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1. Introduction

Let Fq be a finite field of q = pm elements. For any integer n � 1 and a parameter a in a field Fq ,
we recall that the n-th Dickson polynomial of the first kind Dn(x,a) ∈ Fq[x] is defined by

Dn(x,a) =
�n/2�∑
i=0

n

n − i

(
n − i

i

)
(−a)i xn−2i .
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Similarly, the n-th Dickson polynomial of the second kind En(x,a) ∈ Fq[x] is defined by

En(x,a) =
�n/2�∑
i=0

(
n − i

i

)
(−a)i xn−2i .

For a �= 0, we write x = y + a/y with y �= 0 an indeterminate. Then Dickson polynomials can often
be rewritten (also referred as functional expression) as

Dn(x,a) = Dn

(
y + a

y
,a

)
= yn + an

yn
,

and

En(x,a) = En

(
y + a

y
,a

)
= yn+1 − an+1/yn+1

y − a/y
,

for y �= 0, ±√
a; For y = ±√

a, we have En(2
√

a,a) = (n + 1)(
√

a)n and En(−2
√

a,a) = (n + 1)(−√
a)n .

It is well known that Dn(x,a) = xDn−1(x,a) − aDn−2(x,a) and En(x,a) = xEn−1(x,a) − aEn−2(x,a) for
any n � 2.

In the case a = 1, we denote the n-th Dickson polynomials of the first kind and the second kind
by Dn(x) and En(x) respectively. It is well known that these Dickson polynomials are closely related
to Chebyshev polynomials by the connections Dn(2x) = 2Tn(x) and En(2x) = Un(x), where Tn(x) and
Un(x) are Chebyshev polynomials of degree n of the first kind and the second kind, respectively. More
information on Dickson polynomials can be found in [8]. In the context of complex functions, Dickson
polynomials of other kinds have already been introduced, see for example [6,9]. In the context of fi-
nite fields, some properties such as recursive relations remain the same but the emphases are rather
different. For example, permutation property over finite fields is one of properties which have attract
a lot of attention due to their applications in cryptography. In this paper, we study Dickson polyno-
mials of the higher kinds over finite fields. For any k < p and constant a ∈ Fq , we define n-th Dickson
polynomials Dn,k(x,a) of the (k + 1)-th kind and the n-th reversed Dickson polynomials Dn,k(x,a)

of the (k + 1)-th kind in Section 2. Moreover, we give the relation between Dickson polynomials of
the (k + 1)-th kind and Dickson polynomials of the first two kinds, the recurrence relation of Dick-
son polynomials of the (k + 1)-th kind in terms of degrees for a fixed k and its generating function,
functional expressions, as well as differential recurrence relations. Some general results on functional
expression reduction and permutation behavior of Dn,k(x,a) are also obtained in Section 2. Then we
focus on Dickson polynomials of the third kind. In Section 3, we show the relation between Dickson
polynomials of the third kind and Dickson polynomials of the second kind and thus obtain the fac-
torization of these polynomials. Finally, we study the permutation behavior of Dickson polynomials of
the third kind Dn,2(x,1) in Section 4. Our work is motivated by the study of Dickson polynomials of
the second kind given by Cipu and Cohen (separately and together) in [3–5], which aimed to address
conjectures of existence of nontrivial Dickson permutation polynomials of second kind other than sev-
eral interesting exceptions when the characteristics is 3 or 5. We obtain some necessary conditions
for Dn,2(x,1) to be a permutation polynomial (PP) of any finite fields Fq . We also completely describe
Dickson permutation polynomials of the third kind over any prime field following the strategy of
using Hermite’s criterion and Gröbner basis over rings started in [3–5].
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2. Dickson polynomial of the (k + 1)-th kind

Definition 2.1. For a ∈ Fq , and any positive integers n and k, we define the n-th Dickson polynomial of
the (k + 1)-th kind Dn,k(x,a) over Fq by

Dn,k(x,a) =
�n/2�∑
i=0

n − ki

n − i

(
n − i

i

)
(−a)i xn−2i .

Definition 2.2. For a ∈ Fq , and any positive integers n and k, we define the n-th reversed Dickson
polynomial of the (k + 1)-th kind Dn,k(a, x) over Fq by

Dn,k(a, x) =
�n/2�∑
i=0

n − ki

n − i

(
n − i

i

)
(−1)ian−2i xi .

Remark 2.3. For n = 0, we define Dn,k(x,a) = 2 − k = Dn,k(a, x). It is easy to see that Dn,0(x,a) =
Dn(x,a) and Dn,1(x,a) = En(x,a). Moreover, we can have the following simple relation

Dn,k(x,a) = kDn,1(x,a) − (k − 1)Dn,0(x,a) = kEn(x,a) − (k − 1)Dn(x,a). (2.1)

It is easy to see that if char(Fq) = 2, then Dn,k(x,a) = Dn(x,a) if k is even and Dn,k(x,a) = En(x,a)

if k is odd. So we can assume char(Fq) is odd and we can also restrict k < p because Dn,k+p(x,a) =
Dn,k(x,a).

Remark 2.4. The fundamental functional equation is

Dn,k
(

y + ay−1,a
) = y2n + kay2n−2 + · · · + kan−1 y2 + an

yn

= y2n + an

yn
+ ka

yn

y2n − an−1 y2

y2 − a
, for y �= 0,±√

a,

where Dn,k(±2
√

a,a) = (±√
a)n(kn − k + 2).

Remark 2.5. For a fixed k and any n � 2, we have the following recursion:

Dn,k(x,a) = xDn−1,k(x,a) − aDn−2,k(x,a),

where D0,k(x,a) = 2 − k and D1,k(x,a) = x.

Using this recursion, we can obtain the generating function of these Dickson polynomials.

