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a b s t r a c t

The invariant shapes for close formation flying with inter-craft electromagnetic force
ensure several potential space applications. However, the 6-DOF relative equilibrium
problem has not been systematically investigated. This paper mainly analyzes the
invariant shapes of relative equilibrium for the three-spacecraft electromagnetic forma-
tion, and studies the families of invariant shape solutions with real and constant magnetic
moments as well as their linear stability. The problem is examined based on the full
nonlinear coupled dynamic models for collinear and general triangular configurations.
The relative equilibrium conditions are analyzed to determine whether an invariant shape
do exist, and the corresponding families of invariant shape solutions are identified for
static and spinning configurations respectively. Finally, the linear stability of such
invariant shapes is numerically discussed, which have shown that most invariant shapes
are unstable and controllable.

& 2013 IAA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Close formation flying of spacecraft with separation distances on the order of tens of meters presents several potential
space applications, such as high resolution space-based imaging, spacecraft cluster, as well as wide-field-of-view optical
interferometry. NASA has proposed the application of this type of formation to Terrestrial Planet Finder [1]. Propellant
consumption and plume contamination coming with conventional chemical propulsion are the particular challenges for
close formation flying. An attractive operational approach is applying the non-contacting inter-craft forces such as Coulomb
forces or electromagnetic forces to effectively offset above shortages and offer continuous reversible and synchronous
controllability to improve the precision of formation control. Coulomb formation [2] is by actively controlling the charges
on various spacecrafts to control the relative positions, but the shielding effect caused by the space plasma restricts its
application only in GEO or higher altitudes. Electromagnetic formation flight (EMFF) [3, 4] is proposed by using the magnetic
fields electrically generated by superconducting magnetic coils equipped on all crafts, and generating coupled electro-
magnetic force and torque to control the relative trajectory and attitude. As an emerging approach of propellantless
formation flying, EMFF allows better control authority and broader space applications.

One of the particular interests in close formation flying actuated by internal forces is invariant shapes with constant
actuation, which satisfy the requirements of relative equilibrium. Here the formation maintains a fixed geometry and
behaves as a single rigid body in orbit, making it convenient for formation keeping and control. Such formations are either
static with respect to the orbital frame or spinning around the collective center of mass, both of which are interested
d by Elsevier Ltd. All rights reserved.
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in whether or not a possible shape exists with real and constant actuation, and how the internal force influences the
feasibility and stability of invariant shapes. These problems serve as the inspiration for the current work.

In recent years, a significant amount of investigation on the relative equilibrium with Coulomb force has been done.
Schaub [5] proposed necessary conditions for a charged static formation to exist. Berryman [6] determined the analytic
charge solutions for two- and three-craft static Coulomb formation. Natarajan [7] investigated the relative equilibrium
stability of two-craft Coulomb formation along orbit radial, along-track and normal direction, respectively. Inampudi [8]
analyzed the linearized orbit radial dynamics and stability of a charged two-craft formation at the libration points. For the
spinning case, Schaub [9] showed that the spinning two-craft Coulomb configuration is passively stable. Hussein [10] laid
the groundwork for determining invariant shape solutions for the spinning three-craft Coulomb formation first, and
illustrated a few particular invariant shapes with constant charges. Further, Hussein [11] derived the general conditions for
the spinning charged three-craft equilibrium and examined equal mass collinear solutions to be unstable. Wang [12]
developed a Lyapunov based nonlinear control strategy for a charged three-craft equilibrium collinear configuration. Hogan
[13,14] proved that for any desired invariant three-craft collinear shape an infinite set of real charge solutions always exists,
and described the discovery of families of multiple invariant shape solutions with set charges, as well as the linear stability
analysis.

In contrast to Coulomb formation, formation flying with inter-craft electromagnetic force is not limited by the orbital
altitude, and more importantly, the relative equilibrium is a 6-DOF problem since the relative attitude motion caused by
coupled electromagnetic torques should be considered as well. In the field of EMFF, MIT [15–18] has systematically studied
the problems of dynamics, control and ground experiment, but the research on relative equilibrium remains less. Miller [19]
and Kong [20] analyzed the feasibility of electromagnetic force on spinning five-craft arrays maintenance as needed for TPF.
Hussein [21] described the conditions of relative equilibrium for a planar three-craft magnetic formation, and identified
three particular spinning configurations to be unstable. However, previous work is merely on symmetric cases to offer a few
particular solutions, and gravity is always ignored for simplicity. In this sense, the electromagnetic equilibrium formation
has not yet been systematically studied.

With above considerations in mind, this paper mainly analyzes the invariant shapes of relative equilibrium for three-craft
electromagnetic formation, and describes the families of invariant shape solutions with real and constant magnetic
moments, as well as the linear stability analysis on such formations. The remainder is organized as follows. Firstly, the
6-DOF nonlinear coupled dynamic models for collinear and triangular configurations are derived based on the Kane method.
Secondly, the relative equilibrium for static and spinning three-craft electromagnetic formation is analyzed, and the
invariant shape solutions of varied configurations are identified. Thirdly, the linear stability for different families of shape
solutions is numerically discussed. Finally, some conclusions are safely put forward.
2. Problem formulation

The scope of this paper is limited to a three-craft electromagnetic formation operating in a circular orbit, and formation
control is enabled solely by the electromagnetic forces and torques among spacecrafts. As depicted in Fig. 1, the position
vectors from formation center of mass OCM to each of the three crafts are defined as ρ1; ρ2; ρ3 respectively, and ϕ is the
angle between ρ1 and ρ2. Each craft is treated as a uniform spherical rigid-body with mass mi, and three superconducting
magnetic coils are equipped orthogonally to generate a steerable magnetic moment μi, where i¼ 1; 2; 3.

For analysis convenience, three kinds of reference frames are introduced as follows. Orbital frame OCM�x̂CMŷCMẑCM
is noted as ℋ with its origin at OCM , the x̂CM ; ŷCM ; ẑCM axes align with orbit radial, along-track and normal direction
Fig. 1. Three-spacecraft electromagnetic formation. a) General triangular three-craft configuration and b) Collinear three-craft configuration.
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respectively. Formation fixed frame OCM�x̂BŷBẑB is noted as ℬ, with its origin attached to OCM , and three axes are fixed with
the principal inertia axes of the formation. Body frame Obi�x̂biŷbiẑbi is noted as ℬi, with its origin attached to craft-i center of
mass Obi, and three axes are fixed with the magnetic coils. ℬi can be obtained by rotating ℬ as 3-2-1 Euler angles (αi; βi; γi).
Note that all the dynamics and analysis in this paper are developed in ℬ.

It is well known that a three-craft formation is either collinear or triangular. Actually, the collinear configuration is
a special case with ϕ being equal to 0 or π, so only the relative distances are required to describe the formation geometry.
Moreover, the orientation from ℋ to ℬ for a 1-dimension structure could be represented by only two Euler angles, while
rotations around symmetric axis can be neglected with principal inertia assumption. On this account, the 6-DOF dynamic
models for collinear and general triangular configurations would be developed respectively.

