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Abstract Histone acetyltransferases (HATs) regulate tran-
scription, chromatin structure and DNA repair. Here, we utilized
a novel HAT inhibitor, anacardic acid, to examine the role of
HATs in the DNA damage response. Anacardic acid inhibits
the Tip60 HAT in vitro, and blocks the Tip60-dependent activa-
tion of the ATM and DNA–PKcs protein kinases by DNA dam-
age in vivo. Further, anacardic acid sensitizes human tumor cells
to the cytotoxic effects of ionizing radiation. These results dem-
onstrate a central role for HATs such as Tip60 in regulating the
DNA damage response. HAT inhibitors provide a novel thera-
peutic approach for increasing the sensitivity of tumors to radi-
ation therapy.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The acetylation of proteins is a dynamic event involving

acetylation by histone acetyltransferases (HATs) [1,2] and

deacetylation by histone deacetylases (HDACs) [3]. HATs pri-

marily acetylate the N-terminus of histones, and this acetyla-

tion is associated with transcriptionally activate chromatin

[4]. These acetylated lysine residues can function as docking

sites for bromodomains, protein domains which bind acety-

lated lysine residues [5]. Protein acetylation therefore repre-

sents a cellular regulatory system for controlling protein

function, and disruption of protein acetylation can have signif-

icant impact on cell function. For example, HDAC inhibitors

have a range of effects on cells, including altered gene expres-

sion, growth arrest, differentiation and cell death [3]. These ef-

fects are attributed to the accumulation of hyper-acetylated

histones and proteins within the cells. HDAC inhibitors are

currently undergoing clinical evaluation for efficacy in the

treatment of human tumors. Disruption of protein acetylation

pathways is therefore a promising target for therapeutic devel-

opment.

In addition to HDAC inhibitors, HAT inhibitors may also

posses therapeutic potential. Several distinct families of HAT
Abbreviations: HAT, histone acetyltransferase; HDAC, histone deace-
tylase; SER, sensitizer enhancement ratio
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proteins have been identified, including the GCN5/PCAF,

p300/CBP and MYST families [2]. The Tip60 HAT, a MYST

family member, is involved in regulating the cells response to

genotoxic events. Tip60 is activated by ionizing radiation

and regulates the activation of the ATM protein kinase [6],

apoptotic responses [7], the p53 protein [8], and the acetylation

of histones [9,10]. Loss of Tip60 function inhibits the effective

repair of DNA damage [6]. Inhibitors of Tip60 should there-

fore sensitize cells to genotoxic agents such as ionizing radia-

tion. A limited number of HAT inhibitors have been

described. Peptide-CoA conjugates can inhibit purified PCAF,

but are not cell permeable [11]. Isothiazolone derivatives also

inhibit PCAF, but they exhibit significant off target activity

in vivo due to their high chemical reactivity with thiol groups

[12]. Previous studies demonstrated that anacardic acid inhib-

its the p300 and PCAF HATs in vitro [13], but its in vivo ef-

fects have not been evaluated. Here, we demonstrate that

anacardic acid is an effective inhibitor of HAT activity

in vivo and that it sensitizes cells to ionizing radiation.
2. Materials and methods

2.1. Cell culture and irradiation
HeLa and 293T cells were grown in Dulbecco’s modified Eagle’s

medium/10% fetal calf serum. SQ20B and SCC35 squamous cell carci-
noma cell lines were cultured in modified eagles medium/10% fetal calf
serum. For cell survival experiments, cells were plated at the appropri-
ate dilution, irradiated, and surviving colonies were stained with crys-
tal violet 10 days later [6]. For anacardic acid (EMD Biosciences, CA)
exposure, cells were preincubated with anacardic acid for 40 min, irra-
diated, then allowed to recover for 4 h. Cells were then switched to
fresh media and allowed to grow for 10 days.

2.2. Western blot and HAT assays
Cells were lyzed in lysis buffer (20 mM HEPES, pH 7.4, 150 mM

NaCl, 0.2% Tween 20, 1.5 mM MgCl2, 1 mM EGTA, 2 mM DTT,
50 mM NaF, 500 lM Na3VO4, 1 mM PMSF, 3 lg/ml aprotinin,
3 lg/ml leupeptin). ATM was detected with antibodies 5C2 (Gene-
tex, TX), anti-phosphoserine 1981 (Rockland Biochemicals, PA) or
anti-acetyl lysine antibody (Upstate Biotech, NY). DNA–PKcs anti-
body (clone 25-4), was purchased from Neomarkers, CA and
pS2056 DNA–PKcs antibody was kindly provided by Dr Benjamin
Chen.

