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SUMMARY

The AMP-activated protein kinase (AMPK) is a meta-
bolic stress-sensing abg heterotrimer responsible
for energy homeostasis, making it a therapeutic
target for metabolic diseases such as type 2 diabetes
and obesity. AMPK signaling is triggered by
phosphorylation on the AMPK a subunit activation
loop Thr172 by upstream kinases. Dephosphory-
lated, naive AMPK is thought to be catalytically inac-
tive and insensitive to allosteric regulation by AMP
and direct AMPK-activating drugs such as A-
769662. Here we show that A-769662 activates
AMPK independently of a-Thr172 phosphorylation,
provided b-Ser108 is phosphorylated. Although
neither A-769662 nor AMP individually stimulate the
activity of dephosphorylated AMPK, together they
stimulate >1,000-fold, bypassing the requirement
for b-Ser108 phosphorylation. Consequently A-
769662 and AMP together activate naive AMPK
entirely allosterically and independently of upstream
kinase signaling. These findings have important im-
plications for development of AMPK-targeting thera-
peutics and point to possible combinatorial thera-
peutic strategies based on AMP and AMPK drugs.

INTRODUCTION

The AMP-activated protein kinase (AMPK) is a metabolic

stress-sensing serine-threonine kinase that is activated by

depletion of cellular adenylate charge (reduced ATP/ADP +

AMP), triggering AMPK phosphorylation on the a subunit

activation loop Thr172 by upstream kinases LKB1 or Ca2+/

calmodulin-dependent protein kinase b (CaMKKb) (Hardie,

2007; Oakhill et al., 2012). Dephosphorylated, naive AMPK

is thought to be catalytically inactive. Once activated,

AMPK redirects cellular metabolism away from anabolic

pathways to energy-generating catabolic pathways by phos-

phorylating key enzymes in all branches of metabolism, re-
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sulting in ATP production and restoration of cellular energy

balance.

The AMPK heterotrimer is composed of a catalytic a subunit

and regulatory b- and g subunits (Hardie, 2007; Oakhill et al.,

2012). AMPK g has three functional nucleotide-binding sites

(sites 1, 3, and 4) that bind ATP, ADP, and AMP interchangeably

(Xiao et al., 2007, 2011; Oakhill et al., 2011; Chen et al., 2012).

AMP binding triggers Thr172 phosphorylation by LKB1 (Oakhill

et al., 2010; Zhang et al., 2013; Gowans et al., 2013). Both

AMP and ADP stimulate phosphorylation of Thr172 by CaMKKb

(Oakhill et al., 2010; Oakhill et al., 2011), although this has

recently been challenged (Gowans et al., 2013). AMP and, to a

lesser extent, ADP are thought to sustain AMPK signaling by

suppressing dephosphorylation of phosphorylated Thr172

(pThr172) by protein phosphatases (Oakhill et al., 2010, 2011;

Xiao et al., 2011; Gowans et al., 2013). Once phosphorylated

on Thr172, AMPK is further allosterically activated up to 13-

fold by AMP (Gowans et al., 2013).

The metabolic dimensions of diseases including type 2

diabetes, obesity, cardiovascular disease, and cancer have

encouraged efforts to develop direct activating drugs for

AMPK. An increasing number of direct AMPK-activating drugs

such as the thienopyridone derivative A-769662 have been

identified (Cool et al., 2006; Giordanetto and Karis, 2012), but

little progress has been made in elucidating their mechanism

of action. We previously showed that A-769662 preferentially

activates AMPK complexes containing the b1-isoform, and a

requirement for the b subunit carbohydrate binding module

(CBM) as well as the autophosphorylation site Ser108 within

the b-CBM has been demonstrated (Mitchelhill et al., 1997;

Warden et al., 2001; Sanders et al., 2007; Scott et al., 2008).

The structural basis for b-CBM dependence has recently

been provided with the report of a crystal structure for AMPK

complexed with A-769662 (Xiao et al., 2013), in which a drug

binding site is positioned between the b-CBM and a subunit

kinase domain small lobe. Although not directly involved in

drug binding, phosphorylated b-Ser108 forms hydrogen bonds

with a-Thr21 and a-Lys31 at the domain interface and most

likely contributes to the stability of the binding pocket.

Studies examining the mechanism of AMPK activation by

A-769662 in vitro have used enzyme phosphorylated on

Thr172 (Sanders et al., 2007; Göransson et al., 2007; Scott
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Figure 1. Phosphorylation of b-Ser108 Is

Sufficient for A-769662 Allosteric Activation

of AMPK

For direct activation, activities of AMPK (His6-

a1b1g1) expressed in E. coli were measured by

SAMS assay following incubation with A-769662

(20 mM, open bars) or AMP (200 mM, gray bars). WT

or mutant a- and b subunits are indicated, along

with enzyme pretreatment and induction temper-

ature. The data are presented as means ± SEM

(n = 4).

(A) A-769662 allosteric activation of AMPK is in-

dependent of a-Thr172 phosphorylation. A signif-

icant difference in fold activation with A-769662

between AMPKT172A and l phosphatase-treated,

WT AMPK is shown (****p < 0.0001). Immunoblot

shows a-pThr172 levels for each preparation.

(B) Fold activation, calculated from data in (A).

