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Abstract

We obtain a criterion for determining whether or not a non-decreasing sequence of non-negative integers is a degree sequence
of some k-hypertournament on n vertices. This result generalizes the corresponding theorems on tournaments proposed by Landau
[H.G. Landau, On dominance relations and the structure of animal societies. III. The condition for a score structure, Bull. Math.
Biophys. 15 (1953) 143–148] in 1953.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Given two positive integers n and k with n > k > 1, a k-hypertournament H on n vertices is a pair (V , A), where V

is a set of n vertices and A is a set of k-tuples of vertices, called arcs, such that for any k-subset W of V , A contains
exactly one of the k! possible k-tuples whose entries belong to W . Clearly, a 2-hypertournament is a tournament. If
e = (x1, x2, . . . , xk), then we call {x1, x2, . . . , xk} the underlying vertex set of e, denoted by Ve.

Let a = (x1, . . . , xk) be an arc of H . We call xi the ith entry of a; the (i +1)th entry of a, xi+1, is called the successor
of xi , and xi the predecessor of xi+1 in a, 1� i�k −1. It is obvious that xk has no successor, and x1 has no predecessor
in a. Define a function � on a by

�(x, a) =
{

k − i if x ∈ a and x is the ith entry of a,

0 if x /∈ a.

For v ∈ V (H), we denote d+
H (v) = ∑

a∈H �(v, a) (or simply d+(v)) the degree of v in H . For i < j ,

a(xi, xj ) = (x1, . . . , xi−1, xj , xi+1, . . . , xj−1, xi, xj+1, . . . , xk)

denotes a new arc obtained from a by exchanging xi and xj in a.
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A k-hypertournament H(V, A) is said to be transitive if we can label V (H) by v1, v2, . . . , vn in such a order that:
i < j if and only if vi precedes vj in each arc containing vi and vj .

Let S = (s1, s2, . . . , sn) be a non-decreasing sequence of non-negative integers. For 1� i < j �n, we denote
S(s+

i , s−
j ) = (s1, s2, . . . , si + 1, si+1, . . . , sj−1, sj − 1, . . . , sn). And S′(s+

i , s−
j ) = (s′

1, s
′
2, . . . , s

′
n) will denote a per-

mutation of S(s+
i , s−

j ) such that s′
1 �s′

2 � · · · �s′
n.

The degree sequence of a k-hypertournament is a non-decreasing sequence of non-negative integers (s1, s2, . . . , sn),
where each si is the degree of some vertex in V (H). When k = 2, the degree sequence is identical to the score-
list in [3, Chapter 7]. In some papers, the score-list is also called score sequence. In 1953, Landau [7] proved that
some rather obvious necessary conditions for a non-decreasing sequence of non-negative integers to be the score
sequence for some tournament are also sufficient. Namely, the sequence S = (s1, s2, . . . , sn) is a score sequence
if and only if

∑r
i=1si �(

r
2 ), 1�r �n, with equality for r = n. According to [5], there are now several proofs of

this fundamental result in tournament theory. Many of these existing proofs are discussed in a 1996 survey by
Reid [8]. In [9], Zhou et al. succeeded in generalizing the Landau’s theorem to the hypertournaments under a dif-
ferent definition of vertex degree. In [10], Zhou and Zhang also raised the following conjecture and proved the
case k = 3.

Conjecture 1. Given two positive integers n and k with n > k > 1, a non-decreasing sequence S = (s1, s2, . . . , sn) of
non-negative integers is a degree sequence of some k-hypertournament if and only if

r∑
i=1

si �
( r

2

) (
n − 2

k − 2

)
∀1�r �n,

with equality for r = n.

In this paper, we settle this conjecture in affirmative. Other references on k-hypertournaments can be found in
[1,2,4,6].

2. Main result

The main result of this paper is the following theorem.

Theorem 1. Given two positive integers n and k with n > k > 1, a non-decreasing sequence S = (s1, s2, . . . , sn) of
non-negative integers is a degree sequence of some k-hypertournament if and only if

r∑
i=1

si �
( r

2

) (
n − 2

k − 2

)
∀1�r �n, (⊗)

with equality for r = n.

In order to prove Theorem 1, we need some lemmas and definitions as follows.

Lemma 1 (Zhou and Zhang [10, Lemma 2.3]). If a non-decreasing sequence S = (s1, s2, . . . , sn) of non-negative
integers is a degree sequence of some k-hypertournament, then

r∑
i=1

si �
( r

2

) (
n − 2

k − 2

)
∀1�r �n,

with equality for r = n.

