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problem has not been systematically investigated. This paper mainly analyzes the
invariant shapes of relative equilibrium for the three-spacecraft electromagnetic forma-
tion, and studies the families of invariant shape solutions with real and constant magnetic
moments as well as their linear stability. The problem is examined based on the full
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Stability invariant shapes is numerically discussed, which have shown that most invariant shapes
are unstable and controllable.
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1. Introduction

Close formation flying of spacecraft with separation distances on the order of tens of meters presents several potential
space applications, such as high resolution space-based imaging, spacecraft cluster, as well as wide-field-of-view optical
interferometry. NASA has proposed the application of this type of formation to Terrestrial Planet Finder [1]. Propellant
consumption and plume contamination coming with conventional chemical propulsion are the particular challenges for
close formation flying. An attractive operational approach is applying the non-contacting inter-craft forces such as Coulomb
forces or electromagnetic forces to effectively offset above shortages and offer continuous reversible and synchronous
controllability to improve the precision of formation control. Coulomb formation [2] is by actively controlling the charges
on various spacecrafts to control the relative positions, but the shielding effect caused by the space plasma restricts its
application only in GEO or higher altitudes. Electromagnetic formation flight (EMFF) [3, 4] is proposed by using the magnetic
fields electrically generated by superconducting magnetic coils equipped on all crafts, and generating coupled electro-
magnetic force and torque to control the relative trajectory and attitude. As an emerging approach of propellantless
formation flying, EMFF allows better control authority and broader space applications.

One of the particular interests in close formation flying actuated by internal forces is invariant shapes with constant
actuation, which satisfy the requirements of relative equilibrium. Here the formation maintains a fixed geometry and
behaves as a single rigid body in orbit, making it convenient for formation keeping and control. Such formations are either
static with respect to the orbital frame or spinning around the collective center of mass, both of which are interested
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in whether or not a possible shape exists with real and constant actuation, and how the internal force influences the
feasibility and stability of invariant shapes. These problems serve as the inspiration for the current work.

In recent years, a significant amount of investigation on the relative equilibrium with Coulomb force has been done.
Schaub [5] proposed necessary conditions for a charged static formation to exist. Berryman [6] determined the analytic
charge solutions for two- and three-craft static Coulomb formation. Natarajan [7] investigated the relative equilibrium
stability of two-craft Coulomb formation along orbit radial, along-track and normal direction, respectively. Inampudi [8]
analyzed the linearized orbit radial dynamics and stability of a charged two-craft formation at the libration points. For the
spinning case, Schaub [9] showed that the spinning two-craft Coulomb configuration is passively stable. Hussein [10] laid
the groundwork for determining invariant shape solutions for the spinning three-craft Coulomb formation first, and
illustrated a few particular invariant shapes with constant charges. Further, Hussein [11] derived the general conditions for
the spinning charged three-craft equilibrium and examined equal mass collinear solutions to be unstable. Wang [12]
developed a Lyapunov based nonlinear control strategy for a charged three-craft equilibrium collinear configuration. Hogan
[13,14] proved that for any desired invariant three-craft collinear shape an infinite set of real charge solutions always exists,
and described the discovery of families of multiple invariant shape solutions with set charges, as well as the linear stability
analysis.

In contrast to Coulomb formation, formation flying with inter-craft electromagnetic force is not limited by the orbital
altitude, and more importantly, the relative equilibrium is a 6-DOF problem since the relative attitude motion caused by
coupled electromagnetic torques should be considered as well. In the field of EMFF, MIT [15-18] has systematically studied
the problems of dynamics, control and ground experiment, but the research on relative equilibrium remains less. Miller [19]
and Kong [20] analyzed the feasibility of electromagnetic force on spinning five-craft arrays maintenance as needed for TPF.
Hussein [21] described the conditions of relative equilibrium for a planar three-craft magnetic formation, and identified
three particular spinning configurations to be unstable. However, previous work is merely on symmetric cases to offer a few
particular solutions, and gravity is always ignored for simplicity. In this sense, the electromagnetic equilibrium formation
has not yet been systematically studied.

With above considerations in mind, this paper mainly analyzes the invariant shapes of relative equilibrium for three-craft
electromagnetic formation, and describes the families of invariant shape solutions with real and constant magnetic
moments, as well as the linear stability analysis on such formations. The remainder is organized as follows. Firstly, the
6-DOF nonlinear coupled dynamic models for collinear and triangular configurations are derived based on the Kane method.
Secondly, the relative equilibrium for static and spinning three-craft electromagnetic formation is analyzed, and the
invariant shape solutions of varied configurations are identified. Thirdly, the linear stability for different families of shape
solutions is numerically discussed. Finally, some conclusions are safely put forward.

2. Problem formulation

The scope of this paper is limited to a three-craft electromagnetic formation operating in a circular orbit, and formation
control is enabled solely by the electromagnetic forces and torques among spacecrafts. As depicted in Fig. 1, the position
vectors from formation center of mass Ocy to each of the three crafts are defined as p;, p,, p3 respectively, and ¢ is the
angle between p; and p,. Each craft is treated as a uniform spherical rigid-body with mass m;, and three superconducting
magnetic coils are equipped orthogonally to generate a steerable magnetic moment p;, where i=1, 2, 3.

For analysis convenience, three kinds of reference frames are introduced as follows. Orbital frame Ocy—XcmYcmZem
is noted as & with its origin at Ocy, the Xcm,Vem»Zcm axes align with orbit radial, along-track and normal direction
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Fig. 1. Three-spacecraft electromagnetic formation. a) General triangular three-craft configuration and b) Collinear three-craft configuration.
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respectively. Formation fixed frame Ocy—Xpy5Zp is noted as %, with its origin attached to Oy, and three axes are fixed with
the principal inertia axes of the formation. Body frame Op;—Xy;:Zp; is noted as %;, with its origin attached to craft-i center of
mass Op;, and three axes are fixed with the magnetic coils. %; can be obtained by rotating & as 3-2-1 Euler angles (a;, f;, 7;)-
Note that all the dynamics and analysis in this paper are developed in %.