(C) Immunoblot showing relative changes in

b-pSer108 and a-pThr172 as a result of induction

temperature and enzyme pretreatment.

(D) A-769662-stimulated activity of AMPK is

commensurate with the extent of b-Ser108 phos-

phorylation. Activities of untreated AMPK prepa-

rations immunoblotted in (C) were measured with

A-769662.

(E) Sensitivity to A-769662 allosteric activation

is restored following substitution of b-Ser108

for Glu. Significant differences in fold activation

with A-769662 between b mutants S108A and

S108D (*p < 0.05) or S108E (****p < 0.0001) are

shown.

(F) Fold activation, calculated from data in (E).

(G) A-769662 dose-response curves for direct

activation of AMPK (WT and indicated mutants).

The data are presented as means ± SEM (n = 4).

(H) Autophosphorylated residues other than

b-Ser108 do not contribute to A-769662 allosteric

activation of AMPK.
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et al., 2008); however, the requirement for phosphorylation has

not been examined in detail. Several reports have shown that

incubation of isolated tissue, hepatocytes, and cultured cell

lines with A-769662 (%100 mM) triggered AMPK signaling with

little or no detectable change in pThr172 but with significant

phosphorylation of the downstream AMPK substrate acetyl-

CoA carboxylase 1 (ACC1) at position Ser79 (Göransson et al.,

2007; Foretz et al., 2010; Santidrián et al., 2010; Kim et al.,

2011; Gowans et al., 2013) (Figure S1 available online). Görans-

son et al. (2007) demonstrated this convincingly using LKB1-

deficient HeLa cells pretreated with the CaMKKb inhibitor

STO-609, leading them to raise the possibility that A-769662

activates nonphosphorylated AMPK. However, A-769662 did

not activate a purified rat liver AMPK preparation pretreated

with protein phosphatase-2Ca (PP2Ca), indicating that prior

phosphorylation of AMPK was required (Göransson et al.,

2007). Although a dependence on Ser108 phosphorylation for
620 Chemistry & Biology 21, 619–627, May 22, 2014 ª2014 Elsevier Ltd All rights reserved
A-769662 activation had not been un-

equivocally demonstrated, we reasoned

that dephosphorylation of phospho-

rylated Ser108 (pSer108) by PP2Ca

may account for the loss of A-769662
sensitivity in the AMPK preparation used in the Göransson

study (Göransson et al., 2007).

RESULTS AND DISCUSSION

A-769662 Activates AMPK Independently of a-Thr172
Phosphorylation
To examine the requirement for phosphorylation of AMPK in

A-769662 allosteric activation, we initially used purified, recom-

binant AMPK (a1b1g1) expressed in Escherichia coli (Fig-

ure S2A), which is not phosphorylated on Thr172 and is there-

fore catalytically inactive (Figure 1A) (Neumann et al., 2003). We

found that A-769662 activated this AMPK preparation approxi-

mately 65-fold (stimulated specific activity: 2.1 mmol,min�1,mg�1

enzyme) and also activated >100-fold an AMPK mutant in

which Thr172 was substituted to Ala (AMPKT172A) (Figures 1A

and 1B; Figure S2B), demonstrating that activity in the
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presence of the drug was independent of Thr172 phosphoryla-

tion. On the other hand, A-769662 sensitivity was lost following

treatment of wild-type (WT) AMPK with lambda protein phos-

phatase (l phosphatase), indicating that phosphorylation at

another site(s) was required for drug activation (Figures 1A

and 1B; Figure S2B).

Phosphorylation of b-Ser108 Is Required for A-769662
Activation of AMPK
We found recombinant AMPK expressed in E. coli grown in

Luria Bertani broth was autophosphorylated on both a- and b

subunits (Oakhill et al., 2010) when WT a, but not the kinase

dead (KD) a mutant D141A (AMPKKD), was expressed (Fig-

ure S2B). b-Ser108 was one of the residues phosphorylated

in WT AMPK as shown by immunoblot and tandem mass spec-

trometry (MS) analysis (Figure 1C; Figure S2C), and an AMPK

mutant in which Ser108 was exchanged to Ala (AMPKS108A)

was insensitive to A-769662 as reported previously (Figure 1D)

(Sanders et al., 2007). Comparison of time-of-flight (TOF) mass

graphs of b subunits from WT AMPK and AMPKS108A revealed

that pSer108 accounted for the dominant singularly phospho-

rylated species in E. coli-expressed AMPK (Figure S2B). The

extent of Ser108 autophosphorylation varied with expression

conditions and increased 1.5-fold from �60% to �90% in

AMPK expressed in E. coli at 22�C compared with 16�C (Fig-

ure 1C; Figure S2B). This was accompanied by a correspond-

ing increase in activation by A-769662 (93-fold) to yield a

specific activity of 2.8 mmol,min�1,mg�1 enzyme (Figure 1D),

comparable to the basal specific activity of AMPK fully

phosphorylated on Thr172 by pretreatment with CaMKKb

(3.3 mmol,min�1,mg�1 enzyme) (Figure 1A) (Davies et al.,

1994; Michell et al., 1996; Woods et al., 2003a; Suter et al.,

2006).