Before deriving the equation of motion for three-craft formation, the models of electromagnetic force and torque are
introduced. Based on Ref. [16,17], the analytical far-field dipole model gives accurate results when the separation distance is
many times the coil radii. Against the background of close formation flying, we use far-field dipole model to study the three-
craft electromagnetic formation problem in this paper. The magnetic field on craft-i due to craft-j is defined as

Bijðμj; ρijÞ ¼
μ0
4π

3ρijðμjρijÞ
ρ5ij

�μj

ρ3ij

 !
ð1Þ

where μ0 ¼ 4π � 10�7 H=m is permeability of free space, ρij ¼ jρijj ¼ jρj�ρij, and μj ¼ ½ μjx μjy μjz �T. So the electromagnetic
force and torque on craft-i due to craft-j can be written as

FEMij ðμi; μj; ρijÞ ¼�3μ0
4π

μiμj

ρ5ij
ρijþμiρij

ρ5ij
μjþμjρij

ρ5ij
μi�5ðμiρijÞðμjρijÞ

ρ7ij
ρij

� �
τEMij ðμi; μj; ρijÞ ¼ μi � Bijðμj; ρijÞ

8><
>: ð2Þ

Note that the electromagnetic force and torque applied on craft-i are due to the field interaction with all other crafts, so
we can obtain

FEMi ¼ FEMij þFEMik ; τEMi ¼ τEMij þτEMik ðia jak¼ 1; 2; 3Þ ð3Þ

In addition, since the electromagnetic effects are internal to the formation, the electromagnetic forces applied on two
crafts are equal and reverse, then FEM

ij ¼�FEM
ji . Moreover, electromagnetic force and torque cannot be used to affect

the motion of the formation center of mass, and the angular momentums influenced by internal force satisfy the law of
conservation, so we have

∑
3

i ¼ 1
ðρi � FEM

i þτEMi Þ ¼ 0 ð4Þ
2.1. Collinear formation

Similar to the study of rigid axially symmetric body under the influence of the gravity, there are three relative equilibriums for
collinear three-craft electromagnetic formation, which are along the orbit radial, along-track and normal direction. In particular,
our previous work on two-craft case has shown that orbit radial equilibrium and along-track equilibrium share same coupled
characteristics, which is similar to the conclusion on two-craft Coulomb formation in Ref. [7]. For three-craft collinear problem,
an analogous deduction could be introduced as well. On this account, we only derive the models of along-track and orbit normal
configurations for simplicity.

Without loss of generality, consider a three-craft collinear configuration as shown in Fig. 1(b). From the definition of the
formation center of mass, we have

m1ρ1þm2ρ2þm3ρ3 ¼ 0 ð5Þ
Thus, if once the position vectors ρ1; ρ2 are given, the vector ρ3 is also determined implicitly, so we could choose

ρ1 ¼ jρ1j40 and ρ2 ¼ jρ2j40 to define the geometry of collinear configuration.
For the along-track configuration, the three-craft collinear formation nominally aligns with unit vector ŷB, then

ρ1 ¼�ρ1ŷB; ρ2 ¼ ρ2ŷB; ρ3 ¼ ðm1ρ1�m2ρ2Þ=m3ŷB ð6Þ
As shown in Fig. 2(a), the (3-1) Euler angles (θ; ψ) are used to represent the orientation of ℬ with respect to ℋ. As such,

choose the generalized coordinates as

q¼ q1 q2 q3 q4 q5;8;11 q6;9;12 q7;10;13
h iT

¼ ρ1 ρ2 θ ψ α1;2;3 β1;2;3 γ1;2;3
h iT

ð7Þ

Restricting our research to cases where the formation center of mass travels on a circular orbit, based on the definitions
of relative orientation angles θ; ψ and relative attitude angles αi; βi; γi, we can derive the inertial velocities and angular



Fig. 2. Geometry of equilibrium for three-craft collinear electromagnetic formation. (a) 3-1 Euler angles for along-track equilibrium and (b) 2-1 Euler
angles for orbit normal equilibrium.
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velocities for each craft in terms of x̂B; ŷB; ẑB, and the generalized speeds can be defined as

u¼ u1 u2 u3 u4 u5;8;11 u6;9;12 u7;10;13

h iT
¼ _ρ1 _ρ2 _θþΩ _ψ ω

ℬ1;2;3=ℬ
x ω

ℬ1;2;3=ℬ
y ω

ℬ1;2;3=ℬ
z

h iT
ð8Þ

where Ω¼
ffiffiffiffiffiffiffiffiffiffiffiffi
μ=r3cm

p
is the constant orbital rate, μ is gravity constant, rcm is the radius of the circular orbit of formation center

of mass, ωℬi=ℬ
x ; ωℬi=ℬ

y ; ωℬi=ℬ
z ði¼ 1; 2; 3Þ are the components of the relative angular velocity of craft-i with respect to ℬ,

which are defined as

ωℬi=ℬ ¼
ωℬi=ℬ
x

ωℬi=ℬ
y

ωℬi=ℬ
z

2
664

3
775¼

_βi sin αi�_γi cos αi cos βi
�_βi cos αi�_γi sin αi cos βi

� _αiþ _γi sin βi

2
64

3
75 ð9Þ

Additionally, after defining the partial velocities and partial angular velocities of each craft, the generalized inertia force
and generalized active forces are derived based on Kane method, and the equations of motion associated with each
generalized speed are obtained by setting the sum of the corresponding generalized inertia force and generalized active
force as 0. The equations of motion for along-track collinear configuration of three-craft electromagnetic formation are
shown as

_u1 ¼ q1ðu2
4þc24u

2
3Þ�f 1yþΣy

_u2 ¼ q2ðu2
4þc24u

2
3Þþ f 2y�Σy

_u3 ¼ 2s4
c4
u3u4þ 1

ððm1q1�m2q2Þ2 þm3ðm1q21 þm2q22ÞÞc4
m3m1q1ðf 1x�f 3xÞ�m3m2q2ðf 2x�f 3xÞ
�

þ2ð�m2
1q1þm1m2q2�m1m3q1Þu1u3c4þ2ð�m2

2q2þm1m2q1�m2m3q2Þu2u3c4Þ
_u4 ¼�s4c4u2

3þ 1
ðm1q1�m2q2Þ2 þm3ðm1q21 þm2q22Þ

�m3m1q1ðf 1z�f 3zÞþm3m2q2ðf 2z�f 3zÞ
� �

þ2ð�m2
1q1þm1m2q2�m1m3q1Þu1u4þ2ð�m2

2q2þm1m2q1�m2m3q2Þu2u4

_u5 ¼ τEM1x =I1� _u4; _u6 ¼ τEM1y =I1�ð _u3s4þu3u4c4Þ; _u7 ¼ τEM1z =I1�ð _u3c4�u3u4s4Þ
_u8 ¼ τEM2x =I2� _u4; _u9 ¼ τEM2y =I2�ð _u3s4þu3u4c4Þ; _u10 ¼ τEM2z =I2�ð _u3c4�u3u4s4Þ
_u11 ¼ τEM3x =I3� _u4; _u12 ¼ τEM3y =I3�ð _u3s4þu3u4c4Þ; _u13 ¼ τEM3z =I3�ð _u3c4�u3u4s4Þ

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð10Þ

where si; ci denote sin qi and cos qi for short, Ii is the principal inertia of craft-i, f i ¼ fgi þfEMi is the combined acceleration of
gravity and electromagnetic force applied on craft-i.