It is well known that a three-craft formation is either collinear or triangular. Actually, the collinear configuration is
a special case with ¢ being equal to 0 or z, so only the relative distances are required to describe the formation geometry.
Moreover, the orientation from % to % for a 1-dimension structure could be represented by only two Euler angles, while
rotations around symmetric axis can be neglected with principal inertia assumption. On this account, the 6-DOF dynamic
models for collinear and general triangular configurations would be developed respectively.

Before deriving the equation of motion for three-craft formation, the models of electromagnetic force and torque are
introduced. Based on Ref. [16,17], the analytical far-field dipole model gives accurate results when the separation distance is
many times the coil radii. Against the background of close formation flying, we use far-field dipole model to study the three-
craft electromagnetic formation problem in this paper. The magnetic field on craft-i due to craft-j is defined as

3pi(npyp) Hj)
5 3
Pij Pij

Ho
ij(uj, Pij)=4”( (1)
where yg =47 x 1077 H/m is permeability of free space, p;; = |p;j| = |p;j—pil, and p; =[Hix Hiy Hiz I". So the electromagnetic
force and torque on craft-i due to craft-j can be written as

EM (0 o) — ko (Wil Bl Wl s (e (Bey)
Fi" (i, s pj) = =77 (,,g R N i @

M (i, 1y, py) = 1 X By(w, py)

Note that the electromagnetic force and torque applied on craft-i are due to the field interaction with all other crafts, so
we can obtain

FY=F"+F aM =M (i#j#k=1,2,3) 3)

In addition, since the electromagnetic effects are internal to the formation, the electromagnetic forces applied on two
crafts are equal and reverse, then Fij =—FjE,-M. Moreover, electromagnetic force and torque cannot be used to affect
the motion of the formation center of mass, and the angular momentums influenced by internal force satisfy the law of
conservation, so we have

3
PACE FM <) =0 (4)
1=

2.1. Collinear formation

Similar to the study of rigid axially symmetric body under the influence of the gravity, there are three relative equilibriums for
collinear three-craft electromagnetic formation, which are along the orbit radial, along-track and normal direction. In particular,
our previous work on two-craft case has shown that orbit radial equilibrium and along-track equilibrium share same coupled
characteristics, which is similar to the conclusion on two-craft Coulomb formation in Ref. [7]. For three-craft collinear problem,
an analogous deduction could be introduced as well. On this account, we only derive the models of along-track and orbit normal
configurations for simplicity.

Without loss of generality, consider a three-craft collinear configuration as shown in Fig. 1(b). From the definition of the
formation center of mass, we have

mipy+mapy+mzp; =0 (5)

Thus, if once the position vectors p;, p, are given, the vector p; is also determined implicitly, so we could choose
p1=1p11 >0 and p, = |p,| > 0 to define the geometry of collinear configuration.
For the along-track configuration, the three-craft collinear formation nominally aligns with unit vector y;, then

P1=—p1Yp. P2 = p2¥p. P3 = (M1p1—Mypy) /M3y (6)

As shown in Fig. 2(a), the (3-1) Euler angles (0, y) are used to represent the orientation of % with respect to . As such,
choose the generalized coordinates as

T T
q=[fh 42 43 44 dsg11 9e912 Q7,10,13] ={P1 p2 0 w a3 Pi23 }’1,2,3] 7)

Restricting our research to cases where the formation center of mass travels on a circular orbit, based on the definitions
of relative orientation angles 0, y and relative attitude angles «;, ;, y;, we can derive the inertial velocities and angular
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Fig. 2. Geometry of equilibrium for three-craft collinear electromagnetic formation. (a) 3-1 Euler angles for along-track equilibrium and (b) 2-1 Euler
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angles for orbit normal equilibrium.
velocities for each craft in terms of Xp, ¥j, 5, and the generalized speeds can be defined as
(1);(931_2,3/93 wjl“;ﬁ’l,zs/u% a}?],z,:&/@}j‘

T .
u:{ul Up U3 Ug Usgir Up912 U7,1o,13} :[/’)1 Py 04+82

where Q = /u/r3, is the constant orbital rate, x is gravity constant, .y is the radius of the circular orbit of formation center
(i=1, 2, 3) are the components of the relative angular velocity of craft-i with respect to %,

of mass, (u,}@’/@, wi,%i/@, (uézi/gg
which are defined as
w! Bi sSin aj—y; COS a; €COS f;
—p; cos a;j—y; sin a; €os f; 9)

Bi| B __ Bi|B | _

Bi| B — wy —
wz%’l/w —ai+7; SIn p;

Additionally, after defining the partial velocities and partial angular velocities of each craft, the generalized inertia force

and generalized active forces are derived based on Kane method, and the equations of motion associated with each

generalized speed are obtained by setting the sum of the corresponding generalized inertia force and generalized active

force as 0. The equations of motion for along-track collinear configuration of three-craft electromagnetic formation are

shown as
i =qy(u3 +C421U%)*f1y +2y
Uy = qp(uj +c3u3) +f 2~y
U3 = 28Uslly + e +,,113(m]q% I (m3miqy(frx—f30)—M3M2qo(F2—f 32
+2(—miqy +my My, —my M3y Uy UsCa+ 2(—M3 G5 + My Myqy —MyM3q,)UzUsCs)
(=msmiqy(f1,—f3,) +mM3magy(fr,—f3,)) (10)

y 2 1
Ug = —S4CqU
4 AU G g s @+ gl
+2(—m§q1 +m1m2q2—m]m3q])u1u4+2(—m§q2 + MMy —MymM3zq,)Usliy

Us = oi¥ /11—, Ui = 75} /11 — (1354 + U3laCy), U7 = 75 /11 —(U3€4—U3U4S4)

Ug =5 /Iy —lla, Uig = 751 /Iy — (1354 +U3lUaCy), lho = 755 /I —({l3€4—U3UsSs)
Uy =5y /13—, Uy = 75 /13— (U354 +U3UsCa), U153 = 75} /I3—(113C4—U3UUsS4)
where s;, ¢; denote sin g; and cos g; for short, I; is the principal inertia of craft-i, f; = f¢ +ffM is the combined acceleration of
gravity and electromagnetic force applied on craft-i.
mq mp ms 1 1
'emS3Ca| —3+—3+—3 | +m =3—3 |— - 11
( cm»3 4(7’? r% rg > ]Q] <T? rg) 2q2 <r3 r3 ( )

"
Xy = M
where M = my +m;+ms, 1; = |r;j| is the inertial position length of craft-i.

