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Abstract

The aim of this paper is to establish the convergence of the block iteration methods such as the block
successively accelerated over-relaxation method (BAOR) and the symmetric block successively acceler-
ated over-relaxation method (BSAOR): Let A ∈ Cm,m

π ,n be a weak block H -matrix to partition π , then for

0 � r � ω � 2
1+ρ(|BJ (A)|) ,

ρ(BLr,ω ) � |1 − ω| + ωρ(|BJ (A)|), ρ(BSr,ω ) � [|1 − ω| + ωρ(|BJ (A)|)]2,

and exact convergence and divergence domains for the block SOR and block SSOR iterative methods are
obtained as it has been obtained to H -matrices. Based on these results, the main results in Bai [Parallel
Computing 25 (1999)] and Cvetković [Appl. Numer. Math. 41 (2002)] can be improved.
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1. Introduction

Consider a linear system Ax = b where A is an m × m matrix, partitioned into block matrix
form

A =




A11 A12 · · · A1n

A21 A22 · · · A2n

...
... · · · ...

An1 An2 · · · Ann


 , (1.1)

where Aij is of order mi × mj , 1 � mi � m, 1 � mj � m. Let Cm,m
π,n denote the set of all matrices

in Cm,m which are of form (1.1) relative to some given block partitioning π (we will only consider
π for which the diagonal blocks are square matrices). Here we shall consider simultaneously
block versions of stationary iterative methods. Let A ∈ Cm,m

π,n be written as A = D − L − U ,
where D = diag(A11, A22, . . . , Ann) and

L = (Lij ) =
{−Aij for j < i,

0 for j � i
, U = (Uij ) =

{−Aij for j > i

0 for j � i
(1.2)

are block matrices consisting of the block diagonal, strict block lower triangular, and strict block
upper triangular parts of A respectively. Here the diagonal entries Aii are assumed to be nonsin-
gular.

The block Jacobi iteration matrix is BJ = D−1(L + U), the block Gauss-Seidel iteration
matrix is BGS = (D − L)−1U , the block successive over-relaxation method (BSOR) iteration
matrix is BLω = (D − ωL)−1[(1 − ω)D + ωU ], the block SSOR iteration matrix is BSω =
BUω · BLω , where BUω = (D − ωU)−1[(1 − ω)D + ωL], the block accelerated over-relaxation
method (BAOR) iteration matrix is BLr,ω = (D − rL)−1[(1 − ω)D + (ω − r)L + ωU ], and the
block SAOR iteration matrix is BSr,ω = BUr,ω · BLr,ω , where BUr,ω = (D − rU)−1[(1 − ω)D +
(ω − r)U + ωL].

For a recent survey, the convergence has been discussed in the case where the coefficient
matrix A is a block diagonally dominant matrix or a block H -matrix (cf. [1–4,6,10–14]). For
block H -matrices, there are few estimations about the upper bound of the spectral radius of block
iteration methods and few descriptions about the domains of convergence. And for many strictly
diagonally dominant matrices, their partitions are not block H -matrices (cf. [13]). So we do not
know the convergence of the block iterative methods for H-matrices. Here we use the concepts
of weak block diagonally dominant matrix to partition π and weak block H-matrix to partition
π including the block diagonally dominant matrix defined as Feingold and Varga [6] and Robert
[14]. All the concepts have been already introduced elsewhere (see e.g. [17]). We will establish
estimations about the spectral radius of block iteration matrices similar to Varga (cf. [15]) and
Varga, Niethammer and Cai (cf. [16]), and the exact domains for the convergence and divergence
of the BSOR and BSSOR iterative methods similar to Neumann and Varga (cf. [12]) and Neumaier
and Varga (cf. [10]). From these results, it is easy to deduce that the classical block iterations
are convergent for any partitioned block form of a pointwise H -matrix. Finally we give some
applications to generalized ultrametric matrices.