Σy ¼
μ

M
rcms3c4

m1

r31
þm2

r32
þm3

r33

 !
þm1q1

1
r31
�1
r33

 !
�m2q2

1
r32
�1
r33

 ! !
ð11Þ

where M¼m1þm2þm3, ri ¼ jrij is the inertial position length of craft-i.
For the orbital normal configuration, the unit vector ẑB tracks the heading of collinear configuration, choose (2–1) Euler

angles (φ; ψ) shown in Fig. 2(b) as the generalized coordinates q3; q4, and the generalized speeds u3; u4 are defined as _φ; _ψ
respectively. The derivation of the equations of motion follows the same steps, and the dynamic model has a similar but
more complicated formulation. Here we do not elaborate it any more.
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2.2. Triangular formation

In contrast to collinear configuration, the triangular configuration as a 2-dimensional planar structure requires an
additional angle ϕAðπ=2; πÞ to define the formation geometry. As shown in Fig. 1(a), ℬ-frame is such defined that craft 1 is
confined to axis x̂B for all time, while craft 2 and 3 are aligned within x̂B�ŷB plane, and ℬ can be obtained by rotating ℋ as
2-3-1 Euler angles (φ; θ; ψ). Thus, we have

ρ1 ¼ ρ1x̂B; ρ2 ¼ ρ2 cos ϕx̂B�ρ2 sin ϕŷB
ρ3 ¼ ð�m1=m3ρ1�m2=m3ρ2 cos ϕÞx̂Bþm2=m3ρ2 sin ϕŷB

(
ð12Þ

In this way, we choose the generalized coordinates as

q¼ q1 q2 q3 q4 q5 q6 q7;10;13 q8;11;14 q9;12;15
h iT

¼ ρ1 ρ2 ϕ φ θ ψ α1;2;3 β1;2;3 γ1;2;3
h iT

ð13Þ

The generalized speeds can be defined as

u¼ u1 u2 u3 u4 u5 u6 u7;10;13 u8;11;14 u9;12;15

h iT
¼ _ρ1 _ρ2 _ϕ ωℬ=N

x ωℬ=N
y ωℬ=N

z ω
ℬ1;2;3=ℬ
x ω

ℬ1;2;3=ℬ
y ω

ℬ1;2;3=ℬ
z

h iT
ð14Þ

where ωℬi=ℬ
x ;ωℬi=ℬ

y ;ωℬi=ℬ
z are the same as in Eq. (9), ωℬ=N

x ;ωℬ=N
y ;ωℬ=N

z are the components of the inertial angular velocity of
ℬ-frame, written as

ωℬ=N ¼
_ψþ _φ sin θ�Ω sin φ cos θ

_θ sin ψþ _φ cos θ cos ψþΩð cos φ sin ψþ sin φ sin θ cos ψÞ
_θ cos ψ� _φ cos θ sin ψþΩð cos φ cos ψ� sin φ sin θ sin ψÞ

2
64

3
75 ð15Þ

Finally, we can obtain the equations of motion for three-craft triangular configuration as

_u1 ¼ q1ðu2
5þu2

6Þþ f 1x�Σx

_u2 ¼ q2ðu3�u6Þ2þq2ðu4s3þu5c3Þ2þc3ðf 2x�ΣxÞ�s3ðf 2y�ΣyÞ
_u3 ¼ ðu4s3þu5c3Þðu4c3�u5s3Þ�u4u5þ2u2ðu6�u3Þ

q2
�2u1u6

q1
þ f 1y�Σy

q1
�s3ðf 2x�ΣxÞþ c3ðf 2y�ΣyÞ

q2

_u4 ¼ 2c3
s3
u5

u1
q1
�u2

q2

� �
þ2u5u3�2u4u2

q2
�2u4u3c3

s3
�u6u5�f 2z�Σz

q2s3
þ c3ðf 1z�ΣzÞ

q1s3

_u5 ¼�ð2u1u5�q1u4u6þ f 1z�ΣzÞ=q1
_u6 ¼�ð2u1u6þq1u4u5�f 1yþΣzÞ=q1
_u7 ¼ τEM1x =I1� _u4; _u8 ¼ τEM1y =I1� _u5; _u9 ¼ τEM1z =I1� _u6

_u10 ¼ τEM2x =I2� _u4; _u11 ¼ τEM2y =I2� _u5; _u12 ¼ τEM2z =I2� _u6

_u13 ¼ τEM3x =I3� _u4; _u14 ¼ τEM3y =I3� _u5; _u15 ¼ τEM3z =I3� _u6

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð16Þ

where f i ¼ fgi þfEMi and ri ¼ jrij. Note they are different from the expression in Eq. (10) due to the varied rotating matrix from
ℋ to ℬ, and

Σ¼
Σx

Σy

Σz

2
64

3
75¼� μ

M

rcmc4c5ðm1=r31þm2=r32þm3=r33Þþm1q1ð1=r31�1=r33Þþm2q2c3ð1=r32�1=r33Þ
rcmðs4s6�c4s5c6Þðm1=r31þm2=r32þm3=r33Þ�m2q2s3ð1=r32�1=r33Þ

rcmðs4c6þc4s5s6Þðm1=r31þm2=r32þm3=r33Þ

2
64

3
75 ð17Þ

So far, we have obtained the 6-DOF nonlinear dynamic models of three-craft electromagnetic formation for collinear and
general triangular configuration respectively. By examining the formulations of these models, it is obvious that the system
dynamics has complicated nonlinear and coupled characteristics. The nonlinearities embody in electromagnetic force model
and the terms of trigonometric function, and the coupled characteristics are dependent on the coupled relative trajectory/
attitude motion and coupled electromagnetic force/torque model.
3. Shape solutions of static configurations

The invariant shape studied in this paper is confined to a fixed configuration that maintains the formation geometry all
along with real and constant magnetic moments. Naturally, it follows a static or spinning configuration. For the static
configuration, the crafts appear stationary or frozen with respect to ℋ-frame, and all state variables take on constant values,
corresponding to the relative equilibrium of the dynamic model. In the following sections, we would like to study the
invariant shape solutions for static collinear and triangular configurations respectively.
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3.1. Static collinear configuration

Substituting the relative equilibrium conditions _q¼ 0; _u¼ 0 into Eq. (10), where the superscript “�” is used to denote the
equilibrium state, we can obtain

τEMi ¼ τEMix τEMiy τEMiz
h iT

¼ 0 ð18Þ

It is apparent that the electromagnetic torques applied to all crafts are zero in the static collinear configuration. Indeed, in
order to determine the possible invariant shapes, the feasible magnetic moment solutions satisfying Eq. (18) should be
examined first, then comes to identify whether the families of invariant shape solutions do exit with given magnetic
moments by checking other equilibrium conditions.