To examine possible contributions of other phosphorylated

residues in our bacterial AMPK preparations, we exchanged

Ser108 for negatively charged residues Glu or Asp with the

intention of mimicking phosphorylation. We found that sensitivity

to A-769662 allosteric activation was substantially restored

upon substitution with Glu108 (stimulated specific activity:

1.9 mmol,min�1,mg�1 enzyme), which was a more effective

phosphomimetic than Asp108 (Figures 1E and 1F; Figure S3).

The concentration of A-769662 giving half-maximal activation

(K0.5) of AMPKS108E was 1.42 ± 0.13 mM, which was 9- and 11-

fold higher than K0.5 for A-769662 allosteric activation of WT

AMPK (0.18 ± 0.02 mM) and AMPKT172A (0.13 ± 0.01 mM), respec-

tively (Figure 1G). Pretreatment of AMPKT172A/S108E double

mutant (Figure S2A) with l phosphatase produced dephos-

phorylated AMPK (Figure S3) that retained full activation by

A-769662 (Figure 1H), demonstrating that no other autophos-

phorylated residues in E. coli-expressed AMPK contribute to

drug activation. Combined, our results demonstrate that phos-

phorylation on b1-Ser108 alone is sufficient to render AMPK

sensitive to allosteric activation by A-769662 and that this stim-

ulation entirely compensates for Thr172 phosphorylation as an

AMPK regulatory mechanism.

Dynamic Regulation of b-Ser108 Phosphorylation
We examined the mechanism by which Ser108 is autophos-

phorylated by incubating AMPKS108A with CaMKKb in the pres-
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ence of either l phosphatase-treated, dephosphorylated WT

AMPK or AMPKKD. We reasoned that Thr172 could be phos-

phorylated in both AMPKS108A and AMPKKD complexes; how-

ever, activation would be confined to AMPKS108A; therefore

AMPKKD Ser108 could only be phosphorylated via a trans event.

S108A mutation did not diminish the ability of CaMKKb to

phosphorylate Thr172, but as expected Ser108 autophospho-

rylation was restricted to the WT complex (Figure 2A, left). We

detected pSer108 in the AMPKS108A/WT mixture following

incubation with CaMKKb; however, we were unable to detect

pSer108 when AMPKS108A was coincubated with AMPKKD (Fig-

ure 2A, right). These observations are consistent with Ser108

cis-autophosphorylation.

We next investigated cellular regulation of b-Ser108 phos-

phorylation using COS7 cells transiently transfected to express

glutathione S-transferase (GST)-tagged AMPK. Basal levels of

AMPK phosphorylation were determined by isolating com-

plexes from cells incubated in fresh medium (25 mM glucose)

for 2 hr and immunoblotting for pThr172 and pSer108. Immuno-

blots were calibrated against standards of known pThr172 and

pSer108 stoichiometry that were generated by mixing, in

defined proportions, equimolar bacterial AMPK preparations

that had either been fully dephosphorylated by l phosphatase

(0% phosphorylation as determined by TOF mass spectrom-

etry) or maximally phosphorylated by CaMKKb (assumed

100% phosphorylation on Thr172 and Ser108) (Figures 1C

and 2B; Figure S2B). From densitometry analysis of immuno-

reactive bands and subsequent comparison with these stan-

dards, we measured basal pThr172 and pSer108 stoichiometry

in isolated AMPK complexes from COS7 cells at 3.6 ± 0.2%

and 6.3 ± 0.2%, respectively (mean ± SEM, n = 4) (Figure 2B).

Incubation with ionomycin, a Ca2+ ionophore that triggers

CaMKKb signaling and AMPK activation, resulted in a 2.2-

fold increase in pThr172 above basal levels and a similar

(2.5-fold) increase in pSer108 (Figure 2B). AMPKKD Thr172

was phosphorylated in response to ionomycin to a similar

extent (2.1-fold) as WT (Figure 2C). However, we did not

detect pSer108 in this mutant either under basal conditions

or following ionomycin incubation, even though endogenous

AMPK in these cells was also activated by ionomycin (Fig-

ure 2C). Our results indicate that Ser108 is mainly a cis-auto-

phosphorylation site.

Subsequent incubation of ionomycin-treated, WT AMPK-

transfected COS7 cells with STO-609, a specific inhibitor of

CaMKKb, led to rapid dephosphorylation of pThr172 within

2 min. In contrast, pSer108 was dephosphorylated at a slower

rate and remained substantially elevated relative to pThr172

at all measured time points to 15 min (Figure 2B). A reduced

rate of pSer108 dephosphorylation relative to that of pThr172

was reflected in vitro using the phosphatase PP2Ca, which has

previously been used to dephosphorylate pThr172 (Figure 2D)

(Woods et al., 2003b; Suter et al., 2006; Oakhill et al., 2010;

Gowans et al., 2013). Thus, basal and ionomycin-stimulated

levels of b-Ser108 autophosphorylation are intrinsically linked

to those of a-pThr172; however, regulatory disconnectivity

is achieved at the dephosphorylation step; pSer108 and

pThr172 are dephosphorylated by either distinct phosphatases

or alternatively a common phosphatase(s) with markedly

different kinetics.
619–627, May 22, 2014 ª2014 Elsevier Ltd All rights reserved 621
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Figure 2. Regulation of b-Ser108 Phosphor-

ylation

(A) In vitro phosphorylation of bacterial-expressed

AMPK by CaMKKb. 400 ng of total AMPK (either

AMPKS108A or l phosphatase-treated WT (de-

phos.) individually or 1:1 mixtures of AMPKS108A +

WT (dephos.) or AMPKS108A + AMPKKD) was

incubated with 2 mM MgCl2, 200 mM ATP ± 50 ng

of CaMKKb for 30 min at 32�C. Assays were

terminated by addition of SDS sample buffer and

immunoblotted for b-pSer108, a-pThr172, and

total a. A representative immunoblot from three

independent experiments is shown.

