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Abstract

We consider the first-order formalism in string theory, providing a new off-shell description of the non-trivial backgrounds around an “infinite
metric”. The OPE of the vertex operators, corresponding to the background fields in some “twistor representation”, and conditions of conforn
invariance results in the quadratic equation for the background fields, which appears to be equivalent to the Einstein equations with a Ke
RamondB-field and a dilaton. Using a new representation for the Einstein equationspwigid and dilaton we find a new class of solutions
including the plane waves for metric (graviton) and Bwield. We discuss the properties of these background equations and main features of the
BRST operator in this approach.
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1. Introduction of classical gravity. For such backgrounds it is not even clear,
whether a traditional sigma-model formalism can help in find-
String theory in non-trivial background is a very compli- ing a two-dimensional conformal field theory, corresponding to
cated problem. In contrast to the flat-space case, where thbeir quantization.
perturbative amplitudes can be computed by calculation of the String theory is usually formulated as a perturbative expan-
Gaussian integrals, generally one has to study a non-triviadion of certain non-linear “string field theory” around some
sigma-model, which is rarely equivalent to an exactly solvabldackground classical solution to its equations of motion. Even
two-dimensional conformal field theof¥]. The connection be- suppressing all string loops and in the limit of vanishing string
tween the clear space—time sigma-model picture and axiomatiengtha’ — 0 it has to reproduce the highly non-linear Einstein
cally formulated two-dimensional conformal field theory is of- equations on the background fields, containing all powers of
ten hidden, and sometimes is not even clear on fundamentgerturbation, being expanded around the flat-space background.
level—as in the case @dSs x S° [2] and pp-wave backgrounds Since perturbative expansion generally depends on the back-
[3] for ten-dimensional superstring. One of the possible ideaground, it seems reasonable to start with studying some simple
(with recently renewed interest) is that string theory of grav-ones for this purpose. In this Letter we propose to start with a
ity can be more successful, being considered in vicinity of &ind of “Gromov-Witten” backgroung], with the infinite tar-
background, which is singular from conventional point of view get space metric and the-field G, ; = +B; ;! it turns out that
theory drastically simplifies in this limit, and can be described
_— in terms of a conformdirst-order system.
Ef’r;;fgggr‘lgi?fézgc@nep.r (AS. Lose)mars@lpi.u ~ Hence, we are going to study the first-order formalism
mars@itep.rfA. Marshakov) zam@math.ipme.r(A.M. Zeitlin). in string theory, based on thB/2-tensor power of the free
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tion ghosts; during past years different two-dimensional firstwith the weight(0, 0), the volume element i#%z = i dz A dz.
order field theory models were extensively studied, see e.gAction (1) corresponds to thB /2-th tensor power of (holomor-
[5-10]. We demonstrate, that this formalism describes the stringhic and anti-holomorphicy = 2 first-order conformal field
theory around the infinite-metric background (accomplishedheory, where the multipliers are labeled according to some
with the infinite B-field), which, being defined precisely, nec- choice of the target space complex structare=1, ..., D/2.
essarily requires the target-space complex structure. One of tiéhe equations of motion following from the Lagrangidjpro-
main advantages of this formalism is that the vertex operatovide the non-trivial operator product expansions (OPE):
perturbations of the first-order action correspond generally to
theoff-shell background fields in the “light sector” of the target- Xi(z1)p: - J
. 1)pj(z2) +-,

space theory. Due to absence of the self-contractions between 71— 22
the co-ordinate fields themselves, most anomalous dimensions oSt
vanish and there are no higher-spin states, causing complica= E)p;j(E2) ~ = S 2)
tions in conventional formulation of the theory. 1—22

In order to get generic background, one has to perturb thigit is convenient to keep here explicit-dependence), and there
theory by the set of all marginal fields, and the vertex operatoare no singular contractions between theand p-fields them-
perturbations of the first-order theory are adequately formulatedelves.

o8

in terms of certain “twistor” variableg'/, 1/ (together with its To study the theory with the actidd), let us, first, perturb it
complex conjugated/) and b, ;, which have clear algebraic by the following vertex operator:
origin and whose connection with physical background fields 1 _