3.1.1. Along-track
For the along-track collinear configuration, substituting ρij ¼ ρijŷB into Eq. (1) yields

Bij ¼
μ0

4πρ3ij
�μjx 2μjy �μjz
h iT

ð19Þ

Considering τEMi ¼ μi � ðBijþBikÞ, three possible cases are examined to satisfy Eq. (18).

Case A: μi ¼ 0
In order to ensure the electromagnetic effect, at least two of magnetic moments should not be zero. When μi ¼ 0, we have
Bji ¼ Bki ¼ 0, then τEMj ¼ μj � Bjk ¼ 0 and τEMk ¼ μk � Bkj ¼ 0, which are expanded with components formulation to give

μjyμkzþμkyμjz ¼ 0; μjxμkyþμkxμjy ¼ 0; μjxμkz ¼ μkxμjz ð20Þ

Hence the electromagnetic effect only occurs between craft-j and craft-k, and the inter-craft electromagnetic force is aligned
with axis ŷB.
Case B: BijþBik ¼ 0
When Bij ¼�Bik, we obtain μj ¼�ρ3ij=ρ

3
kiμk based on Eq. (19). Moreover, we can derive Bkj ¼�ρ3ij=ρ

3
ikBjk and Bki ¼ ρ3ij=ρ

3
kiBji,

so

τEMj ¼�ρ3ij=ρ
3
kiμk � BjiþBjk

� �¼ 0

τEMk ¼ ρ3ij=ρ
3
kiμk � Bji�Bjk

� �¼ 0

8<
: )

μk � Bji ¼ 0

μk � Bjk ¼ 0

(
ð21Þ

which are expanded with components formulation as

�2μiyμkz�μkyμiz ¼ 0
μkxμiz�μixμkz ¼ 0
μixμkyþ2μkxμiy ¼ 0

8><
>: ;

�3μkyμkz ¼ 0
3μkxμky ¼ 0

(
ð22Þ

Next, discuss the conditions satisfying Eq. (22) besides μk ¼ 0 which has been analyzed in Case A. (i) If μky ¼ 0 and μkx; μkz
are not simultaneously zero, μiy ¼ 0 and μkxμiz ¼ μixμkz should be required. So the y components of μi; μk are both zero,
and come with μi==μk. (ii) If μkya0 and μkx ¼ μkz ¼ 0, μix ¼ μiz ¼ 0 is required, which means that only the y components of
μi; μk are not zero, and μi==μk is true as well.
Therefore, the magnetic moments of three crafts must be parallel with each other, and either the y components are zero
or the x; z components are both zero. Thus, we can define μj ¼�ρ3ij=ρ

3
kiμk and μi ¼ λμk, where λ is a proportionality

coefficient to be determined.
Case C: μi==ðBijþBikÞ
Considering the instance when μi== BijþBik

� �
is true for all three crafts, we can rewrite the formulation as

μ1 ¼ l′1 B12þB13
� �¼ l1

3μ2y
ρ312

ŷB�μ2

ρ312
þ3μ3y

ρ331
ŷB�μ3

ρ331

� �
μ2 ¼ l′2 B21þB23

� �¼ l2
3μ1y
ρ312

ŷB�μ1
ρ312

þ3μ3y
ρ323

ŷB�μ3

ρ323

� �
μ3 ¼ l′3 B31þB32

� �¼ l3
3μ1y
ρ331

ŷB�μ1
ρ331

þ3μ2y
ρ323

ŷB�μ2

ρ323

� �

8>>>>><
>>>>>:

ð23Þ

where liði¼ 1; 2; 3Þ are proportionality coefficients, which can be determined by making equal of corresponding
coefficients of μi. Accordingly, the relations between magnetic moments are given as

μ1þρ331=ρ
3
23μ2þρ312=ρ

3
23μ3 ¼ 6μ1yŷB

μ1y ¼ ρ331=ρ
3
23μ2y ¼ ρ312=ρ

3
23μ3y

(
)

μ1xþρ331=ρ
3
23μ2xþρ312=ρ

3
23μ3x ¼ 0

μ1y ¼ μ2y ¼ μ3y ¼ 0

μ1zþρ331=ρ
3
23μ2zþρ312=ρ

3
23μ3z ¼ 0

8>><
>>: ð24Þ
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Therefore, the magnetic moments of three crafts should satisfy the linear relation shown in Eq. (24), and the y
components are both equal to zero.
Based on the above analysis, the possible shape solutions for each case are identified. When the along-track collinear
configuration achieves relative static equilibrium, ℬ-frame coincides with ℋ to give q3 ¼ q4 ¼ 0, and thus
u3 ¼Ω; ui ¼ 0ðia3Þ. Substituting _q¼ 0; _u¼ 0 and Eq. (4) for along-track configuration into the equations of motion Eq.
(16), we obtain

q1Ω
2�μq1=r

3
1� F

EM
12y�F

EM
31y

� �
=m1 ¼ 0

q2Ω
2�μq2=r

3
2þ F

EM
23y�F

EM
12y

� �
=m2 ¼ 0

m1q1 1=r31�1=r33
� �

¼m2q2 1=r32�1=r33
� �

8>>>>><
>>>>>:

ð25Þ

where r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2cmþq21

q
, r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2cmþq22

q
, r3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2cmþ m1q1�m2q2

� �2
=m2

3

q
.

For case A, let μ1 ¼ 0, so all the inter-craft electromagnetic forces are zero except for FEM23y which is approximate to 0. By
inspection, it is evident that craft 1 is located at the formation center of mass for q1 ¼ 0, while craft 2 and 3 are located at
right and left side in the formation. Moreover, r2 ¼ r3 is required from the third equation of Eq. (25), which implies m2 ¼m3

and q2 ¼ ρ3. Thus, craft 2 and craft 3 in along-track collinear equilibrium are of equal mass and located of equal distance.
Note that we omit the derivation when either μ2 or μ3 is zero since the procedure is similar and conclusion same. Actually,
such formations are similar to the two-craft electromagnetic formation, and the shape solutions are the same too. In
particular, assuming the magnetic moment of the two crafts both being μ¼ μyŷB, we can solve

μy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πq4F

EM
y =3μ0

q
� 0 ð26Þ

For case B, assume the magnetic moments of crafts satisfy μ1 ¼ λμ3, μ2 ¼�ρ312=ρ
3
31μ3 with μiy ¼ 0 or μix ¼ μiz ¼ 0, thus the

inter-craft electromagnetic forces can be given as

F
EM
12 ¼ 3μ0ðμ23x þμ23zÞλ

4πðq1 þq2Þðq1 þρ3Þ3
ŷB

F
EM
23 ¼ 3μ0ðμ23x þμ23zÞðq1 þq2Þ3

4πðq1 þρ3Þ3ðq2�ρ3Þ4
ŷB

F
EM
31 ¼ 3μ0ðμ23x þμ23zÞλ

4πðq1 þρ3Þ4
ŷB

8>>>>><
>>>>>:

or

F
EM
12 ¼� 3μ0μ

2
3yλ

2πðq1 þq2Þðq1 þρ3Þ3
ŷB

F
EM
23 ¼� 3μ0μ

2
3yðq1 þq2Þ3

2πðq1 þρ3Þ3ðq2�ρ3Þ4
ŷB

F
EM
31 ¼� 3μ0μ

2
3yλ

2πðq1 þρ3Þ4
ŷB

8>>>>>><
>>>>>>:

ð27Þ

Since the distance ρi is minor relative to rcm, using first order Taylor series approximation on 1=r3i , and ignoring the

higher order terms of ρi=rcm, we can derive F
EM
12y � F

EM
31y � F

EM
23y. An examination of Eq. (27) shows that q2 ¼ ρ3 must be true,

which means that craft 2 and 3 coincide with each other. Such formation is impossible to achieve, thus there is no feasible
shape solution for case B.