Lemma 2.6. The generating function of Dn,k(x,a) is

∞∑
n=0

Dn,k(x,a)zn = 2 − k + (k − 1)xz

1 − xz + az2
.
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Proof. (
1 − xz + az2) ∞∑

n=0

Dn,k(x,a)zn

=
∞∑

n=0

Dn,k(x,a)zn − x
∞∑

n=0

Dn,k(x,a)zn+1 + a
∞∑

n=0

Dn,k(x,a)zn+2

= 2 − k + xz − (2 − k)xz +
∞∑

n=0

(
Dn+2,k(x,a) − xDn+1,k(x,a) + aDn,k(x,a)

)
zn

= 2 − k + (k − 1)xz. �
Stoll [9] has studied these Dickson-type polynomials with coefficients over C. We note that in our

case all the coefficients of Dn,k(x,a) are integers. Hence Lemma 17 in [9] can be modified to the
following.

Lemma 2.7. The Dickson polynomial Dn,k(x,a) satisfies the following difference equation(
A4x4 + aA2x2 + a2 A0

)
D ′′

n,k(x,a) + (
B3x3 + aB1x

)
D ′

n,k(x,a) − (
C2x2 + aC0

)
Dn,k(x,a) = 0,

where A4, A2, A0, B3, B1, C2, C0 ∈ Z satisfy

A4 = B3 = n(1 − k),

A2 = −(n − 1)(2 − k)2 − 2(2n + 1)(2 − k) + 4n,

A0 = 4(n − 1)(2 − k)2 + 8(2 − k),

B1 = −3(n − 1)(2 − k)2 + 2(4n − 3)(2 − k) − 8n,

C2 = n3(1 − k),

C0 = −n(n − 1)(n − 2)(2 − k)2 − 2n(3n − 4)(2 − k) − 8n.

In particular, for k = 0,1,2, we have

(
x2 − 4a

)
D ′′

n,0(x,a) + xD ′
n,0(x,a) − n2 Dn,0(x,a) = 0,(

x2 − 4a
)

D ′′
n,1(x,a) + 3xD ′

n,1(x,a) − n(n + 2)Dn,1(x,a) = 0,

x2(x2 − 4a
)

D ′′
n,2(x,a) + x

(
x2 + 8a

)
D ′

n,2(x,a) − (
n2x2 + 8a

)
Dn,2(x,a) = 0.

Theorem 2.8. Suppose ab is a square in Fq
∗ . Then Dn,k(x,a) is a PP of Fq if and only if Dn,k(x,b) is a PP of Fq.

Furthermore,

Dn,k(α,a) = (
√

a/b)n Dn,k
(
(
√

b/a)α,b
)
.

Proof. √
a/b

n
Dn,k(

√
b/aα,b) = (

√
a/b)n

�n/2�∑
i=0

n − ki

n − i

(
n − i

i

)
(−b)i(

√
b/aα)n−2i

= (
√

a/b)n
�n/2�∑ n − ki

n − i

(
n − i

i

)
(−b)i(

√
b/aα)n−2i
i=0
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=
�n/2�∑
i=0

n − ki

n − i

(
n − i

i

)
(−a)i(α)n−2i

= Dn,k(α,a). �
So we can focus on a = ±1. When a = 1, we denote by

Dn,k(x) =
�n/2�∑
i=0

n − ki

n − i

(
n − i

i

)
(−1)i xn−2i.

Indeed, Dn,0(x) = Dn(x) and Dn,1(x) = En(x) are Dickson polynomial of the first kind and then
second kind when a = 1 respectively.

Similarly, let x = y + y−1, we obtain the functional expression of Dn,k(x):

Dn,k
(

y + y−1) = y2n + ky2n−2 + . . . + ky2 + 1

yn

= y2n + 1

yn
+ k

yn

y2n − y2

y2 − 1
, y �= 0,±1.

We remark that Dn,k(±2) = (±1)n(kn − k + 2) and Dn,k(−x) = (−1)n Dn,k(x). For a fixed k and any
n � 2, we have the following recursion:

Dn,k(x) = xDn−1,k(x) − Dn−2,k(x),

where D0,k(x) = 2 − k and D1,k(x) = x.
For α ∈ Fq there exists uα ∈ Fq2 with

α = uα + 1

uα
.

The following property is well known.

Proposition 2.9. For u ∈ Fq2 with u + 1
u ∈ Fq we have uq−1 = 1 or uq+1 = 1.

For positive integers n and r we use the notation (n)r to denote n (mod r), the smallest positive
integer congruent to n modulo r. Let us also define Sq−1, Sq+1, and S p by

Sq−1 = {
α ∈ Fq: uq−1

α = 1
}
, Sq+1 = {

α ∈ Fq: uq+1
α = 1

}
, S p = {±2}.

Then we can reduce the function Dn,k(x) into step functions with smaller degrees.

Theorem 2.10. As functions on Fq, we have

Dn,k(α) =
⎧⎨
⎩

D(n)2p ,k(α) if α ∈ S p,

D(n)q−1,k(α) if α ∈ Sq−1,

D(n)q+1,k(α) if α ∈ Sq+1.



Q. Wang, J.L. Yucas / Finite Fields and Their Applications 18 (2012) 814–831 819
Proof. If α ∈ S p then Dn,k(α) = (±1)n(kn −k +2) = (±1)(n)2p (k(n)2p −k +2) = D(n)2p ,k(α). If α ∈ Sq−1

then un
α = u

(n)q−1
α . Similarly, if α ∈ Sq+1 then un

α = u
(n)q+1
α . The rest of proof follows from the functional

expression of Dickson polynomials. �
Define c = p(q2−1)

4 . By Proposition 2.9, we have u2c
α = 1. Therefore, using the functional expressions,

we have Dn,k(α) = D(n)2c ,k(α) as functions over Fq . This means the sequence of Dickson polynomials
of the (k + 1)-th kind in terms of degrees modulo xq − x is a periodic function with period 2c. Here
we can obtain (n)2c in terms of (n)p, (n)q−1 and (n)q+1.

Proposition 2.11. Let c = p(q2−1)
4 . If n is a positive integer then we have

(n)2c = −(n)p
(
q2 − 1

) + (n)q−1q2(q + 1)

2
− (n)q+1q2(q − 1)

2
.

Proof. If p is even, then both q + 1 and q − 1 are odd and thus p
2 , q + 1, q − 1 are pairwise relatively

prime. If p is odd, then both q + 1 and q − 1 are even. Hence p, q + 1, q−1
2 are pairwise relatively

prime if q ≡ 3 (mod 4) and p,
q+1

2 ,q − 1 are pairwise relatively prime if q ≡ 1 (mod 4). The rest of
proof follows from Chinese Remainder Theorem. �

Let εα = uc
α ∈ {±1}. Then we obtain the following.