. X . L V, = g”(X X)p‘[)? (3)
G,w, By and dilaton field® is rather non-trivial. We study "¢ = 5./ ’ tFj

conditions for thesg fields t_o be marginal and exactly mar_glnaéO that the full action becomes:

(absence of the/1z|“-terms in the operator product expansions 1

(OPE)_ of the vertex operators) and_ derive the fleld_ equatmngg _ / /dzz (piéxl +praX — g”pip;). (4)
of motion. These constraints in the first-order formalism appear 2ra

to have more rich structure, than in conventional sigma-model _ _ _ _ )
approach and we analyze the resulting equations of motion, in On classical level, solving equations of motion farp, one

particular, the bilinear equation to the inverse megié (see  Mmmediately finds that the actid#) is equivalent to:

)

Eq. (17)) from the point of view of target-space gravity and al- 1 ) S viav]
gebraic structure of the theory. Even restricted to a very special = 5 7 fd 28;j0X0X
class of perturbations of the forgi/ p; p- we obtain the set of b

linear and quadratic equations for the background fields, whose 1 2 = v

solutions (together with conditions that the background fields — m/d 2 (G + Br)dXTOX, ®)

are primary) appear to be solutions of the full non-linear sys- 2

tem of Einstein equations for the background physical fitlds. where, v run now over both holomorphic and antiholomor-
Finally we are going to discuss briefly some non-perturbativghic indices, whileG and B are the symmetric Riemann metric

aspects of possible application of the first-order formalism. Irand antisymmetric Kalb—RamorHield correspondingly. The

particular, we note that disappearance of the higher-spin fieldshysical fields should obey the constrad?yt]f =-—B.;or

and conventional on-shell condition was observed recently in

[11] where the infinite metric of the AdS-like backgrounds wasCik = 8ik- Bip=—8i- (6)

generated by thick stack of D.-branes. [n thi_s Letter we wiII.not Note, that the operatd8) contains the inverse metr'gf’f,

really go beyond the quadratic approximation and only brleﬂywritten in terms of the target-space holomorphic and anti-

speculate on possible BRST structure of the model. holomorphic co-ordinates, and, therefore, is a perturbation of
] (1) around theinfinite metric background (with the infinite
2. Thefirst-order theory Kalb—Ramond field).
) ) _ _ However, in quantum case the integration measure should
Let us start with a two-dimensional conformal field theory pe taken into account. For the first-order systehit is de-
(CFT) with the first-order actiofd]: termined by the holomorphi®/2-form 2 = 2(X) =dXx A
.-+ AdXP/2, After integration over the-fields

ijr

So=

d%z (pidX' + p-ax'), 1
Zm,/ z(pioX' + p;0X") (1)

J [dp] [dﬁ]e—sg[x,)'(,p,ﬁ] N e—S[X,X]-F% [5d?zVhRlog /g @)

where the momentunp, p-fields are the(1, 0)- and (0, 1)-

. . ) we arrive at the standard sigma-mog®), where the measure
forms correspondingly, while the co-ordinatés X are scalars

is determined with the help of non-degenerate target-space met-
ric. The difference in two measures leads to appearance of the

_— . l . .
1 One could expect this generally, since cubic terms in these equations shoufélaton o fdzZ VhR log /g term in the actior(7), related to
be of higher order in’. determinant of the ultra-local operator.
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Indeed, integration ir(7) over the momenta, p naively  which can be rewritten in the conventional for(®) with an
leads to the (infinite) factof|. . 5 detgi]f(X (z)), which plays a  extra dilaton ternj12]
role of a factor, that turns the measure determined by holomor-
phic form £2 into the measure determined by non-degenerate& =

- 1
/dzz (G,uv—i-Buv)aX“aXU—i—g/.dZZ\/ER@

/!

metricg. However, the “number of factors” in the infinite prod- « (12)
uct is the (infinite) number of one-forms, while the number of , , g
factors needed to complete the measure onitHelds equals with G, B f.;mdcb now (compare to the previous section) defined
to the (infinite) number of functions (or zero-forms). It is well @S follows:
known, that difference between these two infinite numbers is fi; =i ] ~i ]