For case C, assume magnetic moment of craft 1 is μ1 ¼�ρ331=ρ
3
23μ2�ρ312=ρ

3
23μ3 for given μ2; μ3 with μiy ¼ 0, then the inter-

craft electromagnetic forces can be given as

F
EM
12 ¼�3μ0 ðμ2xμ3x þμ2zμ3zÞðq1 þq2Þ3 þðμ22x þμ22zÞðq1 þρ3Þ3ð Þ

4πðq1 þq2Þ4ðq2�ρ3Þ3
ŷB

F
EM
23 ¼�3μ0ðμ2xμ3x þμ2zμ3zÞ

4πðq2�ρ3Þ4
ŷB

F
EM
31 ¼ 3μ0 ðμ2xμ3x þμ2zμ3zÞðq1 þρ3Þ3 þðμ23x þμ23zÞðq1 þq2Þ3ð Þ

4πðq1 þρ3Þ4ðq2�ρ3Þ3
ŷB

8>>>>><
>>>>>:

ð28Þ

In the same way, based on F
EM
12y � F

EM
31y � F

EM
23y, we have

ðμ22xþμ22zÞ=ðμ23xþμ23zÞ ¼�ððq1þq2Þ=ðq1þρ3ÞÞ540 ð29Þ

which depicts families of invariant shape solutions under case C where craft 3 is located at leftmost of the formation since
q1þρ3o0 must be true for all time. In particular, we can obtain a special shape while μ2 ¼ μ3 as

ρ3 ¼�2q1�q2 ) ðm1þ2m3Þq1 ¼ ðm2�m3Þq2 ð30Þ

Since mi40 and qi40, the shape solutions of Eq. (30) are permissible only when m24m3 is true for all time, which can
be solved for given mi.
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3.1.2. Orbit normal
For the orbit normal collinear configuration, the relative static equilibrium follows the same conditions except for ui ¼ 0,

thus the equilibrium equations of motion are derived as

�μq1=r
3
1�ðFEM12z�F

EM
31zÞ=m1 ¼ 0

�μq2=r
3
2þðFEM23z�F

EM
12zÞ=m2 ¼ 0

m1q1ð1=r31�1=r33Þ ¼m2q2ð1=r32�1=r33Þ

8>>><
>>>:

ð31Þ

where ri are same as the expressions in Eq. (25).
Again, using first order Taylor series approximation on Eq. (31), and ignoring the higher order terms of ρi=rcm, we can

derive

F
EM
12z�F

EM
31z ��μm1q1=r

3
cmo0

F
EM
12z�F

EM
23z ��μm2q2=r

3
cmo0

8<
: ð32Þ

Substituting ρij ¼ ρijẑB and following the derivation shown in Section 3.1.1, it concludes that the feasible magnetic
moment solutions satisfying Eq. (18) for orbit normal configurations have a similar formulation. Here we would identify the
possible invariant shape solutions directly.

For case A, we assume μ3 ¼ 0 without loss of generality, then all the inter-electromagnetic forces are zero except F
EM
12y

which is a repulsive force to maintain the formation. From Eq. (31) m1q1 ¼m2q2 is derived, which means that craft 3 is
located at the formation center of mass. Moreover q1 ¼ q2 and m1 ¼m2 are required, which imply that craft 1 and 2 are
located at left and right side in the formation with equal mass and equal distance. Similarly, when μ1 ¼ μ2 ¼ μzẑB, the
equilibrium magnetic moment is written as

μz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�32πq4F

EM
z =3μ0

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πΩ2mq5=3μ0

q
ð33Þ

For case B, the magnetic moments of crafts satisfy μi ¼ λμk, μj ¼�ρ3ij=ρ
3
kiμk with μiz ¼ 0 or μix ¼ μiy ¼ 0. Given μ3, the inter-

craft electromagnetic forces share a same expression with Eq. (27) except for replacing ŷB by �ẑB. Thus the proportionality
coefficient λ can be determined by examining Eq. (32) as

λ¼ m1q1ðq1þρ3Þðq1þq2Þ4
ðq2�ρ3Þ4ðm2q2ðq2�ρ3Þþm1q1ðq1þρ3ÞÞ

ð34Þ

Therefore, q2aρ3 is required to offer a feasible solution. Note that the denominator in Eq. (34) has been checked as true
for any collinear geometry.

For case C, the magnetic moments of crafts satisfy μ1þρ331=ρ
3
23μ2þρ312=ρ

3
23μ3 ¼ 0 with μiz ¼ 0, and the electromagnetic

forces are the same as the expression in Eq. (28) except for replacing ŷB by �ẑB. Similarly, we can derive the relationship
Fig. 3. Special shape solutions for orbit normal configuration.
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between the formation geometry and magnetic moments as

m3ρ3
m2q2

¼ ðq1þq2Þ5
ðq1þρ3Þ5

U
ðμ23xþμ23yÞðq1þq2Þ2ðq2�ρ3Þþðμ2xμ3xþμ2yμ3yÞðq1þρ3Þ3

ðμ22xþμ22yÞðq1þρ3Þ2ðq2�ρ3Þ�ðμ2xμ3xþμ2yμ3yÞðq1þq2Þ3
ð35Þ

In particular, let χ ¼ q1=q2, δ¼m1=m3 and s¼m2=m3, which are all positive real number. Thus, we can obtain the special
shapes while μ2 ¼ μ3 as

δχ�s
s

¼ ðχþ1Þ5
ðχþδχ�sÞ5

ðχþ1Þ2ð1�δχþsÞþðχþδχ�sÞ3
ðχþδχ�sÞ2ð1�δχþsÞ�ðχþ1Þ3

ð36Þ

Eq. (36) is a polynomial equation about χ, which can be determined by given δ; s. According to the definition of χ, each
solution to this equation gives a family of invariant shape solutions for such collinear formation. The values of χ with varied
δ; scan be seen in Fig. 3. Numerically simulation shows that for any given δ; s40, there exists at most one solution for χ to
satisfy Eq. (36), and there is no feasible shape solution while so1.
3.2. Static triangular configuration

Unlike the collinear configuration, the equilibrium torque conditions for the triangular configuration are too nonlinear to
get an analytical formulation, hence it is very difficult to examine the feasible magnetic moments solutions. In Ref. [16]
Schweighart presented two numerical algorithms by Newton's method and continuation method to solve the polynomial
equations about magnetic dipoles. However, one can check some special invariant shape solutions do exist. Here we first
examine the appropriate configuration constraints based on angular momentum conservation, and then identify the feasible
magnetic moment solutions for special formation geometry meeting the equilibrium conditions.