In this paper, we confine ourselves to the vector norm ‖x‖∞ = maxi |xi | and the matrix norm
‖A‖∞ = maxi

∑m
j=1 |aij |, denote by |A| = (|aij |) and by J (A) the Jacobi iterative matrix of A

and by BJ (A) the block Jacobi iterative matrix of A.
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2. Weak block diagonally dominant matrices and weak block H -matrices to partition π

Let A ∈ Cm,m. Then its comparison matrix U(A) = [bij ] is defined by

bij =
{|aij |, i = j,

−|aij |, i /= j.

A is said to be an H -matrix if its comparison matrix is an M-matrix. Due to Fan [5], A is an
H -matrix if and only if there exists a positive vector v such that U(A)v > 0. Then there exists a
diagonal matrix D such that AD is a strictly diagonally dominant matrix if and only if A is an
H -matrix.

Let A = [Aij ] ∈ Cm,m
π,n and Aii (i = 1, 2, . . . , n) be nonsingular. Then its block comparison

matrix Ub(A) = [bij ] is defined by

bij =
{‖A−1

ij ‖−1∞ , i = j,

−‖Aij‖∞, i /= j.

We can reformulate the definition of block diagonally dominant matrix due to Feingold and
Varga [6] as follows:

Definition 2.1 [6]. A is called a strictly block diagonally dominant matrix if its block comparison
matrix Ub(A) exists and is strictly diagonally dominant.

E = [Eij ] in Cm,m
π,n is said to be block diagonal if Eij = 0 for all i /= j .

Definition 2.2 [13]. A ∈ Cm,m
π,n is said to be a block H -matrix if there exist nonsingular block

diagonal matrices E1, E2 ∈ Cm,m
π,n such that the block comparison matrix Ub(E1AE2) is an M-

matrix.

Feigold and Varga used the term of strictly block diagonally dominant matrices, while Robert
[14] introduced block diagonally dominant matrices. A ∈ Cm,m

π,n is called a block diagonally
dominant matrix if N(A) is a strict diagonally dominant matrix, where N(A) = [bij ] and

bij =
{

1, i = j,

−‖A−1
ii Aij‖∞, i /= j.

Polman [13] pointed out that some strictly diagonally dominant matrices partitioned into block
forms are not block H -matrices.

Definition 2.3 [17]. A ∈ Cm,m
π,n is said to be weak block diagonally dominant to partition π if

D = diag(A11, A22, . . . , Ann) is nonsingular and D−1A is a strictly diagonally dominant matrix.

Note that if A ∈ Cm,m
π,n is strictly block diagonally dominant according to the definition by

Feingold and Varga [6] or by Robert [14], then A must be a weak block diagonally dominant
matrix to partition π (cf. [17]).

Definition 2.4 [17].A ∈ Cm,m
π,n is called weak blockH -matrix to partitionπ if there are nonsingular

block diagonal matrices E1 and E2 such that E1AE2 is a weak block diagonally dominant matrix
to partition π .
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Partition π ′ is said to be finer than partition π in the sense that n′ > n and π has been obtained
from π ′ by gathering block entries.

Lemma 2.5 [17]. A ∈ Cm,m
π,n is weak block diagonally dominant to partition π if and only if every

vector x ∈ Cm with x /= 0, xT = (
xT

1 , xT
2 , . . . , xT

n

)
, xi ∈ Cmi satisfies that for every i, ‖xi‖∞ <

‖x‖∞ whenever
∑n

j=1 Aijxj = 0.

Theorem 2.6. Suppose that π ′ is a finer partition than π and A ∈ Cm,m
π ′,n′ is a weak block diag-

onally dominant matrix to partition π ′, then for partitioned block matrix A ∈ Cm,m
π,n , A is also a

weak block diagonally dominant matrix to partition π.

Proof. Suppose that x ∈ Cm with x /= 0, xT = (
xT

1 , xT
2 , . . . , xT

n

)
, xi ∈ Cmi satisfies

n∑
j=1

Aijxj = 0 (*)

and the block entries Aij of A ∈ Cm,m
π ′,n′ may be written as

Aij =




Aki−1+1,kj−1+1 Aki−1+1,kj−1+2 · · · Aki−1+1,kj

Aki−1+2,kj−1+1 Aki−1+2,kj−1+2 · · · Aki−1+2,kj

...
... · · · ...