For the orbital normal configuration, the unit vector zp tracks the heading of collinear configuration, choose (2-1) Euler
angles (¢, w) shown in Fig. 2(b) as the generalized coordinates g3, q4, and the generalized speeds us, u,4 are defined as ¢, vy
respectively. The derivation of the equations of motion follows the same steps, and the dynamic model has a similar but

more complicated formulation. Here we do not elaborate it any more.
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2.2. Triangular formation

In contrast to collinear configuration, the triangular configuration as a 2-dimensional planar structure requires an
additional angle ¢ € (z/2, =) to define the formation geometry. As shown in Fig. 1(a), %-frame is such defined that craft 1 is
confined to axis X for all time, while craft 2 and 3 are aligned within X3—y; plane, and % can be obtained by rotating % as
2-3-1 Euler angles (¢, 9, w). Thus, we have

P1=p1Xp, P2 =po COS PXp—p, SIN PYg (12)
p3 = (=M1 /M3p;—My /M3p, COS $)Xp+My/M3p, Sin Py
In this way, we choose the generalized coordinates as
T T
q= [‘h 92 43 ds qs ds 9471013 981114 %.12,15] = [Pl p2 ¢ @ 0 w a123 P23 }’1,2,3] (13)

The generalized speeds can be defined as

T . . T
R . . BIN  BIN BIN B3/ B B123/B B123/B
u= [Ul U U3z Ug Us Us U71013 Ug1114 U9‘12715} = [m Py ¢ oy / wy/ w5 / Wy 123/ wy 123/ [0 123/ ]

(14

where of/?, w"/? »7"/* are the same as in Eq. (9), of", oy, wZ™

#-frame, written as

are the components of the inertial angular velocity of

W +¢ sin 6— sin ¢ cos 0
@?™N = | 0 sin w+¢ cos 6 cos y+Q(cos ¢ sin y+ sin ¢ sin O cos y) (15)
0 cos w—¢ €os O sin y+Q(cos ¢ cos y— sin ¢ sin 0 sin y)

Finally, we can obtain the equations of motion for three-craft triangular configuration as

=q (U2 +ud)+f1,— 2y

Uy = QU3 —Ug)* + G (UsS3 + UsC3)* + C3(f oy — Z) —53(F2y—Zy)

2u2(u5 u3) 2“1”5+f1y 2y 53— +03(fyy—%y)
q2

U3 = (U4S3 +UsC3)(U4C3—UsS3)—Usls +

= 25 (53) 2ty 28 Sy

Us = —(2u1Us—qqUslls +f12*22)/Q1 (16)
= —(2111U6+Q1U4u5—f1y+2z)/%

Uy =T /I —ta, g = 75} /11 —lis, g = 75 /1 — il

o =75 /la—lg, Uy = 75 /[~ s, Uy =75 /I, U6

U3 = 75 /13—y, thg = 751 I3 —ils, 1115 = 75)! /13—l

where f; = f¢ +fEM and r; = |r;|. Note they are different from the expression in Eq. (10) due to the varied rotating matrix from
Z to A, and

= TemC4Cs(My /T3 +My /13 +m3 /13)+myqy(1/r3—1/r3) +magqyes(1/13-1/13)
=3 | = —% Tem(S4S6—CaS5C6)(M1 /T3 + My /13 +M3 /13)—Myq,53(1/13-1/13) (17)
z, Tem(S4Cs +CaS5S6)(M1 /T3 + My /13 + M3 /13)

So far, we have obtained the 6-DOF nonlinear dynamic models of three-craft electromagnetic formation for collinear and
general triangular configuration respectively. By examining the formulations of these models, it is obvious that the system
dynamics has complicated nonlinear and coupled characteristics. The nonlinearities embody in electromagnetic force model
and the terms of trigonometric function, and the coupled characteristics are dependent on the coupled relative trajectory/
attitude motion and coupled electromagnetic force/torque model.

3. Shape solutions of static configurations

The invariant shape studied in this paper is confined to a fixed configuration that maintains the formation geometry all
along with real and constant magnetic moments. Naturally, it follows a static or spinning configuration. For the static
configuration, the crafts appear stationary or frozen with respect to #-frame, and all state variables take on constant values,
corresponding to the relative equilibrium of the dynamic model. In the following sections, we would like to study the
invariant shape solutions for static collinear and triangular configurations respectively.
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3.1. Static collinear configuration

Substituting the relative equilibrium conditions g = 0, u = 0 into Eq. (10), where the superscript “—" is used to denote the
equilibrium state, we can obtain
_ _ T
_EM [%‘M TiEyM {:;M} -0 (18)
It is apparent that the electromagnetic torques applied to all crafts are zero in the static collinear configuration. Indeed, in
order to determine the possible invariant shapes, the feasible magnetic moment solutions satisfying Eq. (18) should be
examined first, then comes to identify whether the families of invariant shape solutions do exit with given magnetic
moments by checking other equilibrium conditions.