When the triangular configuration achieves the relative static equilibrium, the electromagnetic torques satisfy Eq. (18) as
well, so the expression for angular momentum conservation is derived as

0¼ f
EM
2z �f

EM
3z ; 0¼ f

EM
1z �f

EM
3z

0¼m1q1ðf
EM
1y �f

EM
3y Þþm2q2c3ðf

EM
2y �f

EM
3y Þþm2q2s3ðf

EM
2x �f

EM
3x Þ

8<
: ð37Þ

Previous work has shown that axis ẑB of an arbitrary triangular electromagnetic formation must align with one of three
ℋ-frame axes to satisfy relative static equilibrium, which is similar to Coulomb formation in Ref. [6]. In addition, given the
similar geometry and mechanics characteristics between the cases of ẑB axis along orbit normal and along-track direction,
we only consider the two cases where three crafts are coplanar with the orbital plane or perpendicular to radial
direction here.

For the triangular static electromagnetic formation lying in the orbital plane, ℬ-frame coincides with ℋ-frame to give
q4 ¼ q5 ¼ q6 ¼ 0, and thus ui are all equal to zero except for u6 ¼Ω. The equilibrium acceleration of electromagnetic force can
be derived from Eq. (16) at relative equilibrium. After checking the conditions in Eq. (37), we obtain

r2 ¼ r3 ) 2m3rcmðm1q1þðm2þm3Þq2c3Þ ¼ 2m1m2q1q2c3þm2
1q

2
1þm2

2q
2
2�m2

3q
2
2 ð38Þ

It is obvious that craft 2 and craft 3 must be located equally distant to the center of earth. In particular, when
m1q1þðm2þm3Þq2c3 ¼ 0, the projections of ρ2; ρ3 along axis x̂B have equal value, and m2 ¼m3 is derived from Eq. (38) as
well. So far, the three-craft formation geometry should be a radially symmetrical isosceles triangle. A same conclusion for
three-craft formation perpendicular to along-track direction can also be obtained.

For the triangular configuration perpendicular to radial direction, the formation maintains relative static equilibrium
with axis ẑB aligned with radial direction. Let q4 ¼ π=2; q5 ¼ q6 ¼ 0, and thus ui are all equal to zero except for u4 ¼�Ω.
Following the similar procedures, we obtain

r1 ¼ r2 ¼ r3
m1q1þðm2þm3Þq2c3 ¼ 0

(
)

q1 ¼ q2
2m1m2c3 ¼m2

3�m2
1�m2

2

(
ð39Þ

which means that the distances of all three crafts relative to the center of earth must be equal, constituting an isosceles
triangle. Furthermore, based on geometrical symmetry about axis x̂B, m2 ¼m3 is necessary to make ρ2y ¼ ρ3y true.

In both cases, an isosceles triangle configuration can always be found to maintain static formation relative to ℋ for
all time, and such shape constraints represent sufficient conditions with the existence of feasible magnetic moment solu-
tions unknown yet. To explore the magnetic moment solutions, we revisit Eq. (37) and find all three accelerations of
electromagnetic force along axis ẑB to be equal, then F

EM
12z ¼ F

EM
23z ¼ F

EM
31z can be ensured. Since the resulting equations are far

too complex, μiz ¼ 0 as a special solution is checked to meet the condition and make F
EM
iz ¼ 0. Next, the magnetic moment

solutions would be identified under such circumstances.



Fig. 4. Magnetic moments for three-craft triangular static configuration.
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Considering the triangular configuration with q1 ¼ q2 ¼ q, m2 ¼m3 and c3 ¼�m1=2m2, the required accelerations of
electromagnetic force for the case of three-craft formation perpendicular to radial direction are derived as

f
EM
1x ¼ μq=r31

f
EM
1y ¼ 0

8<
: ;

f
EM
2x ¼ μqc3=r

3
1 ¼ c3f

EM
1x

f
EM
2y ¼ qs3Ω2�μqs3=r

3
1 � 0

8<
: ;

f
EM
3x ¼ f

EM
2x

f
EM
3y ¼�f

EM
2y

8<
: ð40Þ

where r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2cmþq2

q
; r2 ¼ r3 ¼ r1. For the case of three crafts lying in the orbital plane, we can obtain a similar formulation

by using first order Taylor series approximation, which is examined to satisfy the same relationship in Eq. (40). In this
manner, craft 1 is exerting repulsive forces on other two crafts, and attractive force is required between craft 2 and 3, or both
reverse. Therefore, the electromagnetic forces applied on all three crafts are symmetrical about axis x̂B, and the magnetic
moments of three crafts should be symmetric accordingly.

As shown in Fig. 4, assume the magnetic moments for each craft as

μ1 ¼ μ1 0 0
h iT

;μ2 ¼ μ2 sin η μ2 cos η 0
h iT

; μ3 ¼ μ3 sin η �μ3 cos η 0
h iT

ð41Þ

where μi is magnitude of μi, and ηA 0; π=2
� �

is the angle between μi and axis ŷB. By substituting Eq.(41) into τEMi ¼ 0 and
examining the resulting expressions, the appropriate value of μi can be determined by

μ2 ¼ μ3 ¼� sin 3q3
4 sin 2η sin 5ðq3=2Þ

ð5 cos η�7 cos ðq3�ηÞþ3 cos ð2q3�ηÞ� cos ðq3þηÞÞμ1 ð42Þ

The resulting inter-craft electromagnetic forces are expressed as

F
EM
12 ¼

� 3μ0μ1μ2
512πq4 sin 5ðq3=2Þ

ð7 sin ðq3�ηÞ�5 sin ð2q3�ηÞ� sin ðηþq3Þþ3 sin ηÞ

� 3μ0μ1μ2
512πq4 sin 5ðq3=2Þ

ð5 cos ðq3�ηÞ�5 cos ð2q3�ηÞ� cos ðηþq3Þþ cos ηÞ
0

2
6664

3
7775

F
EM
23 ¼

0
3μ0μ2μ3ð sin 2η�2Þ

64πq4 sin 4q3

0

2
64

3
75; FEM31 ¼

�F
EM
12x

F
EM
12y

0

2
664

3
775

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð43Þ

In addition, considering F
EM
2y ¼ F

EM
23y�F

EM
12y � 0þ , the value of η can quickly be determined by combining Eqs. (42) and (43),

and satisfies

sin q3 sin 2ηð5 cos ðq3�ηÞ�5 cos ð2q3�ηÞ� cos ðηþq3Þþ cos ηÞ

¼ 2ð sin 2η�2Þð5 cos η�7 cos ðq3�ηÞþ3 cos ð2q3�ηÞ� cos ðq3þηÞÞ ð44Þ

As discussed above, Eqs. (42)–(44) represent the shape solutions for desired isosceles triangle static electromagnetic
formation with given q, q3 and μ1. The relationship of η and q3 based on Eq. (44) is illustrated in Fig. 5. It is important to note
that η is not q3=2 except for the trivial case where q3 � 109:051 to make μ2; μ3 point to craft 1. The reason is some
components of electromagnetic force should be used to counteract the influence of the gravity. In particular, when
q3 ¼ 2π=3, the triangular configuration is simplified to an equilateral triangle with three craft equal mass, and η� 58:3451 is
numerically solved. Accordingly, the ratio relation between μi based on Eq. (42) is illustrated in Fig. 6.