(B) a-Thr172 and b-Ser108 phosphorylation

(normalized against a subunit and FLAG (b sub-

unit), respectively) were measured by immunoblot

in AMPK isolated from transfected COS7 cells,

following initial incubation ± ionomycin and sub-

sequent incubation ± STO-609. The data are

presented as means ± SEM (n = 4). Statistical

analysis was performed by two-way ANOVA.

Significant differences between basal and treated

levels of a-pThr172 and b-pSer108 (***p < 0.001;

****p < 0.0001) and between fold increases in

a-pThr712 and b-pSer108 at each time point

(yyp < 0.01; yyyyp < 0.0001) are indicated.

A representative immunoblot is shown. Inset:

bacterial-expressed AMPK, maximally phospho-

rylated by CaMKKb, was mixed with dephos-

phorylated AMPK to generate standards of

known a-pThr172 and b-pSer108 stoichiometry

(% phos).

(C) COS7 cells transfected to expressWTAMPK or

AMPKKD were incubated with ionomycin. Isolated

recombinant AMPK and endogenous AMPK from

lysates were immunoblotted for b-pSer108 and/or a-pThr172. A representative immunoblot from three independent experiments is shown.

(D) In vitro a-pThr172 and b-pSer108 dephosphorylation by PP2Ca and l phosphatase. The data are presented as means ± SEM (n = 6). Significant difference

between percentage of residual a-pThr172 and b-pSer108 following PP2Ca treatment is indicated (****p < 0.0001). A representative immunoblot is shown.
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AMP and A-769662 Synergistically Activate
Dephosphorylated, Naive AMPK
We reasoned that A-769662 mediates pThr172-independent

activation of AMPK by inducing a conformational change upon

binding that leads to reorientation of the a activation loop. A

similar mechanism regulates cyclin-dependent kinase 2 (CDK2)

in the absence of activation loop phosphorylation, although in

this case loop reorientation is mediated by direct interaction

with cyclinA (Jeffrey et al., 1995). Subsequent phosphorylation

of CDK2 Thr160 (analogous to AMPK a-Thr172) by CDK-acti-

vating kinase results in further rearrangement of the activation

loop, largely driven by burial of the phosphorylated Thr160 side

chain, which moves >6 Å from its unphosphorylated position

(Russo et al., 1996). Strikingly, the recent finding that A-769662

binds to the AMPK a-catalytic domain small lobe revealed prox-

imity between a drug binding site and activation loop (Xiao et al.,

2013). However, in this structure, the activation loop adopts a

constrained conformation, almost superimposable to phosphor-

ylated CDK2, because the crystallized AMPK construct was

phosphorylated with CaMKKb during preparation. Unfortunately

the current AMPK structures do not reveal the mechanism

of pThr172-independent allosteric regulation by A-769662. The

drug-binding signal may be transduced through the a-C helix

(residues 60-70) in the kinase domain small lobe, which contacts

the activation loop in the Thr172-phosphorylated conformation
622 Chemistry & Biology 21, 619–627, May 22, 2014 ª2014 Elsevier
(Xiao et al., 2011) and is reorientated by hydrophobic interaction

with a short a helix C-terminal to theCBM, termed theC-interact-

ing helix, that is recruited to the aC helix following A-769662

binding (Xiao et al., 2013). Indeed, A-769662 induced a sub-

stantial reduction in solvent accessibility of both the a-C helix

and the region encompassing pSer108, as recently determined

by hydrogen/deuterium exchange mass spectrometry (Landgraf

et al., 2013). Alternatively, stabilization of the unphosphorylated

activation loop may be facilitated by AMPK elements that were

not resolved in the A-769662-complexed AMPK structure but

may be recruited to the region upon drug binding.

We investigated whether AMP further stimulated A-769662-

activated AMPKT172A. To measure combined allosteric effects

we expressed AMPK complexes in COS7 cells containing WT

g, T172A-mutated GST-a fusion and either S108A-, S108D-, or

S108E-mutated b-Myc fusions. Recombinant AMPK expressed

in mammalian cells is isolated in the more fully modified form

(e.g., myristoylated on the b subunit) compared with enzyme

expressed in bacteria, which is an important consideration

when investigating AMPK regulatory mechanisms in vitro. Com-

plexes isolated using glutathione Sepharose were devoid of

contaminating endogenous AMPK a and b, which both possess

higher electrophoreticmobility than their respective recombinant

tagged counterparts (Figure S4). Compared with low but con-

sistently measureable basal activities of recombinant AMPK
Ltd All rights reserved
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Figure 3. AMP and A-769662 Synergistically Activate AMPK Inde-

pendently of a-Thr172 and b-Ser108 Phosphorylation

For direct activation, activities of AMPK (GST-a1b1g1) expressed in COS7

cells were measured by SAMS assay unless stated, using 100 mM AMP/ADP

and 20 mM A-769662 as indicated. WT or mutant a- and b subunits are indi-

cated. The data are presented as means ± SEM (n = 4).