Aki ,kj−1+1 Aki,kj−1+2 · · · Aki,kj


 , i, j = 1, 2, . . . , n.

Similarly, xi ∈ Cmi may be written as xT
i =

(
x̄T
ki−1+1, x̄

T
ki−1+2, . . . , x̄

T
ki

)
. Since A ∈ Cm,m

π ′,n′ is a

weak block diagonally dominant matrix to partition π ′, by Eq. (*),
kn∑

j=1

Aki−1+s,j x̄j = 0, s = 1, 2, . . . , ki − ki−1,

then we have ‖x̄ki−1+s‖∞ < ‖x‖∞, s = 1, 2, . . . , ki − ki−1 and

‖xi‖∞ = max
ki−1+1�t�ki

‖x̄t‖∞ < ‖x‖∞.

So A ∈ Cm,m
π,n is also a weak block diagonally dominant matrix to partition π . �

According to the definition of weak block H -matrix, it is easy to get that

Corollary 2.7. Suppose that π ′ is a finer partition than π and A ∈ Cm,m
π ′,n′ is a weak block H -

matrix to partition π ′, then for partitioned block matrix A ∈ Cm,m
π,n is also a weak block H -matrix

to partition π.

Corollary 2.8. If A is a pointwise strictly diagonally dominant matrix, then for any block partition
(the diagonal blocks are square), A is a weak block diagonally dominant matrix.

Lemma 2.9 (Hu [7]). Let M be an n × n matrix and N be an n × m matrix. If M is a strictly
diagonally dominant matrix, then

‖M−1N‖∞ � max
i

∑m
j=1 |nij |

|mii | −∑
j /=i |mij | .
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Furthermore, if M is a strictly diagonally dominant M-matrix and N is nonnegative, then

min
i

∑m
j=1 nij

mii −∑
j /=i |mij | � min

i

m∑
j=1

(M−1N)ij � ρ(M−1N) � max
i

∑m
j=1 nij

mii −∑
j /=i |mij | .

Let the coefficient matrix A ∈ Cm,m
π,n be written as A = D − L − U where D, L and U are

defined in (1.2).

Theorem 2.10. Let A ∈ Cm,m
π,n be a weak block H -matrix to partition π, then for 0 � r � ω �

2
1+ρ(|BJ (A)|) ,

ρ(BLr,ω ) � |1 − ω| + ωρ(|BJ (A)|), ρ(BSr,ω ) � {|1 − ω| + ωρ(|BJ (A)|)}2. (2.1)

Proof. Since for nonsingular block diagonal matrices E1, E2 ∈ Cm,m
π,n , ρ(BLr,ω (E1AE2)) =

ρ(BLr,ω (A)), without loss of generality, we can assume that A ∈ Cm,m
π,n is a weak block diagonally

dominant matrix to partition π . Then D−1A = I − D−1B is a pointwise strictly diagonally
dominant matrix, ‖D−1B‖∞ < 1 and ‖|D−1B|‖∞ = ‖D−1B‖∞ < 1 where A = D − L − U

and B = L + U .
For nonnegative matrix |D−1B|, by Perron–Frobenius theorem there is a positive vector v =

(v1, v2, . . . , vm)T such that

|D−1B|v = ρ(|D−1B|)v = ρ(|BJ (A)|)v.

Define E0 = diag(vi) partitioned into form (1.1) and G = D−1AE0 = (gij ). Then∑
j �=i

|gij | = ρ(|D−1B|)|gii | = ρ(|BJ (A)|)|gii | � ‖|D−1B|‖∞|gii | < |gii |.