HAT assay. Cell extracts were immunoprecipitated with Tip60 anti-
body (Upstate Biotech, NY), washed three times in lysis buffer and
twice in HAT assay buffer (50 mM Tris, pH 8/10% glycerol/0.1 mM
EDTA/1 mM DTT). Immunoprecipitates were incubated in 60 ll of
HAT assay buffer supplemented with acetyl-CoA (100 lM), and bio-
tinylated histone H4 peptide (0.5 lg) for 30 min at 30 �C. An aliquot
of the reaction was immobilized onto streptavidin plates, and acetyla-
tion detected using a HAT ELISA as described by us [14].
blished by Elsevier B.V. All rights reserved.
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3. Results

Tip60 is required for many cellular responses to DNA dam-

age, including activation of the ATM protein kinase [6], repair

of DNA-strand breaks [7,9], and both histone acetylation [10]

and chromatin remodeling at sites of DNA damage [15]. To

determine if anacardic acid could inhibit Tip60, Tip60 was

immunoprecipitated from cell extracts and incubated with a

peptide derived from the N-terminus of histone H4, which is

efficiently acetylated by Tip60 [6]. Cell extracts immunoprecip-

itated with IgG (Fig. 1A, inset), had minimal HAT activity, as

did extracts immunoprecipitated with Tip60 antibody and then

incubated without substrate peptide. Immunoprecipitations

with Tip60 in the presence of the peptide yielded robust

Tip60 HAT activity. Immunoprecipitated Tip60 was then incu-

bated with the increasing concentrations of anacardic acid and
Fig. 1. Anacardic acid inhibits Tip60 and blocks activation of ATM
and DNA–PKcs. (A) Inset. HeLa cell extracts were immunoprecipi-
tated (Ab) with IgG or Tip60 antibody. HAT assays were carried out
on washed immunoprecipitates in the absence (�) or presence (+) of
the substrate peptide derived from the N-terminal of histone H4.
Graph. Immunoprecipitated Tip60 was incubated with either solvent
(DMSO) or anacardic acid for 10 min. Histone H4 substrate peptide
was added, and Tip60 activity expressed as the percent decrease in
activity compared to solvent controls. (B and C). 293T cells were
preincubated in either DMSO (�) or anacardic acid (30 lM: +) for
30mins. Cells were then treated with bleomycin (5 lM) or ionizing
radiation (IR: 2 Gy) as indicated. Reactions were terminated 40 min
later and cell extracts analyzed by western blot for ATM protein levels,
ATM acetylation (AcLys), ATM autophosphorylation (pS1981),
DNA–PKcs and DNA–PKcs autophosphorylation of serine 2056
(pS2056).
the associated HAT activity measured. Anacardic acid inhib-

ited Tip60 with an IC50 of 9 lM (Fig. 1A, graph), with maxi-

mal inhibition above 30 lM. Anacardic acid is therefore an

efficient inhibitor of Tip60 in vitro.

Several previously described HAT inhibitors are not cell per-

meable, and therefore cannot be utilized for cell based studies

[11]. Therefore, we examined the ability of anacardic acid to

inhibit Tip60 functions in vivo. Tip60’s HAT activity is re-

quired for the activation of 2 key regulators of the cells re-

sponse to DNA damage – the ATM and DNA–PKcs protein

kinases [6,14]. Tip60 acetylates ATM, activating ATM’s kinase

activity [6,14], and increasing the autophosphorylation of

ATM on serine 1981. ATM activation can, therefore, be mon-

itored with antibodies which detect the acetylation and auto-

phosphorylation of the ATM protein. In Fig. 1B, cells were

expose to the radiomimetic agent bleomycin, which generates

DNA-strand breaks. ATM was both acetylated and autophos-

phorylated when cells were exposed to bleomycin. Further,

prior treatment with anacardic acid inhibited both the Tip60-

dependent acetylation and activation of the ATM protein

kinase. DNA–PKcs is also activated in a Tip60-depen-

dent manner [14], and this activation can be monitored

through autophosphorylation of serine 2056 [16,17]. Fig. 1C

demonstrates rapid autophosphorylation of serine 2056 of

DNA–PKcs in response to ionizing radiation. Anacardic acid

significantly reduced the autophosphorylation of serine 2056,

consistent with previous reports that activation of DNA–PKcs

by DNA damage is partly dependent on the Tip60 HAT [14].