Theorem 2.12. Let α = uα + 1
uα

where uα ∈ Fq2 and α ∈ Fq. Let εα = uc
α ∈ {±1} where c = p(q2−1)

4 . As
functions on Fq we have

Dc+n,k(α) = εα Dn,k(α).

Moreover, Dn,k(x) is a PP of Fq if and only if Dc+n,k(x) is a PP of Fq.

Proof. For α = ±2, we have uα = ±1. Moreover, p | c. Hence

Dc+n,k′(±2) = (±1)c+n(k(c + n) − k + 2
)

= (±1)c(±1)n(kn − k + 2)

= εα Dn,k(±2).

If α �= ±2,0, we have uc
α = u−c

α and thus

Dc+n,k(α) = u2(c+n)
α + 1

uc+n
α

+ k

uc+n
α

u2(c+n)
α − u2

α

u2
α − 1

= u2c
α u2n

α + 1

uc
αun

α

+ k

uc
αun

α

u2c
α u2n

α − u2
α

u2
α − 1

= uc
αu2n

α + u−c
α

un
α

+ k

un
α

uc
αu2n

α − u−c
α u2

α

u2
α − 1

= uc
α

(
u2n

α + 1

un
α

+ k

un
α

u2n
α − u2

α

u2
α − 1

)

= uc
α Dn,k(α).
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If q is even, then Dc+n,k(x) = Dn,k(x). Hence we assume q is odd for the rest of the proof. If
Dn,k(x) is a PP of Fq , then n must be odd because Dn,k(±2) = (±1)n(kn − k + 2) and Dn,k(2) �=
Dn,k(−2). Therefore Dn,k(−α) = −Dn,k(α) for any α ∈ Fq . Since c is even, c + n is odd and
Dc+n,k(−α) = −Dc+n,k(α). Suppose Dc+n,k(α1) = Dc+n,k(α2) for some α1,α2 ∈ Fq . Then there are
εα1 , εα2 ∈ {±1} such that εα1 Dn,k(α1) = εα2 Dn,k(α2). Therefore we either have Dn,k(α1) = Dn,k(α2) or
Dn,k(α1) = −Dn,k(α2). In the latter case, Dn,k(−α2) = −Dn,k(α2) = Dn,k(α1) implies that α1 = −α2.
Then Dc+n,k(α1) = Dc+n,k(−α2) = −Dc+n,k(α2), which contradicts to Dc+n,k(α1) = Dc+n,k(α2) and q
is odd. Hence Dn,k(α1) = Dn,k(α2) and thus α1 = α2. Therefore Dc+n,k(x) is also a PP of Fq . The
converse follows similarly. �

We remark that D2c+n,k(α) = ε2
α Dn,k(α) = Dn,k(α) and thus Dn,k(x) ≡ D(n)2c ,k(x) (mod xq − x).

This implies that the sequence of Dickson polynomials of the (k + 1)-th kind in terms of degrees is a
periodic function with period 2c.

Finally we give the following result which relates a Dickson polynomial of one kind to a Dickson
polynomial of another kind.

Theorem 2.13. Let q = pm be an odd prime power. For k �= 1, let k′ = k
k−1 (mod p) and εα = uc

α ∈ {±1}
where c = p(q2−1)

4 . For n < c, as functions on Fq we have

Dc−n,k′(α) = −εα

k − 1
Dn,k(α).

Moreover, Dn,k(x) is a permutation polynomial of Fq if and only if Dc−n,k′ (x) is a permutation polynomial
of Fq.

Proof. For α = ±2, we have uα = ±1. Hence

Dc−n,k′(±2) = (±1)c−n(k′(c − n) − k′ + 2
)

= (±1)c(±1)n
(

k(c − n)

k − 1
− k

k − 1
+ 2(k − 1)

k − 1

)

= uc
α

k − 1
(±1)n(k(c − n) − k + 2(k − 1)

)
= − uc

α

k − 1
(±1)n(kn − k + 2)

= −εα

k − 1
Dn,k(±2).

If α �= ±2,0, then uc
α = u−c

α and thus

Dc−n,k′(α) = u2(c−n)
α + 1

uc−n
α

+ k′

uc−n
α

u2(c−n)
α − u2

α

u2
α − 1

= u2c
α u−2n

α + 1

uc
αu−n

α

+ k

(k − 1)uc
αu−n

α

u2c
α u−2n

α − u2
α

u2
α − 1

= uc
αu−2n

α + u−c
α

u−n
α

+ k

(k − 1)u−n
α

uc
αu−2n

α − u−c
α u2

α

u2
α − 1

= uc
α

(
u−2n

α + 1

u−n + k

(k − 1)u−n

u−2n
α − u2

α

u2 − 1

)

α α α
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= uc
α

k − 1

(
(k − 1)(u−2n

α + 1)

u−n
α

+ k

u−n
α

u−2n
α − u2

α

u2
α − 1

)

= uc
α

k − 1

(−1(u−2n
α + 1)

u−n
α

+ k

u−n
α

u−2n+2
α − 1

u2
α − 1

)

= uc
α

k − 1

(−1(u−2n
α + 1)

u−n
α

+ k

u−n
α

u−2n
α − u−2

α

1 − u−2
α

)

= −uc
α

k − 1
Dn,k(α).

The rest of proof is similar to that of Theorem 2.12. �
3. Dickson polynomial of the 3rd kind

First we recall

Dn,k(x,a) = kDn,1(x,a) − (k − 1)Dn,0(x,a) = kEn(x,a) − (k − 1)Dn(x,a). (3.1)

It is easy to see that if char(Fq) = 2, then Dn,k(x,a) = Dn(x,a) if k is even and Dn,k(x,a) = En(x,a) if
k is odd. Hence it is more interesting to study Dn,k(x) when char(Fq) > 2.

Theorem 3.1. For any n � 1, we have

Dn,k(x,a) = Dn,k−1(x,a) + aEn−2(x,a).

In particular,

Dn,2(x,a) = xEn−1(x,a)

and

Dn,3(x,a) = xEn−1(x,a) + aEn−2(x,a).