G is a strictly diagonally dominant matrix and it is easy to verify that for 0 � r � ω � 2
1+ρ(|BJ (A)|) ,

|1 − ω||gii | + ωρ(|BJ (A)|)|gii | � |gii | (2.2)

and notice that each element on the diagonal of G ∈ Cm,m
π,n is a diagonal matrix then

|gii | − r
∑
j<i

|gij | � |gii | − 2

1 + ρ(|BJ (A)|)
∑
j<i

|gij |

= 1

1 + ρ(|BJ (A)|)


|gii |(1 + ρ(|BJ (A)|)) − 2

∑
j<i

|gij |



= 1

1 + ρ(|BJ (A)|)


|gii | +

∑
j �=i

|gij | − 2
∑
j<i

|gij |



>
1

1 + ρ(|BJ (A)|)


2

∑
j>i

|gij |

 � 0. (2.3)

By Lemma 2.9, we have

ρ(BLr,ω (A)) = ρ(BLr,ω (G))

� ‖BLr,ω (G)‖∞
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� max
i

{ |1 − ω||gii | + (ω − r)
∑

j<i |gij | + ω
∑

j>i |gij |
|gii | − r

∑
j<i |gij |

}

= max
i

{ |1 − ω||gii | + ω
∑

j �=i |gij | − r
∑

j<i |gij |
|gii | − r

∑
j<i |gij |

}

� max
i

{ |1 − ω||gii | + ωρ(|BJ (A)|)|gii | − r
∑

j<i |gij |
|gii | − r

∑
j<i |gij |

}
. (2.4)

By the inequality c−b
a−b

� c
a

for a � c � 0, b � 0, together with (2.2)–(2.4), one has

ρ(BLr,ω (A)) = ρ(BLr,ω (G)) � |1 − ω| + ωρ(|BJ (A)|). (2.5)

Similarly, we can get the following estimations:

ρ(BUr,ω (A)) = ρ(BUr,ω (G)) � ‖BUr,ω (G)‖∞ � |1 − ω| + ωρ(|BJ (A)|) (2.6)

and

ρ(BSr,ω (A)) � ‖BUr,ω (G)‖∞ · ‖BLr,ω (G)‖∞ � {|1 − ω| + ωρ(|BJ (A)|)}2. �
(2.7)

Corollary 2.11. Suppose that A is a pointwise H -matrix partitioned into Cm,m
π,n , or A ∈ Cm,m

π,n
is a strictly block diagonally dominant matrix to partition π defined as Feingold and Varga or
by Robert, then the BJ and the BGS are convergent. Furthermore, the BAOR and the BSAOR
iterations are convergent for 0 < r � ω < 2

1+ρ(|BJ (A)|) .

In the following, we will give a characterization for weak block H -matrices to partition π .
Let �b(A) = {B = (Bij ) ∈ Cm,m

π,n : |BJ (B)| = |BJ (A)|}, we have

Theorem 2.12. For any irreducible matrix A ∈ Cm,m
π,n , n � 2, the following are equivalent:

(i) A is a weak block H -matrix to partition π;
(ii) for each B ∈ �b(A), ρ(BJ (B)) � ρ(|BJ (B)|) < 1;

(iii) for each B ∈ �b(A) and for each ω satisfying

0 < ω <
2

1 + ρ(|BJ (B)|) ,

the associated BSSOR iteration matrix BSω(B) for B satisfies

ρ(BSω(B)) < 1.

Proof. Suppose that A is a weak block H -matrix to partition π , then there are nonsingular
block diagonal matrices E1 and E2 such that E1AE2 is a weak block diagonally dominant
matrix to partitionπ . Note that by Definition 2.3,ρ(BJ (A)) � ρ(|BJ (A)|) = ρ(|BJ (E1AE2)|) �
‖|BJ (E1AE2)|‖∞ < 1. Then for each B ∈ �b(A), ρ(BJ (B)) � ρ(|BJ (B)|) = ρ(|BJ (A)|) < 1
and (i) implies (ii).