X 1 X X G’: <. ——‘f_ ’—b” B’: <. - — ’—b”
nite and equals to the arithmetic genus 1 of the world-sheet, ~ *f 8ij M‘YMT" Bsk ] sk sk = 8ij fisﬂk ‘?Sk sk
oris proportional to the integral of the scalar curvature along th&;; = _gl.j,zg - gsj—.,zif, G;= _g§jul! - glfju,é,
surface. If we regularize this anomaly, say, with the help of mas- r i _ _
sive regulator fields, it becomes “locally distributed” along the Bsi = gS;Mi] - g,juﬁ, By = g;»juﬁ - gsjul{,
world-sheet, and this is a shortcut to understanding the dilatog, _ |oqg J3. (13)
term (7).

Another way to test the validity of7) is to consider the 3 \ain result

target-space holomorphic transformatioX’ = v’ (X), dp; =
—EPJS%-_The corresponding curreptv’ (X) obeys the anom- Let us now analyze the conformal invariance of the first-
aly equation order theory, perturbed by a single vertex opergtop; p; (3).

The OPE of3) with the stress-energy tensBe= — (o) ~p; 9 X’
(and its counterpart of opposite chiralify= —(a')"*p;3 X’),
computed at some fixed point of the world-sheet. That is in percorresponding to the first-order syst¢i) reads:

fect agreement witl(7): one has to take into account that get I Nl if
is the ratio of two measures in the target-space, determined by (@)~ PidX (2) - (@) "¢ pip;(z)

Apiv' (X)) = %Raiv"()() = %Rﬁvlog.@ (8)

metric and by the holomorphic top for® correspondingly. _ 1 5. ol (@)
The anomalous currer8) naturally suggests considering the (7 —z/)3 18P\
charges: 1 1 1
1 1 J(mgupipj(z/) + m@’é’”PiP;(Z’))
— i . — . i
= g P Opie o= o bdze 00X L 1)
s1 s1

9) Two last terms in the r.h.s. ¢i.4), proportional to(e’) "1, are
together with their complex conjugatéq andF,, generating standard singular terms from the OPE of the stress-tensor with
(O]

the symmetries of the first-order acti¢t); their properties are primary field of unit dimension, so that, being integrated over
studied inAppendix A ’ the world-sheet it becomes co-ordinate invariant, and they give

Now one can perturb the free actiét) by all possible op- no real constraints. However the first singular term in the r.h.s.,

erators of dimensioKl, 1), corresponding to more general de- pro_portion_al to(o_‘,)o’ is the ac_tion of thd.,-Virasoro operator,
formation of metric,B-field as well as the deformation of the WHich deviates it from the primary operator, unless
a_lljmost complex structurg by the Beltrami d|fferenuelll and 3igt =0, 9:g'1 =0 (15)
i; . The full perturbed action reads 4
quite similarly to conventional “second-order” conformal field

S=5 ! //dzz (pid X' + piaX — gi;p,'p] — ﬂ'l./TaXip/‘- theory [1], but arising herebefore any mass-shell condition,
T . L the same condition comes from eliminating the contraction of
—widX'pj —b;;0X'8X7). (10)  p; and X/ inside the operato(3) g'/ p; p; itself. Moreover,

contrast to the second-order formalism, where transversality
stifies itself as a gauge artefact, being proportional to the two-
imensional equations of motion and the total-derivative terms,
Pnaere the constrair{tL5) appears as an independent requirement
in the target-space description of the theory.

can be directly associated with the four independent terms i
the expansion (see formu{&.5) in Appendix A) of the tensor
product of representation spaces, corresponding to action of t
world-sheet symmetrig®) of the model. .