Proof. Indeed, we have

Dn,k(x,a) = kEn(x,a) − (k − 1)Dn(x,a)

= Dn,k−1(x,a) + (
En(x,a) − Dn(x,a)

)
= Dn,k−1(x,a) + aEn−2(x,a),

where the last identity holds because En(x,a)−aEn−2(x,a) = Dn(x,a). In particular, when k = 2, then

Dn,2(x,a) = Dn,1(x,a) + aEn−2(x,a)

= En(x,a) + aEn−2(x,a)

= xEn−1(x,a). �
Since the factorization of En(x,a) over a finite field Fq is well known (see for example, [1] or [2]),

we can obtain the factorization of Dn+1,2(x,a) = xEn(x,a) over Fq as well. Of course, it is enough to
give the result for the case that gcd(n + 1, p) = 1. Indeed, if n + 1 = pr(t + 1) where gcd(t + 1, p) = 1,
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then it is straightforward to obtain En(x,a) = Et(x,a)pr
(x2 −4a)

pr −1
2 by using the functional expression

of Et(x,a).

Corollary 3.2. Let Fq be a finite field with char(Fq) = p, gcd(n + 1, p) = 1, and φ be Euler’s totient function.
Let a �= 0.

(i) If q is even, then Dn+1,2(x,a) is a product of irreducible polynomials in Fq[x] which occur in cliques
corresponding to the divisors d of n + 1. The irreducible factor corresponding to d = 1 is x. To each such d > 1
there correspond φ(d)/2kd irreducible factors, each of which has the form

kd−1∏
i=0

(
x − √

a
(
ζ

qi

d + ζ
−qi

d

))
,

where ζd is a primitive d-th root of unity and kd is the least positive integer such that qkd ≡ ±1 (mod d).
(ii) If q is odd, then Dn+1,2(x,a) is a product of irreducible polynomials in Fq[x] which occur in cliques

corresponding to the divisors d of 4n + 2 with d > 2 and d = 1. The irreducible factor corresponding to d = 1
is x. To each such d > 2 there corresponds φ(d)/2Nd irreducible factors, each of which has the form

kd−1∏
i=0

(
x − √

a
qi (

ζ
qi

d + ζ
−qi

d

))
,

where ζd is a primitive d-th root of unity, unless a is non-square in Fq and 4 � d; in this exceptional case there
are φ(d)/Nd factors corresponding to each d = d0 and d = 2d0 , where d0 > 1 is an odd divisor of k + 1, and
the factors corresponding to d0 are identical to the factors corresponding to 2d0 . Here kd is the least positive
integer such that qkd ≡ ±1 (mod d), and

Nd =

⎧⎪⎪⎨
⎪⎪⎩

kd/2 if
√

a /∈ Fq and d ≡ 0 (mod 2) and kd ≡ 2 (mod 4)

and qkd/2 ≡ d
2 ± 1 (mod d);

2kd if
√

a /∈ Fq and kd is odd;
k4 otherwise.

4. Permutation behavior of Dickson polynomials of the 3rd kind

Let fn(x) := Dn,2(x) = xEn−1(x). The functional expression of fn(x) is given as follows:

fn
(

y + y−1) = (
y + y−1) yn − y−n

y − y−1
for y �= 0,±1, (4.1)

where fn(0) = 0, fn(2) = 2n, and fn(−2) = (−1)n2n. If q is even then Dn,2(x) is the Dickson polyno-
mial of the first kind as explained earlier.

So we assume q is odd in this section. Let ξ be a primitive (q − 1)-th root of unity and η be
a primitive (q + 1)-th root of unity in Fq2 . Then Sq−1 = {x = ξ i + ξ−i ∈ Fq: 1 � i � (q − 3)/2} and

Sq+1 = {x = η j + η− j ∈ Fq: 1 � j � (q − 1)/2}. We note that −Sq−1 = Sq−1 and −Sq+1 = Sq+1. Using
the functional expression, one can also easily obtain the following sufficient conditions for fn(x) to
be a permutation polynomial of Fq .

Theorem 4.1. Let q be an odd prime power. Suppose n (mod p), n (mod (q − 1)/2) and n (mod (q + 1)/2)

are all equal to ±1. Then fn(x) is a permutation polynomial of Fq.

Proof. Because one of (q − 1)/2 and (q + 1)/2 is even, both n ≡ ±1 (mod (q − 1)/2) and n ≡ ±1
(mod (q + 1)/2) imply that n must be odd. Therefore n ≡ ±1 (mod p) implies that n ≡ ±1 (mod 2p).
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The rest of proof follows directly from Theorem 2.10 and Eq. (4.1). Indeed, fn(x) permutes each subset
S p , Sq−1 and Sq+1 of Fq in the same way as linear polynomial ±x (but fn(x) is not necessarily equal
to ±x). �

We are interested in the necessary conditions when fn(x) is a PP of Fq .

Proposition 4.2. Let q be an odd prime power. If fn(x) is a permutation polynomial of Fq, then

(i) n is odd.
(ii) p � 2n.

(iii) gcd(n,q2 − 1) = 1.
(iv) n ≡ ±1 (mod p).

Proof. (i) and (ii) are obvious because fn(0) = 0, fn(2) = 2n, fn(−2) = (−1)n2n and fn(x) is a per-
mutation polynomial of Fq .

(iii) Because fn(x) is a permutation polynomial of Fq and fn(0) = 0, there does not exist x0 �= 0 ∈
Sq−1 ∪ Sq+1 such that fn(x0) = 0. Let x = y + y−1 where y = ξ i for some 1 � i � (q − 3)/2 or η j for
some 1 � j � (q − 1)/2. Then either ξ i + ξ−i = 0 if i = q−1

4 or η j + η− j = 0 if j = q+1
4 .