Fig. 6. Ratio between μ2 and μ1.

Fig. 5. Relation between η and q3.
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4. Shape solutions of spinning configurations

The invariant shape also yields spinning configurations about the collective center of mass. This section investigates
whether such three-craft invariant shapes with real and constant magnetic moments are feasible for collinear and triangular
configurations respectively. It is important to recognize that not all the derivation of qi are zero at such equilibrium because
of the existence of spin rate ξ.
4.1. Spinning collinear configuration

The three cases where the collinear configuration spins about each of three ℋ-frame axes are considered here
respectively. Based on the dynamic model for the along-track configuration, the case of collinear configuration spinning
about axis x̂CM is studied first. As shown in Fig. 2(a), defining ξ¼ ξx̂CM , if such relative equilibrium is maintained, we have
q3 ¼ 0; q4a0; _q4 ¼ ξa0, thus u3 ¼Ω; u4 ¼ ξ. By examining the equilibrium conditions of relative attitude motion in
Eq. (10), the magnetic torques should satisfy

τEM1x ¼ I1 _ξ; τEM1y ¼ I1Ωξc4; τEM1z ¼�I1Ωξs4

τEM2x ¼ I2 _ξ; τEM2y ¼ I2Ωξc4; τEM2z ¼�I2Ωξs4

τEM3x ¼ I3 _ξ; τEM3y ¼ I3Ωξc4; τEM3z ¼�I3Ωξs4

8>><
>>: ð45Þ

Recalling angular momentum conservation for along-track configuration, τEM1y þτEM2y þτEM3y ¼ 0 must be met, which imply
Ω¼ 0 since c4 ¼ 0 is not always maintained. It is apparent that collinear configuration spinning about axis x̂CM is not
permissible with consideration of the gravity. Note that the value of _ξ is not confined in above analysis, so this statement is
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always true no matter whether _ξ¼ 0. In addition, one can check that Ω¼ 0 is also required for invariant shape solution of
collinear configuration spinning about axis ŷCM under a similar consideration.

Next, considering the collinear configuration spinning about axis ẑCM , here let ξ¼ ξẑCM , so we have q3a0; q4 ¼ 0,
_q3 ¼ ξa0, thus u3 ¼Ωþξ. Following the same operation, _ξ¼ 0 is required to maintain angular momentum conservation,
then the equilibrium equations of motion are derived as

q1 Ωþξð Þ2�μq1=r
3
1 ¼ F

EM
12y�F

EM
31y

� �
=m1

q2 Ωþξð Þ2�μq2=r
3
2 ¼� F

EM
23y�F

EM
12y

� �
=m2

8><
>: ð46Þ

Actually, the equilibrium electromagnetic forces keep constant because of constant magnetic moments operated in
an invariant shape, so the right sides of Eq. (46) keep constant as well. However, it is obvious that the left sides of Eq.
(46) are time-varying since ri change as crafts rotating in the orbital plane. The only solution to Eq. (46) is ri-1 so as to
give Ω¼ 0.

Base on the above analysis, we have a conclusive statement that the feasible invariant shape solutions for spinning
three-craft collinear configurations only exist in the deep space without influence of the gravity. For the three-craft
collinear configuration spinning in deep space, the only force acting on each craft is electromagnetic force, which offers
a centripetal force to maintain rotation. Indeed, there are no differences for the collinear configuration spinning about
which one of three axes in deep space. Let us study this problem based on Eq. (10). Then, the equilibrium equations of
motion are simplified as

F
EM
12y�F

EM
31y ¼m1q1ξ

240

F
EM
12y�F

EM
23y ¼m2q2ξ

240

8<
: ð47Þ

which has a similar formulation with Eq. (32) except for reverse sign of the right side. Following the derivation
presented in Section 3.1.2, we could identify that the possible shape solutions satisfying Eq. (47) have a similar
formulation either, which will not be elaborated here. Note that the required electromagnetic forces for spinning
equilibrium depend on spin rate ξ, and the magnitudes of μi could be determined accordingly.

4.2. Spinning triangular configuration

Consider the triangular configuration spinning about axis ẑB in the orbital plane or perpendicular to radial direction as
Section 3.2. Similarly, the appropriate configuration constraints are examined by checking angular momentum conservation.
Let ξ¼ ξẑB, for the triangular configuration spinning in the orbital plane, we have q4 ¼ q6 ¼ 0, q5a0; _q5 ¼ ξ, then u6 ¼Ωþξ.
So angular momentum conservation satisfies

ðI1þ I2þ I3Þ_ξ¼m1q1ðf
EM
1y �f

EM
3y Þþm2q2c3ðf

EM
2y �f

EM
3y Þþm2q2s3ðf

EM
2x �f

EM
3x Þ ð48Þ

which is true only when _ξ¼ constant since the equilibrium electromagnetic forces and q3 maintain constant. Considering
the fact that gravity for each craft in the orbital plane is time-varying periodically, it is impossible to offer a linear-varying
centripetal force for each craft. Thus, the invariant shapes are not permissible for triangular configuration spinning in the
orbital plane.
Fig. 7. Magnetic moments for three-craft triangular spinning configuration.
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Next, if the spin axis ẑB coincides with radial direction, we have q4 ¼ π=2; q6 ¼ 0, q5a0; _q5aξ at equilibrium, then
u4 ¼�Ωc5; u5 ¼Ωs5; u6 ¼ ξ. Thus, _ξ¼ 0 is required for a similar derivation, and angular momentum conservation satisfies

μrcmð1=r31�1=r33Þ ¼m2q2Ωξðc3c5þs3s5Þ=m3þðm1þm3Þq1Ωξc5=m3

μrcmð1=r32�1=r33Þ ¼ ðm2þm3Þq2Ωξðc3c5þs3s5Þ=m3þm1q1Ωξc5=m3

(
ð49Þ

Since ri are constant for such configuration, Ω¼ 0 is the only solution to Eq. (49) with r1 ¼ r2 ¼ r3 being true accordingly,
so that the formation geometry is an isosceles triangle with q1 ¼ q2, m2 ¼m3 and c3 ¼�m1=2m2 following the analysis in
Section 3.2. This means that there are no feasible invariant shape solutions except for the case where the three-craft
triangular configuration spins without the influence of gravity.