Lemma 2 (Zhou and Zhang [10, Lemma 2.3]). A non-decreasing sequence S=(s1, s2, . . . , sn) of non-negative integers
is a degree sequence of some transitive k-hypertournament if and only if si = (i − 1)(

n−2
k−2 ), for all 1� i�n.
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Definition 1. Given a k-hypertournament H(V, A), x and y being two distinct vertices in H . If we can choose t arcs
a1, . . . , at (repeating allowed) and t − 1 distinct vertices z1, z2, . . . , zt−1 which are different with x and y, such that
x is the predecessor of z1 in a1, zi is the predecessor of zi+1 in ai+1, 1� i� t − 2, zt−1 is the predecessor of y in at ,
and ai �= ai+1, 1� i� t − 1, then we say that there is a consecutive path from x to y, denoted by

P(x, y) = xa1z1a2z2 · · · zt−2at−1zt−1aty.

y is called a reachable vertex from x, or simply reachable from x. P(x, y) can be simply written as Py if x is given.
Denote all the consecutive paths from x to y in H by PH (x, y).

Example 1. Let n = 5, k = 4. Consider a 4-hypertournament H(V, A) on five vertices, where V = {1, 2, 3, 4, 5}, A
consists of a1 = (1, 2, 3, 4), a2 = (1, 2, 3, 5), a3 = (1, 2, 4, 5), a4 = (2, 3, 4, 5), a5 = (4, 1, 5, 3). Then 1 is reachable
from 5, and one consecutive path is 5a53a14a51.

Given a k-hypertournament H(V, A) and a vertex x of V . We need to introduce some notations as follows:

R = {v ∈ V : ∃ev ∈ A such that all consecutive paths from x to v end in the arc ev .

Here we call ev the key arc of v, and v a key vertex of ev},
E = {e ∈ A: e is the key arc of some vertex r ∈ R},
W = {v ∈ V : there is no consecutive path from x to v, i.e., v is not reachable from x},
X = V − R − W .

Lemma A. Each arc e ∈ A\E can be represented as ([W ′][R′][X′]), where W ′ =Ve ∩W , R′ =Ve ∩R, X′ =Ve ∩X,
1� i�m, and [·] means optional. That is, all the vertices of W ′ precede the vertices of R′ in e; and all the vertices of
R′ precede the vertices of X′.

Proof. If some vertex from R′ ∪ X′ is followed by a vertex from W ′ in e, then that vertex in W can be reached by a
consecutive path. Contradiction! Furthermore if some vertex from X′ is followed by a vertex in R′ in e then that vertex
in R can be reached by a consecutive path from x ending in e, a contradiction. This completes the proof. �

Lemma B. Let H(V, A) be a k-hypertournament with n vertices and let x, y ∈ V . When n > k > 3 and there is no
consecutive path from x to y in A then d+

H (x) < d+
H (y).

Proof. First note that no edge in e ∈ A\E contains two vertices in R, since if there is such an edge, e, then by Lemma
A we may assume that r1 is the predecessor of r2 in e and r1, r2 ∈ R. Now r2 is reachable by a consecutive path ending
in e, a contraction.

Assume |E|�2 and let er1 and er2 be two distinct edges in E(where r1, r2 ∈ R). By the above all edges containing
both r1 and r2 lie in E, which imply that |R|� |E|�(

n−2
k−2 )�n − 2. As R ⊆ V − {x, y}, the above implies equality

everywhere and R= V − {x, y}. By the above, if e ∈ A\E then e contains x, y and one vertex from R, which implies
that k = 3. A contradiction to n > k > 3. Therefore |E|�1.

Assume that |E| = 0, i.e., E = ∅. Let Q ⊆ V − {x, y} be any set of k − 1 vertices. Let e
Q
y be the edge in H with

vertex set {y} ∪ Q and let e
Q
x be the edge in H with vertex set {x} ∪ Q. By Lemma A (as y ∈ W and x ∈ X) we have

�(e
Q
y , y) − �(e

Q
x , x)�0. As for every edge, exy containing both x and y we have �(exy, y) − �(exy, x)�1, we note

that d+
H (y) − d+

H (x)�(
n−2
k−2 ).