(A) AMPK activities with A-769662 (open bars), AMP (light gray bars), or AMP

and A-769662 (dark gray bars). Significant differences in fold activation of

AMPKT172A/S108A between individual incubations and coincubation are shown

(****p < 0.0001).

(B) Fold activation, calculated from data in (A).

(C) AMP/A-769662 synergistic activation of AMPK is CBM dependent.

Activities of AMPKT172A/S108A and truncated complex AMPKT172A/DCBM were

measured with A-769662 (open bars) or AMP and A-769662 (dark gray bars).

A significant difference in fold activation with AMP/A-769662 coincubation of

AMPKT172A/S108A is shown (***p < 0.001).

(D) AMP/A-769662 coincubation stimulates phosphorylation of ACC1-Ser79.

ACC1 was phosphorylated by AMPKT172A/S108A with A-769662 (open bars),

AMP (light gray bars), or AMP and A-769662 (dark gray bars). Increases in

pSer79 compared to basal (untreated control) are presented. A representative

immunoblot is shown.

(E) ADP and A-769662 do not synergistically activate AMPK. A significant

difference in fold activation between AMP/A-769662 and ADP/A-769662

coincubations is shown (****p < 0.0001).
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expressed in bacteria (Figure 1F), complexes purified fromCOS7

cells displayed negligible basal activities (Figures 3A and 3B).

This confirmed that endogenous a, which is partially phosphor-

ylated on Thr172 in the basal state, was excluded from our

COS7 cell preparations.
Chemistry & Biology 21,
Incubation with A-769662 alone stimulated the activities

of COS7 cell-expressed AMPKT172A/S108D (�240-fold) and

AMPKT172A/S108E (�900-fold), which were increased following in-

cubation with both AMP and A-769662 a further 2- to 4-fold (Fig-

ures 3A and 3B). AMPKT172A/S108A has a low basal activity that

was stimulated 78-fold by A-769662 alone to give a specific ac-

tivity of only 0.04 mmol,min�1,mg�1 enzyme. In contrast, AMP/

A-769662 coincubation dramatically activated AMPKT172A/S108A

(>1,000-fold) to yield a specific activity of 0.6 mmol,min�1,mg�1

enzyme (Figures 3A and 3B). Despite lacking a requirement for

pSer108, AMP/A-769662 activation nevertheless is entirely

b-CBMdependent, because deletion of the bN-terminal 145 res-

idues (DCBM) rendered AMPK insensitive to synergistic activa-

tion (Figure 3C). Similarly AMPK containing the b2 isoform is

insensitive to activation by A-769662 (Scott et al., 2008), and

bacterial-expressed b2-AMPK, which is not extensively auto-

phosphorylated on the b subunit (Figure S3), was also insensitive

to synergistic activation by AMP and A-769662 (data not shown).

It was of interest to test whether AMP/A-769662-activated

AMPKwas capable of phosphorylating a native AMPK substrate,

because we had previously observed with Ca2+/calmodulin-

dependent protein kinase I that certain peptide substrates do

not require kinase activation loop phosphorylation (Hook et al.,

1999). Incubation of AMPKT172A/S108A with both AMP and A-

769662 resulted in a >140-fold increase in phosphorylation of

HeLa cell-derived ACC1, relative to an AMPK-untreated control

(Figure 3D). ADP does not allosterically activate Thr172-phos-

phorylated AMPK (Xiao et al., 2011; Oakhill et al., 2011), nor

did it activate AMPKT172A/S108A when coincubated with A-

769662 (Figure 3E). Additionally, there was no detectable auto-

phosphorylation of a- or b subunits in l phosphatase-treated

WT AMPK following AMP/A-769662 coincubation in the pres-

ence of MgATP (Figure S3), demonstrating that AMP/A-769662

synergistic activation of AMPK in vitro does not involve auto-

phosphorylation and occurs exclusively via an allosteric mecha-

nism. Synergistic regulation of AMPK has previously been

demonstrated in hepatocytes coincubated with 5-aminoimida-

zole-4-carboxamide 1-b-D-ribofuranoside (AICAR), a pro-drug

metabolized to the AMP analog ZMP, and A-769662 (Foretz

et al., 2010; Ducommun et al., 2014); however, in both cases

increased AMPK activity was attributed to the combined sup-

pressive effects of both ligands on pThr172 dephosphorylation.

To further investigate the mechanism of pThr172-independent

AMP/A-769662 synergy, we measured activity of l phospha-

tase-treated, COS7 cell-expressed AMPK over a range of A-

769662 concentrations at constant AMP concentration. K0.5 for

A-769662 stimulation in the presence of 100 mM AMP was

0.37 ± 0.04 mM (Figure 4A), which is comparable to K0.5 for

A-769662 allosteric activation of Thr172-phosphorylated WT

AMPK (0.15 mM) (Scott et al., 2008). Thus, A-769662 stimulation

through both pSer108-dependent and pSer108-independent

mechanisms seems likely to involve the same drug binding site

on AMPK. Ser108 is largely unphosphorylated in the basal state

(Figure 2B) as previously shown for Thr172 (Gowans et al., 2013),

indicating that the putative drug binding site in the absence of

AMP is transient and highly regulated. We previously proposed

that A-769662 may mimic an intracellular metabolite (Scott

et al., 2008), and our findings here extend the possibility that

sensitivity to an alternate allosteric ligand is mediated either
619–627, May 22, 2014 ª2014 Elsevier Ltd All rights reserved 623
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Figure 4. A-769662/AMP Dose Response for AMPK Activation

A-769662 (A) and AMP (B) dose-response curves at fixed AMP (100 mM) or A-

769662 (20 mM), respectively, for direct activation of l phosphatase-treated,

COS7 cell-expressed AMPK. The data are presented as means ± SEM (n = 4).
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through autophosphorylation cycling or even by a b-Ser108

upstream kinase.