For each B = DB − LB − UB ∈ �b(A), since ρ(|BJ (B)|) < 1, then I − |D−1
B (LB + UB)|

is an M-matrix and I − D−1
B (LB + UB) is an H -matrix. Thus there exists a diagonal matrix
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with positive diagonal entries denoted by D0 partitioned into (1.1) such that [I − D−1
B (LB +

UB)]D0 = D−1
B BD0 is strictly diagonally dominant. Then B is a weak block H -matrix to par-

tition π . In Theorem 2.10, set r = ω, then ρ(BSω(B)) � |1 − ω| + ωρ(|BJ (B)|) = |1 − ω| +
ωρ(|BJ (A)|) < 1 and (i) implies (iii).

Similarly to the above proof, from it follows that A has to be a weak block H -matrix to partition
π , so (ii) implies (i).

Furthermore, define C = I − |D−1(L + U)| = I − LC − UC = (cij ) where LC and UC are
nonnegative matrices, then ρ(BJ (C)) = ρ(|BJ (A)|) � 1. Since A is irreducible, LC + UC is
also irreducible. And by Perron-Frobenius theorem, there is a positive vector denoted by v =
(v1, v2, . . . , vm)T such that

(LC + UC)v = ρ(LC + UC)v = ρ(|BJ (A)|)v � v.

Define E0 = diag(vi) partitioned into form (1.1) and DG = E0, LG = LCE0 and UG =
UCE0. Then G = (I − LC − UC)E0 = (gij ) ∈ Cm,m

π,n can be written as G = DG − LG − UG

and satisfies that∑
j /=i

|gij | � gii for all i.

By Lemma 2.9, for sufficient small ω ∈ (0, 1) such that DG − ωLG and DG − ωUG are strictly
diagonally dominant and BLω(G) is a nonnegative matrix, and notice that each element on the
diagonal of G ∈ Cm,m

π,n is a diagonal matrix, then we have

ρ(BLω(C)) = ρ(BLω(G)) = ρ[(DG − ωLG)−1((1 − ω)DG + ωUG)]
� min

i

∑
j

(BLω(G))ij

� min
i

{
gii − ωgii + ω

∑
j>i |gij |

gii − ω
∑

j<i |gij |

}

� 1.

Similarly,

ρ(BUω(C)) = ρ(BUω(G)) � min
i

{
gii − ωgii + ω

∑
j>i |gij |

gii − ω
∑

j<i |gij |

}
� 1.

Hence for nonnegative matrix BLω(G) and BUω(G), one has that

ρ(BSω(C)) = ρ(BSω(G))�min
i

∑
j

(BSω(G))ij

� min
i

∑
j

(BUω(G))ij · min
i

∑
j

(BLω(G))ij

� 1.

So the BSSOR of C is not convergent. Note that C ∈ �b(A). Hence there is a C ∈ �b(A) but
ρ(BSω(C)) � 1 and (iii) implies (i). �
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3. The exact domains for the convergence and divergence of the BSOR and BSSOR
iterative methods

To consider the exact domains for the convergence and divergence of the BSOR and BSSOR
iterative methods, we first recall the following results proved by Neumann and Varga (cf. [12])
and Neumaier and Varga (cf. [10]). Let

H(v) = {
A ∈ Cm,m, m arbitrary : A is an H -matrix with ρ(|J (A)|) = v

}
.

Theorem 3.1 [12]. For each 0 � v < 1, ρ(Lω(A)) < 1 for all A ∈ H(v) if and only if 0 < ω <
2

1+ρ(|J (A)|) .
Set

ω(v) =
{

2, 0 � v � 1
2 ,

2
1+√

2v−1
, 1

2 < v < 1.

Theorem 3.2 [10]. For each matrix A ∈ H(v), and for each ω with 0 < ω < ω(v), ρ(Sω(A)) <

1. On the other hand, for each ω with ω � 0 or with ω > ω(v), there is a matrix B in H(v) such
that ρ(Sω(A)) � 1.

Let Hb(v) = {
A ∈ Cm,m

π,n , m, n(m � n) arbitrary : A is a weak block H-matrix with
ρ(|BJ (A)|) = v}
and

ω(v) =
{

2, 0 � v � 1
2 ,

2
1+√

2v−1
, 1

2 < v < 1.