Because n is odd, we let gcd(n,q − 1) = gcd(n, (q − 1)/2) = d1 and gcd(n,q + 1) = gcd(n,

(q + 1)/2) = d2. If either d1 > 1 or d2 > 1 then we have either

fn
(
ξ (q−1)/d1 + ξ−(q−1)/d1

) = (
ξ (q−1)/d1 + ξ−(q−1)/d1

)ξn(q−1)/d1 − ξ−n(q−1)/d1

ξ (q−1)/d1 − ξ−(q−1)/d1
= 0,

or

fn
(
η(q+1)/d2 + η−(q+1)/d2

) = (
η(q+1)/d2 + η−(q+1)/d2

)ηn(q+1)/d2 − η−n(q+1)/d2

η(q+1)/d2 − η−(q+1)/d2
= 0.

Because n is odd, d1 > 1 implies d1 � 3 and d2 > 1 implies d2 � 3. Hence (q − 1)/d1 < (q − 1)/2
and (q + 1)/d2 < (q + 1)/2. However, that d1 and d2 are both odd implies that ξ i + ξ−i �= 0 and
η j + η− j �= 0, a contradiction. Hence d1 = d2 = 1 and thus gcd(n,q2 − 1) = gcd(n, (q2 − 1)/4) = 1.

(iv) By Wilson’s theorem, we have

∏
x∈Fq, x�=0

fn(x) = −1.

Similar to the proof of Lemma 5 in [5], we expand the product on the left-hand side and obtain some
relations in terms of n.

We note that if q ≡ 1 (mod 4) then ξ (q−1)/4 + ξ−(q−1)/4 = 0 ∈ Sq−1, and if q ≡ 3 (mod 4) then
η(q+1)/4 + η−(q+1)/4 = 0 ∈ Sq+1.

Let us consider q ≡ 1 (mod 4) first. So 0 ∈ Sq−1. Then

∏
x∈Fq,x�=0

fn(x) = f (2) f (−2)
∏

x∈Sq−1∪Sq+1
x�=0

fn(x)

= f (2) f (−2)
∏

x∈Sq−1
x�=0

fn(x)
∏

x∈Sq+1

fn(x)



824 Q. Wang, J.L. Yucas / Finite Fields and Their Applications 18 (2012) 814–831
= f (2) f (−2)

(q−3)/2∏
i=1

i �=(q−1)/4

(
ξ i + ξ−i)ξ in − ξ−in

ξ i − ξ−i

(q−1)/2∏
j=1

(
η j + η− j)η jn − η− jn

η j − η− j

= f (2) f (−2)

(q−3)/2∏
i=1

i �=(q−1)/4

(
ξ i + ξ−i) (q−1)/2∏

j=1

(
η j + η− j),

the last equation holds because gcd(n,q − 1) = 1 and gcd(n,q + 1) = 1. Hence

∏
x∈Fq,x�=0

fn(x) = f (2) f (−2)
∏

x∈Sq−1∪Sq+1
x�=0

x.

By Wilson’s theorem again, we have

∏
x∈Sq−1∪Sq+1

x�=0

x = 1

4
.

Then we obtain

−1 =
∏

x∈Fq, x�=0

fn(x) = f (2) f (−2)
1

4
= (−1)nn2 = −n2.

Therefore, n ≡ ±1 (mod p).
Similarly, if q ≡ 3 (mod 4) then 0 ∈ Sq+1. Because gcd(n,q2 − 1) = 1, we have

∏
x∈Fq,x�=0

fn(x) = f (2) f (−2)
∏

x∈Sq−1∪Sq+1
x�=0

fn(x)

= f (2) f (−2)
∏

x∈Sq−1

fn(x)
∏

x∈Sq+1
x�=0

fn(x)

= f (2) f (−2)

(q−3)/2∏
i=1

(
ξ i + ξ−i)ξ in − ξ−in

ξ i − ξ−i

(q−1)/2∏
j=1

j �=(q+1)/4

(
η j + η− j)η jn − η− jn

η j − η− j

= f (2) f (−2)

(q−3)/2∏
i=1

(
ξ i + ξ−i) (q−1)/2∏

j=1
j �=(q+1)/4

(
η j + η− j)

= f (2) f (−2)
∏

x∈Sq−1∪Sq+1
x�=0

x.

Therefore we obtain n ≡ ±1 (mod p) in this case as well. �
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Denote n1 = (n)q−1 and n2 = (n)q+1. Because n is odd, n1 and n2 are odd. Then we can present
the permutation polynomial fn(x) of Fq as

fn(x) =

⎧⎪⎨
⎪⎩

2n if x = 2;
−2n if x = −2;
fn1(x) if x ∈ Sq−1;
fn2(x) if x ∈ Sq+1.

Let m be the unique integer such that 1 � m � (q − 3)/4 and n1 ≡ ±m (mod q−1
2 ). Then fn1 (x) =

± fm(x) if x ∈ Sq−1. Indeed, if n1 < (q − 1)/2, then n1 = m. If n1 > (q − 1)/2, then y(q−1)/2+m −
y−((q−1)/2+m) = ±(ym − y−m) and thus fn1+ q−1

2
(x) = ± fm(x). Similarly, Let � be unique integer such

that 1 � � � (q − 1)/4 and n2 ≡ ±� (mod q+1
2 ). Then fn2 (x) = ± f�(x) if x ∈ Sq+1.

Note that if fn(x) is a PP then m �= 0 and � �= 0. In the following we want to show that m = � = 1
when q = p by using the similar arguments as in [3–5].

Because n ≡ ±1 (mod p), using Hermite’s criterion, we now deduce the following result similar to
the key lemma in [4] or [5].

Lemma 4.3. Assume that fn(x) is a PP of Fq. Let m, � be defined as above. Let ξ = ζq−1 and η = ζq+1 , where
ζd is a primitive d-th root of unity in Fq2 . Then for each r = 1, . . . , (q − 3)/2,

q−2∑
i=0

(
fm

(
ξ i + ξ−i))2r +

q∑
j=0

(
f�

(
η j + η− j))2r + 22r+2 = 2

(
(2m)2r + (2�)2r). (4.2)

Proof.

q−2∑
i=0

(
fm

(
ξ i + ξ−i))2r =

q−2∑
i=1

i �=(q−1)/2

(
fm

(
ξ i + ξ−i))2r + (

fm(2)
)2r + (

fm(−2)
)2r

= 2
∑

x∈Sq−1

(
fm

(
ξ i + ξ−i))2r + 2(2m)2r .