At 200 mM ATP and with constant A-769662 concentration

(20 mM), activation of l phosphatase-treated, COS7 cell-ex-

pressed AMPK by AMP gave K0.5 = 29.2 ± 1.5 mM (Vmax =

1.6 mmol,min�1,mg�1 enzyme, 980-fold activation) (Figure 4B),

comparable to K0.5 for AMP stimulation of Thr172 phosphoryla-

tion by CaMKKb at 200 mMATP (33 ± 10 mM) (Oakhill et al., 2010).

We also examined the role of individual g adenine nucleotide-

binding sites in mediating synergistic AMP/A-769662 activation

by coexpressing AMPKT172A/S108A with g mutants in which Asp

residues in nucleotide site 1 (Asp90), 3 (Asp245), or 4 (Asp317)

were individually exchanged with Ala. We previously employed

these mutants to show that g sites 3 and 4 predominantly

mediate allosteric activation by AMP, whereas all three sites

contribute to AMP regulation of the Thr172 phosphorylation

step (Oakhill et al., 2010). The g residues Asp90, Asp245, and

Asp317 form critical hydrogen bonds with ribose hydroxyl

groups (Figure S5A) (Xiao et al., 2007); however, the absolute

requirement of this bonding network for nucleotide binding has

recently been questioned (Mayer et al., 2011). We extended

our previous observations using 20-deoxy AMP (dAMP), which

lacks the ribose 20-hydroxyl forming hydrogen bonds with g-

site Asp side chains. dAMP was substantially less effective

than AMP at regulatingWTAMPK through either direct activation

(Figure S5B) or stimulation of CaMKKb-mediated phosphoryla-

tion of Thr172 (Figure S5C). Using T172A/S108A/g-Aspmutants,

we found that disruption of sites 1, 3, and 4 each led to a sub-

stantial reduction in AMP/A-769662 activation (Figure 5).

Several important ramifications arise from a purely allosteric

AMPK regulatory mechanism involving AMP in combination

with a drug, not least of which is the potential for AMPK activa-

tion independent of upstream kinases and prior Ser108 auto-

phosphorylation cycles (Figure 6). Because the specific activity

of naive AMPK synergistically regulated by AMP and A-769662

approaches that achieved by phosphorylation of Thr172, the

mechanism provides an effective activation pathway in circum-

stances where there is genetic loss of upstream kinase, such

as loss of LKB1 in a variety of cancer models (Shackelford and

Shaw, 2009). In human liver where b2 is the dominant AMPK b

isoform (Wu et al., 2013), the mechanism may also allow for syn-

ergy between drugs that bind at the A-769662 site and activate

b2-AMPK complexes (e.g., pyrrolopyridone derivatives (Mirguet
624 Chemistry & Biology 21, 619–627, May 22, 2014 ª2014 Elsevier
et al., 2013) and compound 991 (Xiao et al., 2013)) and agents

that increase cellular AMP, such as metformin, which is exten-

sively used to treat type 2 diabetics. The interdependence of

drug activation with AMP highlights the possibility of exploiting

the mechanism in designing ultrasensitive drug screening

strategies for AMPK. Nevertheless, it is an ironic twist that

AMPK activation by A-769662 cannot transcend natural meta-

bolic stress regulation. Thus, A-769662 could combine with

AMP to activate naive, dephosphorylated AMPK, or A-769662

alone may activate enzyme autophosphorylated on b-Ser108

from a previous activation cycle involving upstream kinase

signaling; either way the outcome is dictated by AMP.
SIGNIFICANCE

AMPK is a critical regulator of cellular and systemic energy

homeostasis whose regulation by ligands and signaling

pathways has been intensively studied for three decades.

The metabolic dimensions of diseases, including type 2 dia-

betes, obesity, cardiovascular disease, and cancer, have

encouraged efforts to elucidate these regulatory mecha-

nisms and develop direct activating drugs for AMPK. We

have demonstrated two allosteric mechanisms that are

independent of activation loop phosphorylation, previously

thought to be an absolute requirement to initiate AMPK

signaling. Our findings provide significant advances to aid

development of AMPK-targeting therapeutics, both in a

mechanistic sense and in the context of screening strate-

gies. b-Ser108 is currently regarded as an autophosphoryla-

tion site; however, this does not preclude the existence of

upstream kinases for this site that could potentially be ex-

ploited with the aim of increasing AMPK drug potency. Addi-

tionally, synergistic activation of AMPK by drugs and AMP

constitutes a roadmap for combinatorial therapies. Impor-

tantly, our findings demonstrate that cell-based studies

require observation of AMPK substrate phosphorylation, in
Ltd All rights reserved
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Figure 6. Hypothetical Model of Allosteric Regulation of AMPK by

AMP and A-769662

AMP and A-769662 synergistic (solid arrow) and individual (dashed arrows)

direct activation of AMPK in various a-Thr172 and b-Ser108 phosphorylation

states, in the context of the AMPK activation cycle in response to cellular

energy charge depletion. AMP-stimulated a-Thr172 phosphorylation (red

button) by upstream kinases results in basal AMPK activity (orange) and

b-Ser108 autophosphorylation (blue button). Rapid a-pThr172 dephosphory-

lation results in b-Ser108-phosphorylated AMPK that is sensitive to drug alone.