3.1.1. Along-track
For the along-track collinear configuration, substituting p; = p;y; into Eq. (1) yields

Fo [y 2ue  —u T
B, =% |—u U U 19
ij 4@3[ jx iy jz] 19)

Considering ¥ = p; x (B;j+By), three possible cases are examined to satisfy Eq. (18).

Case A: ;=0
In order to ensure the electromagnetic effect, at least two of magnetic moments should not be zero. When p; = 0, we have
Bj; =By; =0, then 7/ =i; x Bj =0 and ;" =i, x By; =0, which are expanded with components formulation to give

HiyFiz + HiyHjz = 0, FixHky + iy = 0, HixPiz = HixHiz (20)

Hence the electromagnetic effect only occurs between craft-j and craft-k, and the inter-craft electromagnetic force is aligned
with axis y.

Case B: B;j+B;; =0

When B;; = —Bj,, we obtain tj = —p; /p};i, based on Eq. (19). Moreover, we can derive By; = —p; /5, Bj and By; =} /p}Bji,
so

TEM ~Py/Pilic < (Bi+Bj) =0 [ < B;=0 o1
W =pi /PR x (Bji—Bj,) = W x By =0
which are expanded with components formulation as
— 20 Ty — i i, = O
it ot =0 (o0
HixHiz —Hixkikz = 3oty = 0 22)
Finfiky + 2iocHiyy = O Y

Next, discuss the conditions satisfying Eq. (22) besides ji; = 0 which has been analyzed in Case A. (i) If 75, = 0 and gy, iy,
are not simultaneously zero, g, =0 and fyyfi;, = fiyfix, should be required. So the y components of fi;, i, are both zero,
and come with f;/ /f. (ii) If 7, # 0 and g = iy, = 0, Fiy = iy, = 0 is required, which means that only the y components of
Hi, By are not zero, and p;//py is true as well.
Therefore, the magnetic moments of three crafts must be parallel with each other, and either the y components are zero
or the x, z components are both zero. Thus, we can define ji; = —ﬁ?j/ﬁiiﬁk and p; = A, where 1 is a proportionality
coefficient to be determined.
Case C: j;//(B;j+Bi) o
Considering the instance when j;//(B;+By) is true for all three crafts, we can rewrite the formulation as

— ’ o, 3p5

m=I1(Bi2+Bi3) =} ( 2y — 2 +3 yy p;)

ﬂ12

M =12(B21+By3) =1L (_3”3/ B -+ My ,)23) (23)

=l (B31+B32)—13<”WY3 "‘+ Myy pﬁ)

AR

where [;(i=1, 2, 3) are proportionality coefficients, which can be determined by making equal of corresponding
coefficients of g;. Accordingly, the relations between magnetic moments are given as

Fix+P31/Pasbiox +P1a/Pasfizx =0

Hiy = Hoy = H3y =0 24)

{ W1 +73,/Pasia +Pio/Pasis = 611, ¥p
Ti1,+P31/Paslias + s /PasHz, =0

—_ -3 43— _ -3 ;3 _
Fi1y = P31/Pa3F2y = P12/ Pa3H3y
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Therefore, the magnetic moments of three crafts should satisfy the linear relation shown in Eq. (24), and the y
components are both equal to zero.

Based on the above analysis, the possible shape solutions for each case are identified. When the along-track collinear
configuration achieves relative static equilibrium, %-frame coincides with % to give G3=q,=0, and thus
U3 =0, U; = 0(i # 3). Substituting q =0, u=0 and Eq. (4) for along-track configuration into the equations of motion Eq.
(16), we obtain

_ _ —EM  =EM

§1Q%—ug, /T3~ (F12y_F3ly> /my=0

_ _ 3 (=EM =EM

G4y /T3 + <F23y_F12y) /my =0 (25)

migy (1/1-1/13) = mat, (1/73-1/73)

where 71 = \/12,+ G5, T2 = \/ T2 +G3, T3 = \/r§m+ (MG —myq,)° /m2.

For case A, let g; =0, so all the inter-craft electromagnetic forces are zero except for F%, which is approximate to 0. By
inspection, it is evident that craft 1 is located at the formation center of mass for g; = 0, while craft 2 and 3 are located at
right and left side in the formation. Moreover, 7, =75 is required from the third equation of Eq. (25), which implies m; = m;
and @G, = p3. Thus, craft 2 and craft 3 in along-track collinear equilibrium are of equal mass and located of equal distance.
Note that we omit the derivation when either p, or pi; is zero since the procedure is similar and conclusion same. Actually,
such formations are similar to the two-craft electromagnetic formation, and the shape solutions are the same too. In
particular, assuming the magnetic moment of the two crafts both being jt =,y;, we can solve

_4—=EM
fiy=1/327q"F," /3up~ 0 (26)

For case B, assume the magnetic moments of crafts satisfy {r; = A3, fi, = —p3, /53, Az With Hiy = 0 or py =y, =0, thus the
inter-craft electromagnetic forces can be given as

M 3u@+mr o M _ 3poisd o
12 =17 == .- 3YB 12 = To.G a0 VB
4n(qy +q2)(@1 +73) 7(q1 +q2)(G1 +73)
FEM _ 3p0(@, +i3)@ + 6o FEM 3uoiy (@ +0)° o
23 T 4G 150Gt VB OF § 23 T T2 15 @Y B (27)

FEM _ 3,40(,7§X+,7§z)19 FEM _ T
31 4@ +73)" OB 31 = T 2@, 1750 B

Since the distance p; is minor relative to r.y, using first order Taylor series approximation on 1 /??, and ignoring the

higher order terms of p;/ren, we can derive I_:flzwy ~F§’1V’y ~F§'3VJI, An examination of Eq. (27) shows that g, = p; must be true,
which means that craft 2 and 3 coincide with each other. Such formation is impossible to achieve, thus there is no feasible
shape solution for case B.