Fig. 1 therefore demonstrates that anacardic acid inhibits both

Tip60 HAT activity in vitro, and Tip60 dependent signaling

pathways in vivo.

The Tip60-dependent activation of ATM is required for cells

to survive exposure to ionizing radiation [6]. This implies that

inhibition of the Tip60-ATM pathway by anacardic acid

should increase cellular sensitivity to ionizing radiation. Ini-

tially, potential cytotoxic effects of anacardic acid treatment

were examined. HeLa cells were exposed to anacardic acid

for 4hr (Fig. 2A), and cell viability examined using a colony

forming assay. Anacardic acid at up to 10 lM did not signifi-

cantly affect cell viability (Fig. 2A: control), although at higher

concentrations there was a small decrease in cell survival. In

Fig. 2B, cells were irradiated in the absence or presence of

increasing concentrations of anacardic acid. In the absence

of anacardic acid, irradiation decreased cell viability to 0.16

(Fig. 2B). When cells were irradiated in the presence of anacar-

dic acid, a significant decrease in cell survival was seen, with

maximal radiosensitization between 30 and 100 lM. The

higher concentrations of anacardic acid required to increase

radiosensitivity in vivo (30–100 lM: Fig. 2B) compared to

the inhibition of Tip60 HAT activity in vitro (10–30 lM:

Fig. 1A) presumably reflect the uptake and distribution of ana-

cardic acid within the cell. The HAT inhibitor anacardic acid is

therefore an effective radiosensitizer of cells which displays

minimal cytotoxicity. Note that the surviving fractions in

Fig. 2B are corrected for the small decrease in viability caused

by exposure to anacardic acid alone (described in the legend to

Fig. 2B).

To further characterize the ability of anacardic acid to

sensitize cells to ionizing radiation, several tumor cell lines,

including HeLa cells (cervical adenocarcinoma) and 2 rela-

tively radioresistant squamous carcinoma cell lines, SQ20B

and SCC35 [18] were analyzed. HeLa cells exhibited a 3-fold



Fig. 2. Anacardic acid sensitizes HeLa cells to radiation. (A). HeLa cells were incubated in DMSO (0.1%) or anacardic acid for 4 h. The cells were
then switched to fresh media, allowed to grow for 10 days, and surviving cells assessed using a colony formation assay. (B). HeLa cells were incubated
in DMSO (0.1%) or anacardic acid for 30 min and then irradiated (6 Gy). 3.5 h post-irradiation, cells were switched to fresh media, and surviving
cells measured using a colony formation assay. To control for the low levels of toxicity exhibited by anacardic acid at higher concentrations (control),
the surviving fraction of irradiated cells was calculated using the following formula. Surviving fraction = [number of colonies with AA + IR]/[number
of colonies with AA], where AA = anacardic acid, IR = ionizing radiation. Results ± S.D. (n = 4).
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increase in radiosensitivity when exposed to anacardic acid at

all doses of ionizing radiation tested (Fig. 3A). In contrast,

slightly lower levels of radiosensitization by anacardic acid

were detected in the SQ20B and SCC35 cell lines, with an aver-

age of 2-fold increase in radiosensitivity. The sensitizer
Fig. 3. Anacardic acid sensitizes tumor cells to the cytotoxic effects of
ionizing radiation. (A) HeLa cells (squares) or (B) SCC35 (circles) or
SQ20B (triangles) cells were incubated with DMSO (0.1%: open
symbols) or anacardic acid (30 lM: filled symbols) and then irradiated.
4 h later cells were switched to fresh medium, and the surviving
fraction measured 10 days later by colony formation assay.
Results ± S.D. (n = 4).
enhancement ration (SER) for each cell line is shown in Table