Similarly,

q∑
j=0

(
f�

(
η j + η− j))2r = 2

∑
x∈Sq+1

(
f�

(
η j + η− j))2r + 2(2�)2r .

Because n ≡ ±1 (mod p), Hermite’s criterion gives

∑
x∈Sq−1

(
fm

(
ξ i + ξ−i))2r +

∑
x∈Sq+1

(
f�

(
η j + η− j))2r + 22r+1 = 0,

and the result follows. �
Again we will apply Lemma 4.3 together with basic properties of roots of unity such as

q−2∑
i=0

ξ is =
{

0, (q − 1) � s;
−1, (q − 1) | s;

q∑
j=0

η js =
{

0, (q + 1) � s;
1, (q + 1) | s.

(4.3)
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Because fn(x) = xEn−1(x), using Eq. (2.5) in [4], we obtain

[
fn

(
ui + u−i)]2r =

2r∑
v=0

2r(n−1)∑
k=0

( ∑
j�0

(−1) j
(

2r

j

)(
k − jn + 2r − 1

2r − 1

))(
2r

v

)
u2i(nr−k−v). (4.4)

From Eqs. (4.3) and (4.4) each identity (4.2) gives an equation in terms of m and � over prime
field Fp . As in [4,5], for r � 2, since m and � are less than q/4, one needs evaluate only the constant
term in the expansion of fm(ξ i +ξ−i)2r for i � q−2 and f�(η j +η− j)2r for j � q. For r � 3, the ranges
have to be subdivided because in some cases the coefficients of uq±1 may have to be considered.

Let hr := hr(m, �) = 0 be the series of polynomial identities obtained from Eq. (4.2) by setting
r = 1,2, . . . . Without loss of generality, we can assume the coefficients are integers.

Lemma 4.4. (i) h1 = 2m2 + 2�2 + m − � − 4.
(ii) h2 = 3m4 + 3�4 + m3 − �3 − m + � − 6.

Proof. (i) For r = 1, the constant term of [ fn(ui + u−i)]2 happens when n = k + v where 0 � v � 2.
Hence k = n − v and the constant term is

2∑
v=0

∑
j�0

(−1) j
(

2

j

)(
n − v − jn + 1

1

)(
2

v

)
= (n + 1 − 2) + 2n + (n − 1) = 4n − 2.

Plug r = 1 into Eq. (4.2), we obtain

−(4m − 2) + 4� − 2 + 16 = 2
(
4m2 + 4�2).

Hence h1 = 2m2 + 2�2 + m − � − 4.
(ii) For r = 2, the constant term of [ fn(ui + u−i)]4 happens when 2n = k + v where 0 � v � 4.

Hence k = 2n − v and the constant term is

4∑
v=0

∑
j�0

(−1) j
(

4

j

)(
2n − v − jn + 3

3

)(
4

v

)
.

This expands to (
(2n+3

3

) − 4
(n+3

3

) + 6) + 4(
(2n+2

3

) − 4
(n+2

3

)
) + 6(

(2n+1
3

) − 4
(n+1

3

)
) + 4(

(2n
3

) − 4
(n

3

)
) +

(
(2n−1

3

) − 4
(n−1

3

)
) = (32n3 − 32n)/3 + 6.

Plug r = 2 into Eq. (4.2), we obtain

−((
32m3 − 32m

)
/3 + 6

) + (
32�3 − 32�

)
/3 + 6 + 64 = 2

(
16m4 + 16�4).

Hence h2 = 3m4 + 3�4 + m3 − �3 − m + � − 6. �
Let D := m − � and P := m�. We have m2 + �2 = D2 + 2P , m3 − �3 = D3 + 3P D , and m4 + �4 =

D4 + 4P D2 + 2P 2. Using h1 we obtain P = 1 − D/4 − D2/2. Plug it into h2, we obtain

3D4 − 14D3 + 71D2 − 16D = 0.

Obviously D = 0 is a solution. We need to whether there is a solution for

3D3 − 14D2 + 71D − 16 = 0.
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As in [5], there are infinity prime numbers such that 3D3 − 14D2 + 71D − 16 = 0 has nonzero
solutions. Thus we need to take r = 3 and we have to consider different cases.

Lemma 4.5. We have the following expressions for h3:

• if m <
q−1

6 and � <
q+1

6 , then

h3 = h3a := 80
(
m6 + �6) + 22

(
m5 − �5) − 20

(
m3 − �3) + 23(m − �) − 160;

• if q−1
6 � m � q−3

4 and q+1
6 � � � q+1

4 (hence q � 11), then

h3 = h3b := 8

(
h3a + 80

6∑
v=0

(
6

v

)(
3m − v + 11

2
5

)
− 80

6∑
v=0

(
6

v

)(
3� − v + 9

2
5

))
;

• if q−1
6 � m � q−3

4 and � <
q+1

6 (hence q � 11), then

h3 = h3c := 16

(
h3a + 80

6∑
v=0

(
6

v

)(
3m − v + 11

2
5

))
;

• if m <
q−1

6 and q+1
6 � � � q+1

4 , then

h3 = h3d := 16

(
h3a − 80

6∑
v=0

(
6

v

)(
3� − v + 9

2
5

))
.

Proof. Take r = 3, we need to consider coefficients in Eq. (4.4) such that 3m − k − v ≡ 0 (mod q − 1)

and 3� − k − v ≡ 0 (mod q + 1). Then the result follows from a case analysis and a computer calcula-
tion. �

We observe that h3d(m, �) = h3c(−�,−m). In the expanded form, we have h3b = 640(m6 + �6) +
1472(m5 −�5)+1080(m4 + l4)+1640(m3 − l3)+780(m2 + l2)+493(m −�)−1205 and h3c = 1280�6 −
352�5 + 320�3 − 368� + 1280m6 + 2944m5 + 2160m4 + 3280m3 + 1560m2 + 986m − 2485.

For r = 4 we define

Cq−1,4(m) =
8∑

v=0

(
4m − v + 15

2
7

)(
8

v

)
, Cq−1,3(m) =

8∑
v=0

(
3m − v + 15

2
7

)(
8

v

)
,

Cq+1,4(�) =
8∑

v=0

(
4� − v + 13

2
7

)(
8

v

)
, Cq+1,3(�) =

8∑
v=0

(
3� − v + 13

2
7

)(
8

v

)
.