For case C, assume magnetic moment of craft 1is ji; = —53; /5330, —P1o /P33 A3 for given i, i3 with 7, =0, then the inter-
craft electromagnetic forces can be given as

M _ 3o ((Fafie + Fazlis) @1 + G2)* + (@3, +B3)(@ +73) )¢,
12 4Gy +0,)° @ —73)° JB
FEM 3o (ioding +Tiali3:)5
B =T @ Y (28)

FEM _ 3u0((afisy + ioafin) @1 +75)° + G5, + )@ +8)") g
31 42(@1 +72)" @ —73)° JB

=EM _ZEM _ —EM
In the same way, based on F,, ~ F3;, ~ Fy3,, we have

(3 +13,) ) (i3 +7i5,) = —(G1 +T2)/ (@ +73))° > 0 (29)

which depicts families of invariant shape solutions under case C where craft 3 is located at leftmost of the formation since
g, +p3 <0 must be true for all time. In particular, we can obtain a special shape while j, =3 as

p3=—201—q, = (M1 +2m3)q, = (My—m3)q, e

Since m; > 0 and g; > 0O, the shape solutions of Eq. (30) are permissible only when m;, > mjs is true for all time, which can
be solved for given m;.
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3.1.2. Orbit normal
For the orbit normal collinear configuration, the relative static equilibrium follows the same conditions except for u; =0,
thus the equilibrium equations of motion are derived as

—uGy /T3~ (Frpy—Fa1p)/my =0

. —EM —<EM
—Gy /T3 +(Fy3,—F13,)/ma =0 31
miqy(1/7—1/13) = myg,(1/13-1/73)

where 7; are same as the expressions in Eq. (25).
Again, using first order Taylor series approximation on Eq. (31), and ignoring the higher order terms of p;/rcm, we can
derive

—EM —=EM _

~ 3
Fio,—F31, & —pumiq, /rcm <0
—EM —<EM _

~ 3
FlszF;:Bz A —pMy(y [T, <0

(32)

Substituting p; =p;2p and following the derivation shown in Section 3.1.1, it concludes that the feasible magnetic
moment solutions satisfying Eq. (18) for orbit normal configurations have a similar formulation. Here we would identify the
possible invariant shape solutions directly.

For case A, we assume p; =0 without loss of generality, then all the inter-electromagnetic forces are zero except I?fl;/)',
which is a repulsive force to maintain the formation. From Eq. (31) m;q; = m»q, is derived, which means that craft 3 is
located at the formation center of mass. Moreover g; =@, and m; = m, are required, which imply that craft 1 and 2 are
located at left and right side in the formation with equal mass and equal distance. Similarly, when §; =, = 4,2, the
equilibrium magnetic moment is written as

—EM _
i, = \/—327@4}:2 /3up ~ \/32n!22mq5/3;40 (33)

For case B, the magnetic moments of crafts satisfy it; = A, i = —7; /pp;i With g = 0 or i, = iy, = 0. Given js, the inter-
craft electromagnetic forces share a same expression with Eq. (27) except for replacing yz by —2g. Thus the proportionality
coefficient 1 can be determined by examining Eq. (32) as

1o miq (G +73)(@; +G)* (34)
=— =173 e
(G2—p3)"(M2q2(qr—p3) +M1q;1(qq +p3))

Therefore, g, # p5 is required to offer a feasible solution. Note that the denominator in Eq. (34) has been checked as true
for any collinear geometry.

For case C, the magnetic moments of crafts satisfy |, +73; /7332 +53,/P3303 = 0 with 7, =0, and the electromagnetic
forces are the same as the expression in Eq. (28) except for replacing y; by —2p. Similarly, we can derive the relationship
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Fig. 3. Special shape solutions for orbit normal configuration.
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between the formation geometry and magnetic moments as

m3ps @ +G)° x5 @ +32)*@2=p3) + (aehizy +hzyp3y) (@1 +73)°
My (@ +73)° (43, +M%y)@1 +73)* (@ —P3) — (Haxhax +poy3y)(4 +q,)°

(35
In particular, let y =¢q; /q,, s = m;/ms3 and ¢ = my /ms, which are all positive real number. Thus, we can obtain the special
shapes while ji, =5 as

=0 __ q+1° a+D’(A-3r+0)+ @ +&—0)’
T (=0 (r+r—0)*(1=8x+0)—(r+1)°

(36)

Eq. (36) is a polynomial equation about y, which can be determined by given &, ¢. According to the definition of y, each
solution to this equation gives a family of invariant shape solutions for such collinear formation. The values of y with varied
8, ocan be seen in Fig. 3. Numerically simulation shows that for any given &, ¢ > 0, there exists at most one solution for y to
satisfy Eq. (36), and there is no feasible shape solution while ¢ < 1.

3.2. Static triangular configuration

Unlike the collinear configuration, the equilibrium torque conditions for the triangular configuration are too nonlinear to
get an analytical formulation, hence it is very difficult to examine the feasible magnetic moments solutions. In Ref. [16]
Schweighart presented two numerical algorithms by Newton's method and continuation method to solve the polynomial
equations about magnetic dipoles. However, one can check some special invariant shape solutions do exist. Here we first
examine the appropriate configuration constraints based on angular momentum conservation, and then identify the feasible
magnetic moment solutions for special formation geometry meeting the equilibrium conditions.