Again, on classical level, solving equations of motion for Consider now the OPE of wo vertex 35’%?)(185) of
p, b, one finds that this action is equivalent to the following the general structur®’ (z1)V (z2) ~ 3., j 5 gz

These background fields (to be called the twistor variablesg]

sigma-model: and calculate some important coefficienté/). For the ver-
, . s tex operators(3) the most singular term in OPE®9 «
S= o~ /d 2 (8;7(0X" — npaXx*)(9X/ — 138X") ()20 978"/ 9;9;¢"' does not contribute in the leading order

in o’ and we will not discuss it now. The next is (the only at the

- biiaxlaxj)’ (11) level (¢/)%) logarithmic divergence, coming from the double
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p, X contractions, i.e., We conjecture also that, as well as for the simplified model
1, .3 . EO ith the only perturbatiorf3), the conformal invariance of the
@1 _ (521 okl o okia_ily o / wi . _
a®? = (27%) (g 058" — dig 058" ) prpy+ O (@), model in general backgroundO) at the order(/)° is pro-
o (16)_ vided by the Einstein equations with Brfield and a dilaton
To make the theory conformally invariant it should vanish, i.e.,¢ = |og J3-
the background metrig'/ satisfies the “bilinear equation”:
- C—. 4. Special solutions
8" 0;0:8" — 9;g" 055" =0. (17) =
In the case of general Hermitian metriwe will show below An interesting question is to study the solutions of the sys-
that the conditions of conformal invariance for the first-ordert®m(17). A particular class of solutions was discussegli.
model(4) lead to the background Einstein equations with a dila0r example, one can show that E#j7) possess the following

ton, confirming the argument above. class of solutions:
This background equation is our new result, its algebraic ;j _ .ij ko XM 6k k-=0. k(37) =0
— , ik-=0, ki =0 andc.c.
properties are briefly discussed Appendix A it is quadratic 87 (kuX") &R i(8") (2(;3)
since the first-order theory corresponds to expansion of the . o o .
target-space theory around a singular background. where prime means the derivative of functigqis(y) with re-

One can check (se&ppendix B that the quadratic system SPect to its argument = k, X*. In the pure Kahler case one
of equationg17), being supplied by the “gauge conditioffs), ~ can write a solution
is indeed equivalent to the system of Einstein equations with a

1
Kalb—Ramond field and a dilatda2,13} gij =mij ThikfO), ' kiky =0, (24)
1 where f(y) is any function of the scalar produet= &, X*.
Ry = _ZH’W’ HUM’ +2V,V,®, (19)  Among these solutions one can find the plane waves, which are
in physical variables:
V, H"P —2(V, @)H* =0, (20)
G.;=n.7+e;;(Acogk,X") + Bsin(k, X")),
4(VM¢)2—4VMVM¢+R+iHMvaMV'OZO, (21) ij 771]+ z]( %M )+ (M ))
12 G,-jT = —B,-jT, km’leif =0 andc.c. (25)

where the change of variables from the “twistor variablgg"
to the physical metricB-field and dilatonG, B, @ is given by
the following expressions:

This means that the dilaton field, equal to lgg, provides the
plane waves for the5- and B-fields. One should also note
that in our caseB-field is pure imaginary (or the two-form
Gt = 8ik> Bip =—git @ =log./s. (22)  g;:dz' A dz) is anti-Hermitian). To make th@-field real, it
Note, that equivalence of the systet9)—(21)to Egs. (17) is necessary to considefr aan/_ not as complex conjugated
and (15) coming directly from OPE of3) in the first-order ~Vvariables, but as real ones withj = 1,..., D/2. Then the as-
theory (4), confirms the preliminary conclusion of appearancesoc'atEd two—for'm bpcomes Hermitian, but by obvious reasons
of the dilaton from(7). the metrngi]rdz’ dz’ acquires the signature@/2, D/2). An