Then we obtain h4 similarly. We note that one can also get the symbolic expressions from Eq. (4.4)
and Lemma 4.3 using a computer package like MAGMA or SAGE.

Lemma 4.6. We have the following expressions for h4:

• if m � q−3
8 and 1 � � � q−1

8 then
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h4a = 315

28

(
2(2m)8 + 2(2�)8 − 210 +

8∑
v=0

8(m−1)∑
k=0

∑
t�0

(−1)t
(

8

t

)(
4m − v − tm + 7

7

)(
8

v

)

−
8∑

v=0

8(�−1)∑
k=0

∑
t�0

(−1)t
(

8

t

)(
4� − v − t� + 7

7

)(
8

v

))

= 630
(
m8 + �8) + 151

(
m7 − �7) + 140

(
m5 + �5) + 154

(
m3 − �3) + 165(m − �) − 1260;

• if m � q−3
8 and q−1

8 < � � q+1
6 then

h4b = 1260

(
28

315
h4a − 2Cq+1,4(�)

)
;

• if m � q−3
8 and q+1

6 < � � q−1
4 then

h4c = 1260

(
28

315
h4a − 2Cq+1,4(�) + 16Cq+1,3(�)

)
;

• if q−3
8 < m � q+1

6 and 1 � � � q−1
8 then

h4d = 1260

(
28

315
h4a + 2Cq−1,4(m)

)
;

• if q−3
8 < m � q+1

6 and q−1
8 < � � q+1

6 then

h4e = 1260

(
28

315
h4a + 2Cq−1,4(m) − 2Cq+1,4(�)

)
;

• if q−3
8 < m � q+1

6 and q+1
6 < � � q−1

4 then

h4 f = 1260

(
28

315
h4a + 2Cq−1,4(m) − 2Cq+1,4(�) + 16Cq+1,3(�)

)
;

• if q−1
6 < m � q−3

4 and 1 � � � q−1
8 then

h4g = 1260

(
28

315
h4a + 2Cq−1,4(m) − 16Cq−1,3(m)

)
;

• if q−1
6 < m � q−3

4 and q−1
8 < � � q+1

6 then

h4h = 1260

(
28

315
h4a + 2Cq−1,4(m) − 16Cq−1,3(m) − 2Cq+1,4(�)

)
;

• if q−1
6 < m � q−3

4 and q+1
6 � � � q−1

4 then

h4i = 1260

(
28

315
h4a + 2Cq−1,4(m) − 16Cq−1,3(m) − 2Cq+1,4(�) + 16Cq+1,3(�)

)
.
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Table 1
The third and fourth generator of the ideal I .

m � q−3
8 m � q−3

6 m = q−1
6 m � q−3

4

� � q−1
8 h3a,h4a (case I) h3a,h4d (case II) h3c ,h4d (case III) h3c ,h4g (case IV)

� � q−1
6 h3a,h4b (case V) h3a,h4e (case VI) h3c ,h4e (case VII) h3c ,h4h (case VIII)

� = q+1
6 h3d,h4b (case IX) h3d,h4e (case X) h3b,h4e (case XI) h3b,h4h (case XII)

� � q−1
4 h3d,h4c (case XIII) h3d,h4 f (case XIV) h3b,h4 f (case XV) h3b,h4i (case XVI)

Table 2
Leading coefficients in bivariate Gröbner bases over Z.

Case Leading coefficients > 1 Prime divisors

I 2, 4, 6, 12 2, 3
II, V 3, 315, 152073086445 3, 5, 7, 19, 73, 157, 739
III, IV, VII, VIII, IX, X, XIII, XIV, 3, 15, 315 3, 5, 7
VI 2, 3, 6, 9658530 2, 3, 5, 7, 15331
XI, XII, XV, XVI 3, 15 3, 5

Now we have the following 16 cases in Table 1. We number with Roman digits the 16 cases
described Table 1, starting from the upper-left corner and going right and down. Using MAGMA, the
idea I generated by h1, h2, h3a , h4a in the polynomial ring Z[m, �] in Case I has Gröbner basis as
follows:

m2 + 2 ∗ m + 7 ∗ l2 − 2 ∗ l − 8,

m ∗ l + 2 ∗ m + 4 ∗ l3 + 15 ∗ l2 − 6 ∗ l − 16,

3 ∗ m + 12 ∗ l2 − 3 ∗ l − 12,

2 ∗ l4 + 16 ∗ l2 − 18,

8 ∗ l3 − 8 ∗ l,

24 ∗ l2 − 24.

This means that in this case m = � = 1 for p � 5.
In each of Cases II–XVI the ideal I generated by h1, h2 and corresponding h3 and h4 contains a

constant polynomial. We collect all the leading coefficients of the polynomials in each basis in Table 2.
For each prime p � 5 appearing in the last column of Table 2 we computed a Gröbner basis of the

image of the ideal I in the polynomial ring Fp[m, �] using MAGMA.
A synopsis of the output is given in Table 3. They all turn out to be special cases of m ≡ � ≡

±1 (mod p). Hence m = � = 1. In the same way as in [3–5] we conclude with the following theorem.

Theorem 4.7. Let q = p � 5. Then fn(x) is a permutation polynomial of Fq if and only if n ≡ ±1 (mod p),
n ≡ ±1 (mod (q − 1)/2), and n ≡ ±1 (mod (q + 1)/2).

We expect the result works for q = p2 as well, which involves further computation for r = 5, and
thus decide not to pursue it further.

5. Conclusions

In this paper we introduced the notion of n-th Dickson polynomials Dn,k(x,a) of the (k + 1)-
th kind and n-th reversed Dickson polynomials Dn,k(x,a) of the (k + 1)-th kind in Section 2. We
studied basic properties of Dickson polynomials of the (k + 1)-th kind and their relations to Dickson
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Table 3
Gröbner bases over Fp where p � 5.