When the triangular configuration achieves the relative static equilibrium, the electromagnetic torques satisfy Eq. (18) as
well, so the expression for angular momentum conservation is derived as

ZEM  ZEM ZEM  ZEM
0=f227 3z > 0=flz 7f3z 37)
_ EM  ZEM _ ZEM ZEM _  ZEM ZEM
0=mqy(f1y, —f3y ) +mM2qyC3(f5y —f3, ) +M2GsS3(f5, _fgx )
Previous work has shown that axis zz of an arbitrary triangular electromagnetic formation must align with one of three
s -frame axes to satisfy relative static equilibrium, which is similar to Coulomb formation in Ref. [6]. In addition, given the
similar geometry and mechanics characteristics between the cases of Zg axis along orbit normal and along-track direction,
we only consider the two cases where three crafts are coplanar with the orbital plane or perpendicular to radial
direction here.
For the triangular static electromagnetic formation lying in the orbital plane, %-frame coincides with #-frame to give

G4 =05 = gg = 0, and thus u; are all equal to zero except for Ug = Q. The equilibrium acceleration of electromagnetic force can
be derived from Eq. (16) at relative equilibrium. After checking the conditions in Eq. (37), we obtain

Ty =3 = 2M3Tem(M1 Gy + (M +M3)qyC3) = 2My My GaCs + M3 + M35 —m3qs (38)

It is obvious that craft 2 and craft 3 must be located equally distant to the center of earth. In particular, when
myq; +(my +ms)q,c3 = 0, the projections of p,, p; along axis g have equal value, and m, = mjs is derived from Eq. (38) as
well. So far, the three-craft formation geometry should be a radially symmetrical isosceles triangle. A same conclusion for
three-craft formation perpendicular to along-track direction can also be obtained.

For the triangular configuration perpendicular to radial direction, the formation maintains relative static equilibrium
with axis zp aligned with radial direction. Let g, = z/2, g5 =Gg =0, and thus u; are all equal to zero except for 1y = —€Q.
Following the similar procedures, we obtain

THi=Ty=T q;1=¢q
{1 2=13 :>{Q1 q2 (39)

- el 2 2 2
miq; +(my+ms3)q,c3 =0 2mymyc3 = m3—mg—msj

which means that the distances of all three crafts relative to the center of earth must be equal, constituting an isosceles
triangle. Furthermore, based on geometrical symmetry about axis Xz, m; = ms is necessary to make p,, =ps, true.

In both cases, an isosceles triangle configuration can always be found to maintain static formation relative to # for
all time, and such shape constraints represent sufficient conditions with the existence of feasible magnetic moment solu-
tions unknown yet. To explore the magnetic moment solutions, we revisit Eq. (37) and find all three accelerations of
electromagnetic force along axis zp to be equal, then Fy,, = Fys, = F;Z can be ensured. Since the resulting equations are far
too complex, zi;, = 0 as a special solution is checked to meet the condition and make F,-EZM = 0. Next, the magnetic moment
solutions would be identified under such circumstances.
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Fig. 4. Magnetic moments for three-craft triangular static configuration.

Considering the triangular configuration with q; =q, =¢, my, =ms3 and c;3 = —m;/2m;, the required accelerations of
electromagnetic force for the case of three-craft formation perpendicular to radial direction are derived as

—EM _ —EM _ _ —EM —EM —EM

ffx :”q/r? fgx :/AJC3/I’? =c3fix f3x =fa (40)
—EM > =M _ _ _ > —=EM —EM

fiy =0 f;:y =q53.(22—,uq53/1’?%0 f3y =—fy

where 7y = /12, +ﬁz, T, =T3 =T1. For the case of three crafts lying in the orbital plane, we can obtain a similar formulation

by using first order Taylor series approximation, which is examined to satisfy the same relationship in Eq. (40). In this
manner, craft 1 is exerting repulsive forces on other two crafts, and attractive force is required between craft 2 and 3, or both

reverse. Therefore, the electromagnetic forces applied on all three crafts are symmetrical about axis X, and the magnetic
moments of three crafts should be symmetric accordingly.

As shown in Fig. 4, assume the magnetic moments for each craft as

= [ﬁl 0 OT,H2= [ﬁz sin iy cos n Or, = [/73 sin y  —fi3 cos n O}T 1)

where 7; is magnitude of p;, and 5 € (0,7/2) is the angle between j; and axis y,. By substituting Eq.(41) into =¥ =0 and
examining the resulting expressions, the appropriate value of z; can be determined by

o sin’gs
H2 =S = T Sin 2ysin°(@5/2)

(5 cos n—7 cos(Gz—n)+3 €os(2q3—n)— C€Os(q3+n)i; (42)

The resulting inter-craft electromagnetic forces are expressed as

3uoka iy

*mo sin(qz—n)—>5 sin(2q3—n)— sin(y+gs)+3 sin n)
—EM o B B B
Fp, = —#{%M(S €os (3 —n)—5 €os(2G;—n)— cos(n+q3)+ €OS 1)
0
_ 0 _EM 43)
—F
FEM _ | omm(sin®y-2) | pEM o
23 = 64rg'sin'g; | 131 = | Fpyy
L 0 0

In addition, considering ng = Fglg,—l?fg, ~ 07, the value of 5 can quickly be determined by combining Eqs. (42) and (43),
and satisfies

sin g5 sin 257(5 cos(q3—n)—5 cos(2q3—n)— cos(n+q3)+ COS 1)

=2(sin%y—2)(5 cos y—7 cos (@z3—n)+3 cos(2q;—n)— cos(qs+n)) (44)

As discussed above, Egs. (42)-(44) represent the shape solutions for desired isosceles triangle static electromagnetic
formation with given g, g; and ;. The relationship of » and g5 based on Eq. (44) is illustrated in Fig. 5. It is important to note
that » is not g;/2 except for the trivial case where g5~ 109.05 to make i,, i point to craft 1. The reason is some
components of electromagnetic force should be used to counteract the influence of the gravity. In particular, when
G3 = 2x/3, the triangular configuration is simplified to an equilateral triangle with three craft equal mass, and 5~ 58.345  is
numerically solved. Accordingly, the ratio relation between z; based on Eq. (42) is illustrated in Fig. 6.
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4. Shape solutions of spinning configurations

The invariant shape also yields spinning configurations about the collective center of mass. This section investigates
whether such three-craft invariant shapes with real and constant magnetic moments are feasible for collinear and triangular
configurations respectively. It is important to recognize that not all the derivation of g; are zero at such equilibrium because
of the existence of spin rate &.