Therefore, if such isosceles triangle configuration spins in deep space, the electromagnetic forces acting on each craft
offer centripetal forces to maintain rotation. Here we only identify a particular solution of magnetic moments with μiz ¼ 0
for simplicity. Thus, the required accelerations of electromagnetic force are derived as

f
EM
1x ¼�qξ2

f
EM
1y ¼ 0

8<
: ;

f
EM
2x ¼�qc3ξ2

f
EM
2y ¼ qs3ξ2

8<
: ;

f
EM
3x ¼ f

EM
2x

f
EM
3y ¼�f

EM
2y

8<
: ð50Þ

In this manner, the electromagnetic forces acting on all three crafts are pointing to the center of mass, so the magnetic
moments should be arranged end to end in a circle, while the unit vector of μi is perpendicular to ρi. As shown in Fig. 7,
assume the magnetic moments for each craft as

μ1 ¼ 0 μ1 0
h iT

; μ2 ¼ μ2 sin q3 μ2 cos q3 0
h iT

; μ3 ¼ �μ3 sin q3 μ3 cos q3 0
h iT

ð51Þ

By substituting Eq. (51) into τEMi ¼ 0 and examining the resulting expressions, the appropriate value of μi can be
determined by

μ2 ¼ μ3 ¼� sin 3q3=ð2 cos q3 sin
3 q3=2
� �Þμ1 ð52Þ

The resulting inter-craft electromagnetic forces are expressed as

F
EM
12 ¼

3μ0μ1μ2
512πq4 sin 5ðq3=2Þ

ð cos 2q3þ2 cos q3�5Þ

� 3μ0μ1μ2
128πq4 sin 5ðq3=2Þ

sin q3ð1þ cos 2ðq3=2ÞÞ
0

2
6664

3
7775

F
EM
23 ¼

0
�3μ0μ2μ3ð sin 2q3�2Þ

64πq4 sin 4q3

0

2
64

3
75; FEM31 ¼

�F
EM
12x

F
EM
12y

0

2
664

3
775

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð53Þ

In particular, when q3 ¼ 2π=3, the triangular configuration is simplified to an equilateral triangle with three crafts share
equal mass, thus we have μ1 ¼ μ2 ¼ μ3.

So far, we have identified the feasible static or spinning invariant shape solutions for collinear and triangular
configuration respectively. However, whether these equilibrium shapes are stable or not remains unknown, which would
be discussed in the following section.

5. Linear stability analysis

To determine stability properties of an invariant shape, the linearization for equations of motion is developed
about the corresponding relative equilibrium accordingly. Considering the dynamics described by generalized
coordinates and generalized speeds, the state variables are chosen as x¼ ½qT uT �T, and the control variables are

uc ¼ ½μT
1 μT

2 μT
3 �T. Assuming that all motions are small perturbations relative to the equilibrium point, we define

q¼ qþδq; u¼ uþδu; uc ¼ ucþδuc. Based on the first order Taylor series approximation, the linearized dynamics can be
Table 1
Shape parameters corresponding to different static configurations.

Configurations δ s χ

(a) Along-track collinear configuration 1.0 1.0 1.0
(b) 0.5 4.750 1.5
(c) Orbit normal collinear configuration 0.5 4.786 1.5
(d) Equilateral triangle configuration 1.0 1.0 1.0



Fig. 8. Open-loop eigenvalues for different configurations in Table 1.

Fig. 9. Perturbed trajectory for (a) collinear and (b) equilateral triangle spinning configuration.

Fig. 10. State curves for spinning collinear configuration.
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Fig. 11. State curves for spinning equilateral triangle configuration.
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expressed as

δ _x¼Aðq; u; ucÞδxþBðq; u; ucÞδuc ¼
∂ _q=∂qT ∂ _q=∂uT

∂ _u=∂qT ∂ _u=∂uT

" #
q;u;uc

δq
δu

	 

þ ∂ _x
∂uT

c

�����q;u;uc
δuc ð54Þ

where Jacobin matrix A; B are evaluated at the equilibrium point x; uc, and the eigenvalues of matrix A can be
computed to assess the stability properties of the above shapes. Since the formulations of the elements in A; B are too
complicated to be briefly recognized, we will numerically discuss the eigenvalues, as well as the linear stability for
different families of invariant shapes.

As an example, for the invariant shapes of static configuration, consider a three-craft formation where the formation
center of mass travels in a circular orbit of 500 km. Choosing the shape parameters as shown in Table 1 for illustration. Let
q2 ¼ 15 m; m3 ¼ 150 kg; I3 ¼ 20 kg m2, the resulting numerical eigenvalues for different configurations are shown in Fig. 8.
It is obvious that all these cases have eigenvalues with real parts to make the static configuration unstable.

For the invariant shapes of spinning configuration, consider a three-craft formation operating in deep space. Choose the
same shape parameters as shown in Tables 1(c) and 1(d) for collinear and triangular configuration respectively. Assuming
the spin rate is ξ¼ 2π rad=h, the corresponding invariant shapes are numerically ensured without perturbation. Here, an
initial perturbation of δq1 ¼ 0:01 m and δq2 ¼ 0:02 m are applied and the full nonlinear equations are integrated to examine
the stability. The resulting perturbed trajectories and state curves under constant electromagnetic forces are shown as
Fig. 9–11, where the relative attitude curves are only presented for one of three crafts to illustrate. It is apparent that the
spinning configurations are all unstable, especially the collinear configuration diverges from the equilibrium point much
faster. This is because the real part of unstable eigenvalues of the collinear configuration 0.001745 is much bigger than that
of triangular configuration 2:5� 10�11.

Again, we numerically assess the controllability of such invariant shapes. From the linear control theory, we know that
the system is only controllable if

rankðCÞ ¼ rank ½B AB A2B … An�1B �
� �

¼ n ð55Þ

where C is the controllability matrix. Calculating A; B by the parameters in Table 1 and substituting in Eq. (55), we can check
that the ranks of collinear and triangular configuration are 26 and 30 respectively, which both satisfying Eq. (55). Hence the
full nonlinear systems are controllable within small deviation around the equilibrium.

Actually, the open-loop eigenvalues and controllability for other invariant shapes can also be determined following same
procedures. We have examined that most of these shapes are unstable and controllable so far, but no guarantee whether a
stable or marginally stable solution do exist since there are an infinite number of solutions for any desired invariant shape.
Moreover, in order to maintain these shapes, an active magnetic moment control needs to be performed. Resolution of these
problems would be left for future work.
6. Conclusion

Concentrating on the invariant shape for close formation flying with inter-craft electromagnetic force, this paper mainly
analyzes the invariant shapes of relative equilibrium for three-craft electromagnetic formation, and studies the families
of invariant shape solutions and their linear stability. Both collinear and general triangular configurations are considered
under the full nonlinear coupled dynamic models. By analyzing the 6-DOF relative equilibrium problem, the magnetic
moments and geometry conditions to guarantee feasibility of the invariant shape, and the corresponding families of
invariant shape solutions with real and constant magnetic moments are identified for static and spinning configurations
respectively. Especially, some particular interesting shapes are chosen to illustrate the results and convenient control.
Furthermore, numerical simulations are carried out to analyze the linear stability, which show that most invariant shapes
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for the three-craft electromagnetic formation are unstable and controllable, and active control is required to maintain these
configurations.
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