For each v with 0 � v < 1, and each matrix A ∈ Hb(v), notice that in the proof of Theorem
2.10, ρ(|BJ (A)|) = ρ(|BJ (G)|) = ρ(|J (G)|) = v and G is a strictly diagonally dominant matrix
satisfying

ρ(BLω(G)) = ρ(BLω(A)) = ρ(Lω(G)), ρ(BSω(G)) = ρ(BSω(A)) = ρ(Sω(G)).

(3.1)

By Neumann and Varga [12] for each ω with 0 < ω < 2
1+ρ(|BJ (A)|) , ρ(BLω(A)) = ρ(Lω(G)) <

1 and by Neumaier and Varga [10] for each ω with 0 < ω < ω(v), ρ(BSω(A)) = ρ(Sω(G)) < 1.
By considering the same counterexamples defined in [10,12], one obtains the following result.

Theorem 3.3. For each v with 0 � v < 1, for each matrix A ∈ Hb(v), for each ω with 0 < ω <
2

1+ρ(|BJ (A)|) , ρ(BLω(A)) < 1 and for each ω with 0 < ω < ω(v), ρ(BSω(A)) < 1. On the other

hand, for each ω with ω � 0 or with ω > 2
1+ρ(|BJ (A)|) , there is a matrix B in Hb(v) such that

ρ(BLω(A)) � 1, and for each ω with ω � 0 or with ω > ω(v), there is a matrix B in Hb(v)

such that ρ(BSω(A)) � 1.

4. Applications

We recall from [3] that for a matrix A ∈ Cm,m
π,n , its block matrix multisplitting (BMM) denotes

any collection of triples (D − Lk, Uk, Ek) for which A = D − Lk − Uk , D = diag(A11, A22
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, . . . , Ann) is nonsingular, Lk ∈ Cm,m
π,n is a strictly block lower triangular matrix, −Uk ∈ Cm,m

π,n is
a submatrix of A with zero diagonal blocks, k = 1, 2, . . . , α, and

∑α
k=1 Ek = I with

∑α
k=1[Ek] �

I , where Ek = (E
(k)
ij ) and [Ek] = (‖E(k)

ij ‖).
Denote Lk(r, ω) = (D − rLk)

−1[(1 − ω)D + (ω − r)Lk + ωUk], k = 1, 2, . . . , α, then the
iterative method of BMM (Method I in [3]) can be written as: x0 is an initial vector and for
p = 0, 1, 2, . . .,

yp,k = Lk(r, ω)xp + ω(D − rLk)
−1b, k = 1, 2, . . . , α, and xp+1 =

α∑
k=1

Eky
p,k,

and the iterative matrix is LBMM = ∑α
k=1 EkLk(r, ω).

Method II in [3] can be written as

yp,k = Lk(r, ω)xp + ω(D − rLk)
−1b, xp,k = µyp,k + (1 − µ)xp,

k = 1, 2, . . . , α, 0 < µ � 1,

and

xp+1 =
α∑

k=1

Ekx
p,k.

The iterative matrix is LBMM = µ
∑α

k=1 EkLk(r, ω) + (1 − µ)I .
By arguing as in the proof of Theorem 2.10, one easily shows that if A ∈ Cm,m

π,n is a weak block
H -matrix, then for 0 � r � ω � 2

1+ρ(|BJ (A)|) , one has thatρ(Lk(r, ω)) � |1 − ω| + ωρ(|BJ (A)|).
Theorem 4.1 and Theorem 4.2 in [3] can be improved together as follows:

Theorem 4.1. Suppose that A ∈ Cm,m
π,n is a weak block H -matrix to partition π. Then for 0 <

r � ω < 2
1+ρ(|BJ (A)|) and 0 < µ � 1,

ρ(LBMM) � |1 − ω| + ωρ(|BJ (A)|),
(4.1)

ρ(LBMM) � µ{|1 − ω| + ωρ(|BJ (A)|)} + (1 − µ).

And Method I and Method II are convergent.