In vitro fold activation by AMP and/or A-769662 of AMPK in each phosphor-

ylation state is indicated. *90-fold activation by A-769662 is most likely an

underestimation because bacterial-expressed AMPK used to generate the

data consistently displayed higher basal activity than a-Thr172 dephos-

phorylated AMPK expressed in COS7 cells.
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addition to a-Thr172 phosphorylation, as a complimentary

indicator of AMPK activity.

EXPERIMENTAL PROCEDURES

Protein Production

All mutants were generated using QuikChange Site-DirectedMutagenesis Kits

(Stratagene), and constructs were sequence verified. Expressed constructs

were mass verified by TOF mass spectrometry.

Heterotrimeric human AMPK His6-a1b1g1 (WT and indicated mutants and

truncations) was expressed in E. coli strain Rosetta (DE3) using the pET

DUET expression system (Novagen). cDNAs for a1 and g1 were sequentially

inserted into pET DUET multiple cloning sites (MCS) 1 (NcoI/EcoRI) and 2

(MfeI/XhoI), respectively, resulting in incorporation of an N-terminal hexahisti-

dine tag onto a1. cDNA for b1 was inserted into pET RSF DUET MCS1 (NcoI/

BamHI). AMPK myristoylated on the b subunit residue Gly2 was generated

by coexpression with N-myristoyltransferase (inserted into pET RSF DUET

MCS2 (BglII/XhoI)) as described previously (Oakhill et al., 2010). Expression

cultures were grown in Luria Bertani broth and induced at 16�C or 22�C with

0.25 mM isopropyl b-D-thiogalactopyranoside, prior to overnight incubation.

Cells were ruptured using a precooled EmulsiFlex-C5 homogenizer (Avestin)

and AMPK purified using nickel Sepharose and size exclusion chromatog-

raphy. Final storage buffer (Buffer A) consisted of 50 mM Tris,HCl, pH 7.4,

150 mM NaCl, 10% glycerol, and 2 mM tris(2-carboxyethyl)phosphine. De-

phosphorylated AMPK (100 mg) was generated by incubation with 400 units

of l phosphatase (New England Biolabs), 2 mM MnCl2 (2 hr, 22�C).
a-Thr172 phosphorylated AMPK (100 mg) was generated by incubation with

2.5 mg of CaMKKb (produced in Sf21 cells as a C-terminal FLAG fusion as pre-

viously described (Oakhill et al., 2010)), 2 mMMgCl2, 200 mMATP (2 hr, 22�C).
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We were unable to detect further increases in Thr172 phosphorylation with

extended CaMKKb incubation. l phosphatase- and CaMKKb-treated AMPK

was repurified on nickel Sepharose and buffer exchanged into Buffer A using

PD10 desalt columns (GE Life Sciences).

Heterotrimeric human AMPK GST-a1b1g1 (WT and indicated mutants and

truncations) was expressed in COS7 cells cultured in Dulbecco’s modified Ea-

gle’s medium (DMEM) supplemented with 10% fetal bovine serum as

described previously (Oakhill et al., 2010). Briefly, AMPK complexes were ex-

pressed following simultaneous triple transfection of cells with constructs for

a1 (pDEST27, N-terminal GST fusion), b1 (pcDNA3, C-terminal Myc, or

FLAG fusion), and g1 (pMT2, N-terminal hemagglutinin [HA] fusion), prepared

as liposomes with FuGENE HD (Promega) according to the manufacturer’s

protocols. Lysates were harvested 48 hr post-transfection in 50 mM Tris-

HCl, pH 7.4, 50 mM NaCl, 10% glycerol, 1 mM EDTA, 1 mM EGTA, 5 mM

sodium pyrophosphate, 50 mM NaF, 1% Triton X-100, cOmplete protease

inhibitor cocktail (Roche) and clarified by centrifugation (14,000 rpm, 3 min).

AMPK was isolated from COS7 cell lysates on glutathione Sepharose 4B

(GE Life Sciences), extensively washed with buffer A, and either assayed while

immobilized or eluted with buffer A + 20 mM glutathione. AMPK for a-Thr172

phosphorylation and dose-response assays was dephosphorylated with l

phosphatase (2 mM MnCl2, 2 hr, 22�C) prior to elution. For the CBM depen-

dency assay, a1b1(S108A)g1 and a1b1(146-270)g1 complexes were isolated

from COS7 cell lysates on anti-c-Myc affinity gel (Sigma). All AMPK prepara-

tions were quantitated by comparative a subunit immunoblot standardized

with a bacterial-expressed, purified AMPK preparation of known concentra-

tion, determined by BCA protein assay (Pierce).