Let us stress again here, that the first-order theory Corinteresting feature of these solutions is that they do not get ad-
responds to a singu|ar-background expansion of the Einsteiﬁitional o’-corrections in the world-sheet perturbation theory,
equations(19)—(21)and, therefore, in order to make equiva- Since each loop diagram obviously contributes with the terms,
lence with the bilinear equatiofl7) of the first-order theory Vanishing due t¢23).
one has to use explicitly the gauge condit{@5), as required
by conformal field theory1). In the common sigma-model ap- 5. Concluding remarks
proach, corresponding to expansion of the acfi®?) around a
non_singu|ar background' de;w = Nuv + huv, the “gauge" 5.1. Remarks on D-branes near the AdSthroat
termsd, h*¥ = 0 can be eliminated by a prescription that the ) ) )
terms proportional to the two-dimensional equations of motion One of the attractive special features of the proposed first-
and total derivatives are cut off. However, in the singular backorder formalism is natural disappearance of the on-shell condi-
ground of first-order theory4) there is no linear approxima- tion (as a linear equation on vertex operator) together with the
tion for the background field equatio(k?), i.e., the “reference  Simultaneous disappearance of the higher-spin fields or Regge
point” of expansion is singular from the point of view of the descendants from the theory. Physically this phenomenon is a

this point to be a delicate issue. fields do not have contractions with themselves. From the point

of view of two-dimensional conformal theory this kills the
e~ o N ~anomalous dimensions of the plane waves and these anomalous
For the Kahler target-space metgc;j this condition leads to the vanish- dimensions cannot compensate therefore the dimensional poly-
ing Ricci tensor, and while gauge conditi¢tb) is equivalent to the constant ; S . ]
determinant. since nomials of the derivatives of the co-ordinate fields.
o i i Similar phenomenon has been already observefiLij,
0=20;g/g -=—g" 0,8, :=—g" g, - =—0;logg andc.c (18)  when D-brane is placed in the vicinity of the AdS throat.
kj kj ij
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Clearly, near the throat the metric tends to infinity, and that exAppendix A. Algebraic structure of thefirst-order theory
plains the observed i 1] effects in a rather similar way to how

it happens the formalism we have discussed in the Letter. In this appendix we consider the properties of the symme-
tries, generated by the operat@®. The singularities coming
from internal contraction&) should be avoided by the vanish-
ing of divergences;v’ = 8;1;" = 0. Application of (9) to the

. . . . . vertex operatoiV, (3) generates the transformations of fields,
Our success in reproducing the solution to the Einstein equa- P ¢ 39

H 1 /.
tions (19)—(21) in expansion around the singular first—orderWh'_Ch 1S, to the_ordea_. ) o )
background motivates the study of all perturbations, whichs, ¢/ = —v¥g, ¢’/ — i*o;¢'/ 4 870" g" + Bv/g™* + O ('),
should lead to the picture completely equivalent to the full set i ,
of Einstein equations. One can hope, that the Einstein equatior‘?@g = Ol )_’. -
in the language of string theory (in particular, of the proposedSw/,Ll{ = al-.d),;gk/ — 3,;5);gk'/ + 0(),
first-order theory) look like a kind of the Maurer—Cartan equa- -

5.2. Homotopic dreams

tion Swlt] = djog" — g + 0 @), (A1)
i.e., n, generates the holomorphic coordinate transformations,
QY +ma(W, W) +m3(¥, ¥, ¥) +---=0, (26)  andr, is the generator of the gauge symmelry> B + Do +

_ o Dé (D and D are here théarget-space Doulbeaux operators),
where Q is the BRST operator in given background (seeyhich becomes clear, rewriting it for ti@- and B-fields (13):
e.g. (A.9)), ¥ is a (generalized!) vertex operator deform-

ing the action, containing generally the polyvertex fields, andw Buy = dywy — duwy + 0@,  8,Guw = 0(@). (A.2)
my (¥, ..., ¥) are some operations in conformal theory, corre-The algebra of the chargég) is
sponding to given background. E¢%7), (15)we have derived,
correspond to [(Mogs Pyl = Mg, 01] + & Tos(vr,09)s

