

0.1 163.232 14.9059 15.02061 14.95917 17.9743 18.80441 15.0148 15.3696 14.97627 14.99167 14.99103 14.99321

Note the parameters for American options: E = 100, � = 0.3, � = T · �2/2. The binomial method is based on time step �t = 0.06. The trinomial
method is based on time step �t = 0.06. The Crank Nicolson projected SOR method is based on space step h = 0.02. The least square Monte Carlo
method is based on 100, 000 sample paths and time step �t = 0.03. Integral method is based on time step �t = 0.12. Analytical approximations is
based on time step �t = 0.12. Compact finite difference method one and two are based on space step h = 0.02. Compact finite difference method
three is based on space step h = 0.02 for option price and time step �t = 0.012. for the free boundary values using the method of Barone-Adesi and
Lugano [2]. The true option values are based on trinomial method when taken time step �t = 0.0003.∗The method fails to get accurate solution for this case.
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Table 3
When h = 0.2

x h = 0.2 
� = 0.0001

Stock price S Crank Nicolson Compact method 1 Compact method 2 Compact method 3 True values

−0.2 83.9457 19.0604 19.13811 19.26822 19.51910 19.496910
0 102.5315 9.12163 9.35873 9.474996 9.60421 9.843537

0.2 125.2323 3.39863 3.47309 3.46295 3.50414 3.833369
RMS – 0.081 0.065 0.042 0.013 –

Table 4
When h = 0.1

x h = 0.1 
� = 0.0001

Stock price S Crank Nicolson Compact method 1 Compact method 2 Compact method 3 True values

−0.3 75.9572 25.2462 25.13063 25.24257 25.26206 25.329862
−0.2 83.9457 19.3749 19.30428 19.39379 19.42878 19.496910
−0.1 92.7743 14.1062 14.07499 14.14775 14.19061 14.262648

0 102.5315 9.67344 9.67773 9.72538 9.76840 9.843537
0.1 113.3148 6.21132 6.23089 6.25590 6.29326 6.365579
0.2 125.2323 3.7184 3.73115 3.74193 3.77034 3.833369
0.3 138.4031 2.07034 2.06590 2.06956 2.08854 2.137839

RMS – 0.030 0.063 0.029 0.021 –

Table 5
When h = 0.05

x h = 0.05 
� = 0.0001

Stock price S Crank Nicolson Compact method 1 Compact method 2 Compact method 3 True values

−0.3 75.9572 25.3092 25.1291 25.30609 25.31373 25.329862
−0.2 83.9457 19.4659 19.3296 19.46919 19.47754 19.496910
−0.1 92.7743 14.2229 14.1408 14.23126 14.24079 14.262648

0 102.5315 9.80054 9.75972 9.81129 9.82128 9.843537
0.1 113.3148 6.32658 6.30826 6.33576 6.34505 6.365579
0.2 125.2323 3.80388 3.79488 3.80841 3.81609 3.833369
0.3 138.4031 2.12009 2.11319 2.11915 2.12480 2.137839

RMS – 0.0074 0.062 0.0079 0.0053 –

to compare with compact finite difference methods for the issue of efficiency. To measure the error, we use root mean
squared (RMS) relative error. The RMS error is defined by

RMS =
√√√√ 1

m

m∑
k=1

(
P̃k − Pk

Pk

)2

,

and P̃k is the estimated option price we want to compare and Pk is the option price which we take as “accurate” (we
use the values obtained by the trinomial method with time step �t = 0.00005).

We use the same parameters as used in Table 1, and obtain Tables 3–6:
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Table 6
When h = 0.01

x h = 0.01 
� = 0.0001

Stock price S Crank Nicolson Compact method 1 Compact method 2 Compact method 3 True values

−0.3 75.9572 25.329 25.1119 25.32869 25.32673 25.329862
−0.2 83.9457 19.4956 19.348 19.49545 19.49362 19.496910
−0.1 92.7743 14.2609 14.1665 14.26101 14.25934 14.262648

0 102.5315 9.84172 9.78475 9.84192 9.84046 9.843537
0.1 113.3148 6.36402 6.33174 6.36420 6.36296 6.365579
0.2 125.2323 3.83209 3.81494 3.83215 3.83116 3.833369
0.3 138.4031 2.13702 2.12844 2.13692 2.13619 2.137839

RMS – 0.00031 0.066 0.00039 0.001 –
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Fig. 1. Computational errors with varied mesh grid N.

From the above results or Fig. 1, we see that with the compact finite difference method one can obtain quite good
results when space step h = 4/N is not too small (h�0.1), and N is the mesh grid. While h is too small, say h = 0.01,
this method does not converge, which can be explained by the poor free boundary values obtained by the implicit
method. The compact finite difference method two obtains second order accuracy, so it is comparable with Crank
Nicolson projected SOR method. The compact finite difference method three is more accurate (O(h4)) than the Crank
Nicolson projected SOR and compact finite difference method two when h�0.02. The free boundary values we use in
the algorithm of the compact finite difference method three can only obtain accuracy of 1

5000 when h = 0.01, for the
option prices obtained by the compact finite difference method three are not more accurate than it.

We can see our compact finite difference method two and three converge rapidly, but the error order of compact finite
difference methods cannot always obtain O(h4). The reason is that the free boundary values obtained by our three
compact finite difference methods are not accurate enough. To address this point, we can compare the free boundary
values by compact finite difference method one and two with other methods, the integral method of Kim [25], and the
analytic approximations of Barone-Adesi and Elliott [2] (compact finite difference method three uses this method to
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Fig. 2. Free boundary values for American put option.

approximate free boundary values). The “true” values for the free boundaries are based on analytical approximations
method when time steps n = 5000, other methods are based on n = 50. Then we get Fig. 2.

From Fig. 2, we can tell that the accuracy of compact finite difference method one for the free boundary values is
poor. The integral method of Kim [25] can only get first order accuracy. Compact finite difference method two can
obtain second order accuracy for free boundary value and this method converges from our experiments. To yield higher
accuracy of option prices when step size h = 0.01, say O(h4) for space x, we can use more time steps (larger n) to
obtain free boundary values by the method of analytical approximations method, then use compact finite difference
method to obtain option prices, i.e., the compact finite difference method three.

Speed and accuracy are the two most important issues we should keep in mind when we are talking about option
pricing problem. Speed and accuracy indicators are plotted in Figs. 3 and 4. On the two figures, it is shown that compact
finite difference method one always use fewer times than other methods, and this method can obtain higher accuracy
even when space step is large. Compact finite difference method two and Crank Nicolson projected SOR method are
comparable for the issues of time and accuracy. If we do not count in the times used to compute free boundary values by
the method of analytic approximation method, compact finite difference method three uses the time close to that spent
by the compact finite difference method one. From Figs. 3 and 4 we can see that computational time is not monotone
for some case, for ode15s is a variable-order multistep solver for stiff problems.

5. Conclusions

It seems that the accuracy and speed of our compact finite difference methods depend heavily on the method we use
to obtain the free boundary values. The compact finite difference method one can rapidly obtain high accuracy even
when h is not too small (h�0.1). While h is too small, say h = 0.01, this method fails to converge. The compact finite
difference method two can obtain second order accuracy, and works for both short term and long term options, while
the Crank Nicolson projected SOR method fails for the long term case. The compact finite difference method three
is more accurate than Crank Nicolson projected SOR method, but at the cost of more computational time on the free
boundary values.
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