Case Polynomials

II m ≡ � ≡ ±1 (mod p) where p = 5,7
m ≡ � ≡ 1 (mod p) where p = 19,739
m ≡ � ≡ −1 (mod p) where p = 73,157

III, IV, VII, VIII m ≡ � ≡ ±1 (mod 5), m ≡ � ≡ 1 (mod 7)

V m ≡ � ≡ ±1 (mod p) where p = 5,7
m ≡ � ≡ 1 (mod p) where p = 73,157
m ≡ � ≡ −1 (mod p) where p = 19,739

VI m ≡ � ≡ ±1 (mod p) where p = 5,7,15331
IX, X, XIII, XIV m ≡ � ≡ ±1 (mod 5), m ≡ � ≡ −1 (mod 7)

XI, XII, XV, XVI m ≡ � ≡ ±1 (mod p) where p = 5

polynomials of the first two kinds, the recurrence relation of Dickson polynomials of the (k + 1)-
th kind in terms of degrees for a fixed k and its generating function, functional expressions and
their reductions, as well as differential recurrence relations. Finally we considered the factorization
and the permutation behavior of Dickson polynomials of the third kind. Here, we only completely
described the permutation behavior of the Dickson polynomial of the third kind over any prime field.
Similar result is expected to be true over Fq2 , however, it seems that it is necessary to invent more
tools to deal with arbitrary extension fields. For the reversed Dickson polynomials of the (k + 1)-th
kind, it would be more interesting to study further in a similar way as that of the reversed Dickson
polynomial of the first kind started in [7].
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Appendix A. Numeric expression for h3 and h4

h3a := 160 ∗ l6 − 44 ∗ l5 + 40 ∗ l3 + 160 ∗ m6 + 44 ∗ m5 − 40 ∗ m3 − 46 ∗ l + 46 ∗ m − 320;
h3b := 640 ∗ l6 − 1472 ∗ l5 + 1080 ∗ l4 − 1640 ∗ l3 + 780 ∗ l2 + 640 ∗ m6 + 1472 ∗ m5 + 1080 ∗ m4 +

1640 ∗ m3 + 780 ∗ m2 − 493 ∗ l + 493 ∗ m − 1205;
h3c := 1280 ∗ l6 − 352 ∗ l5 + 320 ∗ l3 + 1280 ∗m6 + 2944 ∗m5 + 2160 ∗m4 + 3280 ∗m3 + 1560 ∗m2 −

368 ∗ l + 986 ∗ m − 2485;
h3d := 1280 ∗ l6 − 2944 ∗ l5 + 2160 ∗ l4 − 3280 ∗ l3 + 1560 ∗ l2 + 1280 ∗ m6 + 352 ∗ m5 − 320 ∗ m3 −

986 ∗ l + 368 ∗ m − 2485;
h4a := 630 ∗ l8 − 151 ∗ l7 + 140 ∗ l5 − 154 ∗ l3 + 630 ∗ m8 + 151 ∗ m7 − 140 ∗ m5 + 154 ∗ m3 + 165 ∗

l − 165 ∗ m − 1260;
h4b := 645120 ∗ l8 − 2251776 ∗ l7 + 1835008 ∗ l6 − 4214784 ∗ l5 + 2437120 ∗ l4 − 2010624 ∗ l3 +

546112 ∗ l2 + 645120 ∗ m8 + 154624 ∗ m7 − 143360 ∗ m5 + 157696 ∗ m3 + 37704 ∗ l − 168960 ∗ m −
1279215;

h4c := 645120∗ l8 −12288∗ l7 −777728∗ l6 +4058880∗ l5 −3731840∗ l4 +4243008∗ l3 −1911392∗
l2 + 645120 ∗ m8 + 154624 ∗ m7 − 143360 ∗ m5 + 157696 ∗ m3 + 825240 ∗ l − 168960 ∗ m − 1367415;

h4d := 645120∗l8 −154624∗l7 +143360∗l5 −157696∗l3 +645120∗m8 +2251776∗m7 +1835008∗
m6 + 4214784 ∗m5 + 2437120 ∗m4 + 2010624 ∗m3 + 546112 ∗m2 + 168960 ∗ l − 37704 ∗m − 1279215;

h4e := 645120 ∗ l8 − 2251776 ∗ l7 + 1835008 ∗ l6 − 4214784 ∗ l5 + 2437120 ∗ l4 − 2010624 ∗ l3 +
546112 ∗ l2 + 645120 ∗m8 + 2251776 ∗m7 + 1835008 ∗m6 + 4214784 ∗m5 + 2437120 ∗m4 + 2010624 ∗
m3 + 546112 ∗ m2 + 37704 ∗ l − 37704 ∗ m − 1268190;

h4 f := 645120∗ l8 −12288∗ l7 −777728∗ l6 +4058880∗ l5 −3731840∗ l4 +4243008∗ l3 −1911392∗
l2 + 645120 ∗ m8 + 2251776 ∗ m7 + 1835008 ∗ m6 + 4214784 ∗ m5 + 2437120 ∗ m4 + 2010624 ∗ m3 +
546112 ∗ m2 + 825240 ∗ l − 37704 ∗ m − 1356390;
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h4g := 645120 ∗ l8 − 154624 ∗ l7 + 143360 ∗ l5 − 157696 ∗ l3 + 645120 ∗m8 + 12288 ∗m7 − 777728 ∗
m6 −4058880∗m5 −3731840∗m4 −4243008∗m3 −1911392∗m2 +168960∗ l−825240∗m−1367415;

h4h := 645120 ∗ l8 − 2251776 ∗ l7 + 1835008 ∗ l6 − 4214784 ∗ l5 + 2437120 ∗ l4 − 2010624 ∗ l3 +
546112 ∗ l2 + 645120 ∗ m8 + 12288 ∗ m7 − 777728 ∗ m6 − 4058880 ∗ m5 − 3731840 ∗ m4 − 4243008 ∗
m3 − 1911392 ∗ m2 + 37704 ∗ l − 825240 ∗ m − 1356390;

h4i := 645120∗ l8 −12288∗ l7 −777728∗ l6 +4058880∗ l5 −3731840∗ l4 +4243008∗ l3 −1911392∗
l2 +645120∗m8 +12288∗m7 −777728∗m6 −4058880∗m5 −3731840∗m4 −4243008∗m3 −1911392∗
m2 + 825240 ∗ l − 825240 ∗ m − 1444590.
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