4.1. Spinning collinear configuration

The three cases where the collinear configuration spins about each of three #-frame axes are considered here
respectively. Based on the dynamic model for the along-track configuration, the case of collinear configuration spinning
about axis Xcy is studied first. As shown in Fig. 2(a), defining & = &Xcy, if such relative equilibrium is maintained, we have
G3=0,q,#0, g, =£#0, thus U3 =, Uy =¢ By examining the equilibrium conditions of relative attitude motion in
Eq. (10), the magnetic torques should satisfy

?’ﬁy’ =I1%, ?%\//I =11Qé&Cy, ?l]-flz\/l =—11Qé&sy

M = ¢, ?E’y"’ =LQ¢écy, M = —,Q¢s, (45)

T = IE, T =1Qécy, T = —130Q¢s,

Recalling angular momentum conservation for along-track configuration, #}}/ +75)! +75}/ = 0 must be met, which imply
Q=0 since ¢4 =0 is not always maintained. It is apparent that collinear configuration spinning about axis Xcy; is not
permissible with consideration of the gravity. Note that the value of & is not confined in above analysis, so this statement is
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always true no matter whether &= 0. In addition, one can check that 2 =0 is also required for invariant shape solution of
collinear configuration spinning about axis y¢,, under a similar consideration.

Next, considering the collinear configuration spinning about axis Zcy, here let &= ¢£zcy, so we have G; #0, G, =0,
G; = £+ 0, thus U3 = 2+¢. Following the same operation, £= 0 is required to maintain angular momentum conservation,
then the equilibrium equations of motion are derived as

_ o EM  —EM
G1( R+ —ugy /T3 = <F12y—F31y) /m

46
D@+ 4T /T3 = — (Fazy—Fizy ) /m2 o

Actually, the equilibrium electromagnetic forces keep constant because of constant magnetic moments operated in
an invariant shape, so the right sides of Eq. (46) keep constant as well. However, it is obvious that the left sides of Eq.
(46) are time-varying since 7; change as crafts rotating in the orbital plane. The only solution to Eq. (46) is T; — oo so as to
give Q=0.

Base on the above analysis, we have a conclusive statement that the feasible invariant shape solutions for spinning
three-craft collinear configurations only exist in the deep space without influence of the gravity. For the three-craft
collinear configuration spinning in deep space, the only force acting on each craft is electromagnetic force, which offers
a centripetal force to maintain rotation. Indeed, there are no differences for the collinear configuration spinning about
which one of three axes in deep space. Let us study this problem based on Eq. (10). Then, the equilibrium equations of
motion are simplified as

Fiy Tty =mig,& >0
—=EM  =EM — 2 (47)
Fiyy—Fy3, =myqpé” >0
which has a similar formulation with Eq. (32) except for reverse sign of the right side. Following the derivation
presented in Section 3.1.2, we could identify that the possible shape solutions satisfying Eq. (47) have a similar
formulation either, which will not be elaborated here. Note that the required electromagnetic forces for spinning
equilibrium depend on spin rate ¢ and the magnitudes of p; could be determined accordingly.

4.2. Spinning triangular configuration

Consider the triangular configuration spinning about axis Zz in the orbital plane or perpendicular to radial direction as
Section 3.2. Similarly, the appropriate configuration constraints are examined by checking angular momentum conservation.
Let & = £2p, for the triangular configuration spinning in the orbital plane, we have g, =G =0, Gs # 0,Gs = ¢, then g = Q+£.
So angular momentum conservation satisfies

. _ —=EM —EM _ —EM —EM _ —EM —EM
h+hL+h)= le]dll.:y —f3y ) +maGycs(fay —f3,)+M2Gr83(f 5 —f34) (48)
which is true only when & = constant since the equilibrium electromagnetic forces and g; maintain constant. Considering
the fact that gravity for each craft in the orbital plane is time-varying periodically, it is impossible to offer a linear-varying

centripetal force for each craft. Thus, the invariant shapes are not permissible for triangular configuration spinning in the
orbital plane.

H 1

Hy

Fig. 7. Magnetic moments for three-craft triangular spinning configuration.
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Next, if the spin axis Zz coincides with radial direction, we have g, =/2, G5 =0, Gs # 0, s # ¢ at equilibrium, then
Uy = —Qcs, Us = 2S5, Ug =& Thus, =0 is required for a similar derivation, and angular momentum conservation satisfies

{ prem(1/73—1/T3) = My QE(C3Cs +$355) /M3 + (Mg +M3)q QEcs /m3 49)

Urem(1/F3—1/T3) = (N +M3)q,2E(C3C5 + $355) /M3 -+ M 1 QECs /M3

Since 7; are constant for such configuration, 2 = 0 is the only solution to Eq. (49) with ¥; =T, =75 being true accordingly,
so that the formation geometry is an isosceles triangle with q; =¢q,, m, =ms and c3 = —m;/2m, following the analysis in
Section 3.2. This means that there are no feasible invariant shape solutions except for the case where the three-craft
triangular configuration spins without the influence of gravity.