Proof. First from the definition of Ek , it is not difficult to verify that Ek (k = 1, 2, . . . , α) are block
diagonal matrices and E

(k)
ii = λi,kImi

for some positive number λi,k , 0 � λi,k � 1. Thus EkE =
EEk for arbitrary block diagonal matrix E ∈ Cm,m

π,n . On the other hand, for nonnegative matrices
Nk ∈ Cm,m

π,n , k = 1, 2, . . . , α, by Perron–Frobenius Theorem, one has that ρ
(∑α

k=1 EkNk

)
�

maxk ρ(Nk).
Since A ∈ Cm,m

π,n is a weak block H -matrix to partition π , there exist block diagonal matri-
ces H1, H2 such that A0 = H1AH2 is weak block diagonally dominant to partition π . Simi-
lar to the proof of Theorem 2.10, there exists a block diagonal matrix E0 ∈ Cm,m

π,n such that

G0 = D−1
0 A0E0 = (g

(0)
ij ) satisfies that

∑
j �=i |g(0)

ij | = ρ(|D−1
0 B0|)|g(0)

ii |, where A0 = D0 − B0

and D0 = diag(A
(0)
11 , A

(0)
22 , . . . , A

(0)
n,n) and

ρ(Lk(r, ω)(G0)) � ρ(|Lk(r, ω)(G0)|)
� ρ(Lk(r, ω)U(G0)))

� ‖(|DG0 | − r|LG0 |)−1[(1 − ω)|DG0 | + (ω − r)|LG0 | + ω|UG0 |]‖∞
� |1 − ω| + ωρ(|BJ (A)|).
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Note that for any nonsingular block diagonally matrixE ∈ Cm,m
π,n ,Lk(r, ω)(EA) = Lk(r, ω)(A)

and A = H−1
1 D0G0E

−1
0 H−1

2 , thus

ρ

(
α∑

k=1

EkLk(r, ω)(A)

)
= ρ

(
α∑

k=1

EkH2E0Lk(r, ω)(G0)E
−1
0 H−1

2

)

= ρ

(
α∑

k=1

EkLk(r, ω)(G0)

)

� ρ

(
α∑

k=1

EkLk(r, ω)(U(G0))

)
.

Hence

ρ

(
α∑

k=1

EkLk(r, ω)(A)

)
� ρ

(
α∑

k=1

EkLk(r, ω)(U(G0))

)
� |1 − ω| + ωρ(|BJ (A)|).

Similarly, we can get

ρ(LBMM) � µ{|1 − ω| + ωρ(|BJ (A)|)} + (1 − µ). �

Remark. The results in [4] can also be extended to weak block H -matrices to partition π .

Next, we consider the applications of weak block H -matrices in the numerical analysis of
generalized ultrametric matrices. McDonald, Neumann, Schneider and Tsatsomeros [8], Nabben
and Varga [9] introduced the new class of generalized ultrametric matrices in studying inverse M-
matrices problem. Inverse M-matrices have a strong intrinsic value on inverse physical problems
and on regularizing ill-posed problems.

Definition 4.2 [8, 9]. A matrix A = (aij ) ∈ Rn,n is called a generalized ultrametric matrix if

(i) A has nonnegative entries;
(ii) aij � min{ai,k; ak,j } for all i, k, j = 1, 2, . . . , n;

(iii) ai,i � max{ai,k; ak,i} for all i = 1, 2, . . . , n;
(iv) each triple {q, s, t} can be reordered as a triple {i, j, k} such that

(iv.i) aj,k = ai,k and ak,j = ak,i , (iv.ii) max{ai,j ; aj,i} � max{ai,k; ak,i},

where, if n = 1, (iii) is interpreted as a1,1 � 0. A matrix A is called a strictly generalized ultr-
ametric matrix if the above conditions hold with strict inequality in (iii). Especially, if A is a
symmetric generalized ultrametric matrix, A is a ultrametric matrix.