(7w, nv]zrﬁvw’ [ra)la rwz]zo, (A-S)
QW =0, my¥,¥)=0 (27) o ) L
where w,(v1, v2) = 5(V50,0v] — ndkv19V5), Lywp =
for the deformation(3). We expect that the conjectured set 9;wy v’ + w; v’ is a Lie derivative, and the same algebraic
of Eq. (26) would have a large symmetry group, promoting relations hold for the charges of the opposite chirafity 7.
¥ — ¥ + Qe to non-linear level, and that the operations This is a deformation of the semidirect product of the algebra of
my (¥, ..., ¥) would satisfy certain quadratic equations like for holomorphic coordinate transformations and théield gauge
homotopic structures. We should also stress here that the cotransformations, where in the limif — 0 the extension disap-
jectures higher operations are generally background dependgm¢ars. One can also introduce a non-degenerate inner product,
and we hope that within the proposed first-order formalism theynvariant under the adjoint actiof,:
could appear in the simplest possible form. We postpone the

discussion of general deformation of the BRST operator an@vs v2) =0, (P s Twp) =0,
structure of Eq(26) for a separate publication. (. Foy) = / v (X (X)2(X), (A.4)
Acknowledgements where £2 is a holomorphic volume form and the integral is

taken along the half-dimensional target-space cycle. It means
that vector fields’ and one-formsv; correspond to the dual
representation¥ and V* of the algebrgA.3) (already studied

in [15]) and these representations provide a natural algebraic
structure of the background perturbatidi®)
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conformal weightg1, 0) and (0, 1) correspondingly. In terms Indeed, usindgA.6) for the operatof3), one can write fo(17)
of (A.6) the transformation formulg#\.1) can be written in the -

form of adjoint action: g" o, B;gkl_ - 3igk'73;gil_
s,V = In U @U; + 3 s ® T, Uy, = Y ((pody) W] o5uy) — Wy odf) U] o5Uy)).
1 1 Lr
i i (A.12)
5wV=Z[rw,U1]®U1+ZU1®[f5;,U1]- (A7)

wherel/; =i (X) andi/; = Ui (X) are holomorphic and anti-
] ) ] _holomorphic “blocks” for the background metric field. Multi-
SymmetriegA.1) are consistent with the conformal propertlles plying (A.12) from the right byd, 3; one can rewrit¢A.12) as

of the model and, in the most compact way, this can be written

I I

as (gijaiajgki— 3igkf3,‘-gii)3k3[
— i — 51— 1
[Q.cny]=1Q, cn] =0, [Q,crol =10, cra]l =0 (A.8) :Z[UI,UI’]EI{)I’ZEZ[ULUI’][EI»{)I’]:Q (A.13)
commutativity with the BRST operat¢t 6] for the free first- Lr Lr
order theory(1)

where we have introduced vector fields = u;'a,- andv; =

o 3 i5-. For the r.h.s. ofA.13) it is convenient to use the notation
Q:%j, J=jdz— jdz, j:cT+:bcE)c:+582c, U ( )it ven! ! I

51 (V. VI](X.p.X. p)

j=&T +:b&é: + 5325, (A.9) = U Uy I(X, p) ® (U, U (X, p), (A.14)
1,J
where thel” = —(Ot’)_lpia_xi andT = —(04’)_117_{5)([ are cor-  sp that Eq(17) can be interpreted as vanishing of the double-
respondingly holomorphic and antiholomorphic components oommutator(A.13), (A.14)in some algebra, naturally acting in
the energy—momentum tensor, @na (andb, ¢) are reparame-  the tensor product of the holomorphic and antiholomorphic sec-
terization ghosts. tors of the first-order theory. We believe that this is an algebraic

The OPE(14) can be also encoded into the commutationstructure naturally related with the theory of target-space grav-
relations of the BRST operat@h.9) with the fields, which are: jty.

[0, ¢hj,] = hcaﬁbh,f, + /715545;,,[, + 8C¢hjl + 55¢>hj1,

[0, c] =cdc, [0,b]=T +T%, andc.c (A.10)  Appendix B. Relation between twistor and physical
variables

where ¢, j, is a (primary) field with the conformal weights

(h,h). DenotingecV = ¢©, Vv =¢®@, cv — v =¢D, for We use the formulas from Appendixof the book[17]:

the vertex operatoV with conformal weightgh, k) = (1, 1), 1

one can easily obtain the simple relatioi@, ¢@1 = d¢V',  puwv _ _ZGeBy 5, GHv _ puv 4 prap o (B.1)