1. Both HeLa and SQ20B cells showed significant sensitization

at both low (2 Gy) and high (6 Gy) doses, whereas SCC35

showed a small effect at 2 Gy (SER = 1.5 ± 0.2) compared to

6 Gy (SER = 8.0 ± 2.0). The radiosensitization observed with

anacardic acid is less than that achieved through genetic inac-

tivation of Tip60 [6]. This difference may reflect the transient

suppression of the ATM/DNA–PKcs DNA repair pathways

by anacardic acid compared to the complete inhibition

achieved by genetic methods. Further, anacardic acid treated

cells retain residual DNA–PKcs and Tip60 activity (Fig. 1),

which may contribute to cell survival. Overall, the HAT inhib-

itor anacardic acid was an effective sensitizer of cells to the

cytotoxic effects of ionizing radiation.
4. Discussion

Anacardic acid inhibited the Tip60-dependent acetylation

and activation of the ATM protein kinase in HeLa cells, and

sensitized the cells to the cytotoxic effects of radiation. This

is consistent with the observation that genetic inactivation of

either Tip60 [6] or ATM [19] increases the sensitivity of cells

to DNA damage. Further, the ability of anacardic acid to in-

hibit Tip60 signaling pathways in vivo demonstrates that ana-

cardic acid can cross the cell membrane. This is in contrast to

other HAT inhibitors, including peptide-CoA conjugates [11],

which are not cell permeable. These results therefore demon-

strate the utility of anacardic acid as an in vivo HAT inhibitor.
Table 1
SER for anacardic acid

Cell line SER*

2 Gy 6 Gy

HeLa 2.6 ± 0.4 3.0 ± 0.6
SQ20B 2.4 ± 0.2 2.5 ± 0.3
SCC35 1.5 ± 0.2 8.0 ± 2.0

*SER = sensitizer enhancement ratio at 30 lM anacardic acid. Re-
sults ± S.D. (n = 4).
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Previous studies have shown that anacardic acid inhibits the

PCAF and p300 HATs in vitro, with maximal inhibition at

15 lM anacardic acid [13]. Here, we demonstrate that anacar-

dic acid is also an effective inhibitor of the Tip60 HAT in vitro,

with maximal Tip60 inhibition occurring between 10-30 lM

anacardic acid (Fig. 1). PCAF, p300 and Tip60 belong to dis-

tinct HAT sub-families [1,2], with distinct catalytic mecha-

nisms [20]. In addition, anacardic acid has structural

similarities to acetyl-CoA (the acetyl donor for HATs), and

may inhibit binding of acetyl-CoA to the active site of HATs.

Anacardic acid is therefore a relatively non-specific HAT

inhibitor, with the potential to inhibit multiple HATs. Expo-

sure to anacardic acid is likely to block global cellular HAT

activity, resulting in decreased acetylation of both histones

and other cellular proteins. Since the acetylation of the N-ter-

minal tails of histones is associated with an open chromatin

structure and active gene transcription [4], global inhibition

of cellular HAT activity by anacardic acid will lead to de-

creased histone acetylation, a more compacted chromatin

structure and reduced transcriptional activity. The combina-

tion of these processes may account for the toxicity of anacar-

dic acid seen at higher concentrations.

It has been clearly established that activation of the ATM

protein kinase is required for cells to repair and survive expo-

sure to ionizing radiation [21]. The ability of anacardic acid to

inhibit Tip60 activity and the subsequent activation of ATM

may therefore make a significant contribution to the radiosen-

sitizing effects of anacardic. However, given the non-specific

nature of anacardic acid, including its ability to inhibit PCAF

and p300 [13], a significant contribution from altered histone

(or other protein) acetylation patterns to the observed radio-

sensitizing effects of anacardic acid cannot be excluded.

In conclusion, these experiments provide proof of principle

that inhibition of cellular HAT activity can lead to increased

sensitivity to the cytotoxic effects of ionizing radiation. Similar

to the use of HDAC inhibitors, the disruption of the cellular

protein/histone acetylation code by HAT inhibitors can be

exploited to develop new anti-cancer strategies. These results

have important implications for the development of com-

pounds which can enhance the efficacy of radiation therapy

in a clinical setting. Further, HAT inhibitors can be used to

probe the role of global histone and protein acetylation in cel-

lular functions, and provide starting point for the development

of more specific inhibitors of individual HATs.
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