Endogenous ACC1 was isolated from cultured HeLa cells previously

incubated for 2 hr with fresh DMEM. Lysates prepared in 50 mM Tris,HCl,

pH 7.4, 50 mM NaCl, 1% Triton, 1 mM EDTA, 1 mM EGTA, 10% glycerol,

50 mM NaF, 5 mM sodium pyrophosphate, and protease inhibitor cocktail

(Roche) were incubated with streptavidin Sepharose (GE Life Sciences, 2 h)

prior to washing with PBS.

SAMS Activity Assay

AMPK activity was determined by phosphorylation of the SAMS peptide using

100 mM SAMS, 200 mM [g-32P]ATP, 5 mM MgCl2, and the indicated ligands in

a 25 ml reaction volume at 30�C. Reactions were terminated after 10 min by

spotting 15 ml onto P81 phosphocellulose paper (Whatman) and washing in

1% phosphoric acid (Glass et al., 1978). Radioactivity was quantified by scin-

tillation counting.

Immunoblotting

a-pThr172 and total a1 were detected by immunoblot as previously described

(Oakhill et al., 2010). FLAG, b-pSer108, and ACC1-pSer79 were detected

using antibodies from Epitomics or Cell Signaling, followed by incubation

with anti-rabbit or anti-mouse IgG 2� antibody fluorescently labeled with

IR680 or IR800 (LI-COR Biosciences). Total ACC was detected using strepta-

vidin fluorescently labeled with IR680. Immunoblots were visualized on an

Odyssey membrane imaging system (LI-COR Biosciences).

COS7 Cell Incubations

COS7 cells were transiently transfected to express AMPK (GST-a1(WT or

kinase dead/b1-FLAG/HA-g1) for 48 hr as described above. Cells were

incubated for 2 hr in fresh medium prior to addition of ionomycin (2.5 mM final

concentration) or DMSO for 15 min, followed by addition of STO-609 (2 mM

final concentration). Lysates were prepared at indicated time points for a

further 60min as described above. AMPKwas isolated on glutathione Sephar-

ose 4B and immunoblotted for a-pThr172, total a, b-pSer108, and FLAG.

AMPK a-pThr172 and b-pSer108 Dephosphorylation Assay

Assays were conducted as previously described (Oakhill et al., 2010). 200 ng

of CaMKKb-treated, E. coli-expressed AMPK was incubated with either

100 ng of protein phosphatase PP2ca (produced as a GST fusion in Sf21 cells

as described previously (Oakhill et al., 2010)) + 2 mM MgCl2 or 20 units

l phosphatase + 2 mM MnCl2 for 15 min at 32�C. Assays were terminated

by addition of SDS sample buffer and immunoblotted for a-pThr172,

b-pSer108, and total a.
619–627, May 22, 2014 ª2014 Elsevier Ltd All rights reserved 625
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AMPK a-Thr172 Phosphorylation Assay

Assayswere conducted as previously described (Oakhill et al., 2010). 200 ng of

dephosphorylated, COS7 cell-expressed AMPK was incubated with 2 mM

MgCl2, 200 mM ATP, 8 ng CaMKKb, and the indicated ligands for 10 min at

32�C. Assays were terminated by addition of SDS sample buffer and immuno-

blotted for a-pThr172 and total a.

ACC Phosphorylation Assay

ACC1 immobilized on streptavidin Sepharose was incubated with 2 mM

MgCl2, 200 mM ATP, 125 ng of COS7 cell-expressed a1(T172A)b1(S108A)g1

AMPK double mutant, and the indicated ligands for 15 min at 32�C with

agitation. Assays were terminated by addition of SDS sample buffer and

immunoblotted for ACC-pSer79 and total ACC.

Tandem Mass Spectrometry Analysis

Samples were digested with trypsin according to themanufacturer’s protocols

and analyzed by reversed-phase nHPLC-ESI-MS/MS using an UltiMate 3000

Nano LC HPLC system (Dionex) directly connected to a Triple-TOF 5600 mass

spectrometer (AB SCIEX) in direct injection mode. Peptide mixtures were

resolved on an analytical nanocapillary HPLC column (100 mm inner diameter

[i.d.]3 15 cm) packed with C18 Acclaim PepMap100 (3 mm particle size, 100 Å

pore size) using a 1%–75% elution gradient of 98% acetonitrile/2% of 0.1%

formic acid (v/v) in water at a flow rate of 250 nl/min. Mass spectrometric

data were analyzed using the database search engine ProteinPilot using the

Paragon algorithm.

TOF Mass Spectrometry Analysis

Samples used for activity measurements were analyzed by reversed-phase

HPLC-ESI-MS using an UltiMate 3000 HPLC system directly connected to a

Triple-TOF 5600 mass spectrometer. AMPK subunits were resolved on an

Aquapore RP-300 column (1 mm i.d. 3 10 cm, Applied Biosystems) packed

with C8 (7 mm particle size) using an elution gradient of 20%–55% acetonitrile

at 150 ml/min. The MS was set to intact protein mode, and the mass range was

set to 600–1500 m/z. Mass determination was performed using BioAnalyst

Software.

Statistical Analysis

The data are presented as mean values ± SEM of at least three independent

experiments. The unpaired two-tailed Student’s t test was used for all compar-

isons unless stated.
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