(0,61 =dp®, [0, 1 =0 andIQ, [, $?1 = [, 62, 27 " “

where M is some two-dimensional manifold with a boundary. where

Below we consider the deformation of the BRST operator for 1

the non-trivial background in the first-order theory and inter-I'*" = G** G’ ', Tyo = E(ap Ic+0,T,) — F/;’U r,,

pret the equations of motion for the background in terms of the 1

deformation theory for the BRST operaf@.9). We find that 7 — G“ﬁaﬁ(;w — 5av log(G). (B.2)

for generic perturbation thig1-term should be supplemented
by the singular contributions from OPE of two vertex opera-Remember that in our cagg G*# = 0, this leads to the simple

tors, giving rise to (a linearized version of) some generalizedelation: I, = —%Bv log(G). Thereforel,, = -2V, V,®, for
Maurer—Cartan equation. the® =log /g, whereg is the determinant of matriy; ;. Now
Eqg.(17) can be also rewritten in the form: let us study the third term itB.1): first, for the components of

F;ﬂ, one has:
lim yﬁ (d2 GGV () = dZ eV ())e(@ERV(2) =0,

€,a’—>0

Ce.. !

= Lo Gt + 01
rs — 2g r8ks s8kr)>
(A.11)

whereCe . is a small contour around the pointand this form 1. = Egik(a;gr/; —9;g,5) andc.c, (B.3)

is used below for studying connection with the BRST opera- . _

tor. From the point of view of Sectiof the bilinear structure While aﬂ other components vanish. Therefore, one finds that
and holomorphic properties ¢A.11) lead to appearance of a ! ,; = 3 Hj;,., hence the third term i(B.1) provides contribu-

double-commutator if one rewritel7) in the algebraic form. tion of the H2-type, with an additional term it I" for i =i
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andv = j:

< : 1 - < - < .=
Ft,klrk]l — —Z(gkrafgh +g[’8;gk’)g]p(3kg,31 + 8lgﬁk)

1 = T - T .=
=~ (e 0rg" — & 0:8"") g7 hgp — dugp)

—gkfafg“gjﬁazgﬁk

1 < . Kl - .
= _ZHllekjl + 3fglk3kg”,
which, however, cancels with the first term in the r.h.g(Bfl)
due to Eq(17). Thus, unifying all the information we have got
the relation(B.1) can be rewritten as:

(B.4)

1 A
RMY = —ZH” PHY, +2VIV'®. (B.5)
Similarly, one can prove the following relation:
1
4V, @)% -2V, VI — & Hyup H'" =0. (B.6)
Namely, let us start with, @ = 3¢9, ¢7,, i.e.,
2V, 0)% = g0, 87,8" ¢ ;.85 (B.7)
and
—VuVI P = —g" 0 (" 0;87) + 'V I8 O
+8" 17 g oz g (B.8)
Using(B.3) we arrive at
T, 1 <. l— T, — 1 ) Pl
g, =58 og8 . 8T =58 agie"
(B.9)

The sum of(B.7) and (B.8)can be rewritten in the form:

(Vu®)? — V, ViD= —g' ("9, 7,).- (B.10)

The H?-term equals to:
1 HMvP — __Hijflz
g Huwve = H;ji

= (— g7 + 9780 (— 058" ¢ + 08" g")
(B.11)

One finds now, tha(B.6) is satisfied due t¢17). Combining
(19) and (B.6)ne obtaing21).

The third equation one can get by simple analysi¢137),
ie.

= 2" 08,7058 — 208,78 958"

d (8” angl - girarg;l) =0 andc.c.

(B.12)

381
leads to relation:
HM =0 andc.c. (B.13)
and identity
o (gffa,g’;’ — g’zra,g’_") =0 andc.c. (B.14)
yields:
yH'* =0 andc.c. (B.15)
These relations can be summarized as:
V, H" —2(V, @)H"P = 0. (B.16)

Note here, that in the case of Kahler mejiit is easy to show,
that one does not need additional gauge consttatto prove
the coincidence of Eq17) with the vacuum Einstein equation
R;-=0.

J
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