Now assume that E �= ∅ and E = {e}. Let e′ contain the same vertices as e but such that e′ = ([W ′][R′][X′]),
where W ′ = Ve ∩ W , R′ = Ve ∩ R, X′ = Ve ∩ X. Let H ′ = H ∪ e′ − e and r ∈ R be arbitrary. We know that
�(exy, y) − �(exy, x)�1 for any arc exy containing both x and y, and there are (

n−2
k−2 ) such arcs in H ′. If r ∈ Q (and

e
Q
y and e

Q
x are defined as above, but in H ′) then we note that �(e

Q
y , y) − �(e

Q
x , x)�1 in H ′. As there are (

n−3
k−2 ) such

sets Q, we get that d+
H ′(y) − d+

H ′(x)�(
n−2
k−2 ) + (

n−3
k−2 ). In Hwe have to modify this bound by at most k (if e = exy and

�(exy, y) − �(exy, x)) = 1 − k in H or if e ∈ {eQ
x , e

Q
y } and �(e

Q
y , y) − �(e

Q
x , x) = 1 − k in H ), which implies that

d+
H (y) − d+

H (x)�(n − 2) + (n − 3) − k�(n − k − 1) + (n − 4) > 0.
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In the above two cases, we have both d+
H (y) − d+

H (x) > 0, i.e., d+
H (x) < d+

H (y). So Lemma B holds. �

Definition 2. If xaj1z1aj2z2 · · · zs−2ajs−1zs−1ajs y is a consecutive path from x to y in H(V, A), then H ′(V ′, A′) that
consists of V ′ = V and

A′ = A − {aj1 , aj2 , . . . , ajs } ∪ {aj1(x, z1), aj2(z1, z2), . . . , ajs (zs−1, y)},
is called a k-hypertournament obtained from H by reversing the consecutive path

xaj1z1aj2z2 · · · zs−2ajs−1zs−1ajs y.

Lemma 3. Suppose that s = (s1, s2, . . . , sn) is a degree sequence of a k-hypertournament H . If the degree of the vertex
x is sj , the degree of the vertex y is si(i < j), and there is a consecutive path from x to y, then S′(s+

i , s−
j ) is the degree

sequence of another k-hypertournament.

Proof. It is easy to see that the k-hypertournament obtained from H by reversing the consecutive path from x to y has
the degree sequence S′(s+

i , s−
j ). �

Lemma 4. Let n > k > 3 and S = (s1, s2, . . . , sn) be the degree sequence of a k-hypertournament H . If si �sj − 2,
then S′(s+

i , s−
j ) is a degree sequence of another k-hypertournament.

Proof. Suppose that the degree of y and x are si and sj , respectively. By Lemma B, we know that there is a consecutive
path from x to y. By Lemma 3, S′(s+

i , s−
j ) is a degree sequence of another k-hypertournament. This completes the

proof. �

Proof of Theorem 1. The necessity can be obtained directly from Lemma 1. It suffices to prove the sufficiency. We
may assume that n > k > 3 as the case when k = 2, k = 3 is already known and as the case when n = k is trivial. Each
non-decreasing sequence S=(s1, s2, . . . , sn) of non-negative integers can be considered as a partition of M=(

n
2

)
(
n−1
k−2 )

with n parts. Let �M
n denote the set of all partitions of M with n parts. Define S=(s1, s2, . . . , sn)�T =(t1, t2, . . . , tn) in

�M
n if and only if

∑r
i=1si �

∑r
i=1ti , 1�r �n, we know that (�M

n , �) is a poset. Let S̃ = (s̃1, s̃2, . . . , s̃n) be the degree
sequence of a transitive k-hypertournament. By Lemma 2,

∑r
i=1s̃i = (

r
2

)
(
n−2
k−2 ), ∀1�r �n. So any non-decreasing

sequence S = (s1, s2, . . . , sn) of non-negative integers satisfying (⊗) if and only if S̃�S, which means that all the
non-decreasing sequences satisfying (⊗) compose a subposet of �M

n containing all partitions � S̃. It is easy to see that
in this subposet T = (t1, t2, . . . , tn) covers S = (s1, s2, . . . , sn) if and only if there exist i and j such that i < j , si �sj −2
and T = S′(s+

i , s−
j ). Then for any non-decreasing sequence S satisfying (⊗), there would be a sequence of partitions

S1, S2, . . . , Sl , such that S̃ is covered by S1, S1 is covered by S2, . . . , Sl is covered by S. Since S̃ is the degree
sequence of a transitive k-hypertournament, by using Lemma 4 recursively, we obtain that S is a degree sequence of a
k-hypertournament. �
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