Let A be a strictly generalized ultrametric matrix and τ(A) = min{aij : i, j ∈ N}, ω(A) =
min{aji : aij = τ(A)}, δ(A) = ω(A) − τ(A), µ(A) = max{aij }, then there exists a permutate
matrix P such

A := P T AP =
[
C 0
δ(A)ξn−r ξ

T
r D

]
+ τ(A)ξnξn

T =
[
A11 A12
A21 A22

]

C ∈ Cr,r and D ∈ Cn−r,n−r are also strictly generalized ultrametric matrices and A−1, C−1, D−1

are strictly diagonally dominant M-matrices, where
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A11 = C + τ(A)ξrξr
T , A22 = D + τ(A)ξn−r ξ

T
n−r , ξr = (1, 1, . . . , 1)T ∈ Cr,

ξn−r = (1, 1, . . . , 1)T ∈ Cn−r, ξn = (1, 1, . . . , 1)T ∈ Cn (cf. [9]). And A is a weak block H -
matrix (cf. [17]). Hence the classic block iterative methods are convergent.

Example 4.1. Let A be a generalized ultrametric matrix written as

A =




2 2 2 2 2
1 3 2 2 2
1 1 5 4 3
1 1 1 5 3
1 1 1 1 3


 =




1 1 1 1 1
0 2 1 1 1
0 0 4 3 2
0 0 0 4 2
0 0 0 0 2


+




1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


 .

ρ(J (A)) > 1.2. But for any block partition such that A ∈ C5,5
π,2, A is a weak block H -matrix to

partition π . For example, let

A =




2 2 | 2 2 2
1 3 | 2 2 2
− − − − − − | − − − − − − − − −
1 1 | 5 4 3
1 1 | 1 5 3
1 1 | 1 1 3




,

D−1A =




1 0 1
2

1
2

1
2

0 1 1
2

1
2

1
2

0 0 1 0 0
0 0 0 1 0
1
3

1
3 0 0 1




is a pointwise H -matrix and ρ(|BJ (A)|) ≈ 0.5774. So for ω ∈
(

0, 2
1+ρ(|BJ (A)|)

)
, the BSOR is

convergent. Furthermore, D−1A is 2-cyclic matrix, according to Young [18], ωopt =
2

1+
√

1−ρ(|BJ (A)|)2
≈ 1.1010, ρ(BLω) ≈ 0.1010:

ω 0.2 0.4 0.6 0.8 1 ωopt 1.2 1.4 1.6
ρ(BLω) 0.9102 0.8075 0.6176 0.5319 0.3333 0.1010 0.2000 0.4000 0.6000

Example 4.2. Let A be a ultrametric matrix written as

A =




2 1 1 1 1
1 2 1 1 1
1 1 4 1 3
1 1 1 2 1
1 1 3 1 4


 =




1 0 0 0 0
0 1 0 0 0
0 0 3 0 2
0 0 0 1 0
0 0 2 0 3


+




1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


 .

ρ(J (A)) > 1.5. But for any block partition such that A ∈ C5,5
π,2, A is a weak block H -matrix to

partition π . For example, let
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A =




2 1 | 1 1 1
1 2 | 1 1 1
− − − − − − | − − − − − − − − −
1 1 | 4 1 3
1 1 | 1 2 1
1 1 | 3 1 4




,

D−1A =




1 0 1
3

1
3

1
3

0 1 1
3

1
3

1
3

1
12

1
12 1 0 0

5
12

5
12 0 1 0

1
12

1
12 0 0 1




is a pointwise H -matrix and ρ(|BJ (A)|) ≈ 0.6236. So for ω ∈
(

0, 2
1+ρ(|BJ (A)|)

)
, the BSOR is

convergent. Furthermore, D−1A is 2-cyclic matrix, according to Young [18], ωopt =
2

1+
√

1−ρ(|BJ (A)|)2
≈ 1.1225, ρ(BLω) ≈ 0.1225:

ω 0.2 0.4 0.6 0.8 1 ωopt 1.2 1.4 1.6 2
ρ(BLω) 0.8750 0.7744 0.7168 0.5799 0.3889 0.1225 0.2000 0.4000 0.6000 1
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