Therefore, if such isosceles triangle configuration spins in deep space, the electromagnetic forces acting on each craft
offer centripetal forces to maintain rotation. Here we only identify a particular solution of magnetic moments with z;, =0
for simplicity. Thus, the required accelerations of electromagnetic force are derived as

+EM — +EM _ —EM  —EM

flx = _qu f;x = —CIC3§2 f3x =f2x

—EM s\ M 5 M ZEM (50)
fly =0 ny = q53f f3y = _f2y

In this manner, the electromagnetic forces acting on all three crafts are pointing to the center of mass, so the magnetic
moments should be arranged end to end in a circle, while the unit vector of p; is perpendicular to p;. As shown in Fig. 7,
assume the magnetic moments for each craft as

ﬁlz[o 1 O]T,sz[ﬁz sin 3 f; €OS (3 O]T,ng[—ﬁ3 sin q; p3 COs Q3 O]T (51)

By substituting Eq. (51) into =
determined by

EM —0 and examining the resulting expressions, the appropriate value of & can be

fia =3 = —sin>q3/(2 cos 3 sin’(qs/2))y (52)
The resulting inter-craft electromagnetic forces are expressed as

[ Swmm G =
12" sinS@/z)( €OS 2q53+2 cos q3—5)

—EM _
FE =|_ 3ok iy NG 2(F
12 T s’ @ D) sin q3(1+ cos“(qs/2))

0
o v (53)
_ 0 L oo _Flzx
FEM | _3maps(sin®gs=2) | ZEM | _py
23 = 647" sin’qs, > B3 = Fuy
L 0 0

In particular, when @3 = 2x/3, the triangular configuration is simplified to an equilateral triangle with three crafts share
equal mass, thus we have i, =5, = ;3.

So far, we have identified the feasible static or spinning invariant shape solutions for collinear and triangular
configuration respectively. However, whether these equilibrium shapes are stable or not remains unknown, which would
be discussed in the following section.

5. Linear stability analysis

To determine stability properties of an invariant shape, the linearization for equations of motion is developed
about the corresponding relative equilibrium accordingly. Considering the dynamics described by generalized

coordinates and generalized speeds, the state variables are chosen as x=[q" u']", and the control variables are
u.=[n] p} pIy’. Assuming that all motions are small perturbations relative to the equilibrium point, we define
q=(q+45q, u= u+su, U, =Uc+6u.. Based on the first order Taylor series approximation, the linearized dynamics can be

Table 1
Shape parameters corresponding to different static configurations.

Configurations B} T X
(a) Along-track collinear configuration 1.0 1.0 1.0
(b) 0.5 4.750 1.5
(c) Orbit normal collinear configuration 0.5 4,786 1.5

(d) Equilateral triangle configuration 1.0 1.0 1.0
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Fig. 8. Open-loop eigenvalues for different configurations in Table 1.

* Trajectory of Craft 2

Trajectory of Craft 3

Initial Position of Craft 1
Initial Position of Craft 2

Fig. 9. Perturbed trajectory for (a) collinear and (b) equilateral triangle spinning configuration.
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expressed as

quu. 5“C (54)

oq/0q" oq/ou’ 5 X
ox =A(q, U, U)sX+B(q, U, o)su. = { d/0a o/ ] { q} x
quu,

oi/oq"  oi/ou’ sul ' oul
where Jacobin matrix A, B are evaluated at the equilibrium point X, U, and the eigenvalues of matrix A can be
computed to assess the stability properties of the above shapes. Since the formulations of the elements in A, B are too
complicated to be briefly recognized, we will numerically discuss the eigenvalues, as well as the linear stability for
different families of invariant shapes.

As an example, for the invariant shapes of static configuration, consider a three-craft formation where the formation
center of mass travels in a circular orbit of 500 km. Choosing the shape parameters as shown in Table 1 for illustration. Let
G, = 15m, m3 =150 kg, I3 =20 kg m?, the resulting numerical eigenvalues for different configurations are shown in Fig. 8.
It is obvious that all these cases have eigenvalues with real parts to make the static configuration unstable.

For the invariant shapes of spinning configuration, consider a three-craft formation operating in deep space. Choose the
same shape parameters as shown in Tables 1(c) and 1(d) for collinear and triangular configuration respectively. Assuming
the spin rate is ¢ =2z rad/h, the corresponding invariant shapes are numerically ensured without perturbation. Here, an
initial perturbation of 6g; = 0.01 m and 5q, = 0.02 m are applied and the full nonlinear equations are integrated to examine
the stability. The resulting perturbed trajectories and state curves under constant electromagnetic forces are shown as
Fig. 9-11, where the relative attitude curves are only presented for one of three crafts to illustrate. It is apparent that the
spinning configurations are all unstable, especially the collinear configuration diverges from the equilibrium point much
faster. This is because the real part of unstable eigenvalues of the collinear configuration 0.001745 is much bigger than that
of triangular configuration 2.5 x 107",

Again, we numerically assess the controllability of such invariant shapes. From the linear control theory, we know that
the system is only controllable if

rank(C):rank([B AB A’B ... A”’IB])=T1 (55)

where C is the controllability matrix. Calculating A, B by the parameters in Table 1 and substituting in Eq. (55), we can check
that the ranks of collinear and triangular configuration are 26 and 30 respectively, which both satisfying Eq. (55). Hence the
full nonlinear systems are controllable within small deviation around the equilibrium.

Actually, the open-loop eigenvalues and controllability for other invariant shapes can also be determined following same
procedures. We have examined that most of these shapes are unstable and controllable so far, but no guarantee whether a
stable or marginally stable solution do exist since there are an infinite number of solutions for any desired invariant shape.
Moreover, in order to maintain these shapes, an active magnetic moment control needs to be performed. Resolution of these
problems would be left for future work.

6. Conclusion

Concentrating on the invariant shape for close formation flying with inter-craft electromagnetic force, this paper mainly
analyzes the invariant shapes of relative equilibrium for three-craft electromagnetic formation, and studies the families
of invariant shape solutions and their linear stability. Both collinear and general triangular configurations are considered
under the full nonlinear coupled dynamic models. By analyzing the 6-DOF relative equilibrium problem, the magnetic
moments and geometry conditions to guarantee feasibility of the invariant shape, and the corresponding families of
invariant shape solutions with real and constant magnetic moments are identified for static and spinning configurations
respectively. Especially, some particular interesting shapes are chosen to illustrate the results and convenient control.
Furthermore, numerical simulations are carried out to analyze the linear stability, which show that most invariant shapes
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for the three-craft electromagnetic formation are unstable and controllable, and active control is required to maintain these
configurations.
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