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Abstract

The paper addresses the problem of correlation within an array of parallel dislocations in a crystalline solid. The first
two of a hierarchy of equations for the multi-point distribution functions are derived by treating the random dislocation
distributions and the corresponding stress fields in an ensemble average framework. Asymptotic reasoning, applicable
when dislocations are separated by small distances, provides equations that are independent of any specific kinetic law
relating the velocity of a dislocation to the force acting on it. The only assumption made is that the force acting on
any dislocation remains finite. The hierarchy is closed by making a standard closure approximation. For the particular
case of a population of parallel screw dislocations of the same sign moving on parallel slip planes the solution for the pair
distribution function is found analytically. For the dislocations having opposite signs the system of equations suggests that
in ensemble average only geometrically necessary dislocations correlate, while balanced positive and negative dislocations
would create dipoles or annihilate. Direct numerical simulations support this conclusion. In addition, the relation of the
dislocation correlation to strain gradient theories and size effect is shown and discussed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In a crystalline solid, the interaction of dislocations with the underlying lattice, grain boundaries, inclusions
and each other affects their resultant mobility at the microscopic level and, at the macroscopic level, the solid’s
elastoplastic response to stress. This was recognised even before the existence of dislocations had been exper-
imentally confirmed (Taylor, 1934). Since the 1960’s, attempts of varying degrees of sophistication have been
made, to identify and eventually to quantify the link between plastic flow and the motion of the associated
dislocation structures. At the level of continuous distributions of dislocations, early contributions include
those of Mura (1965, 1967) and the mathematically-sophisticated work of Berdichevskii and Sedov (1967).
More recent trends have been to set up numerical simulations for a body containing a large number of discrete
dislocations (e.g. Van der Giessen et al., 2001). Dislocation arrays have also been treated as random and have
0020-7683/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijsolstr.2007.09.028

* Corresponding author. Tel.: +44 1223 339251; fax: +44 1223 765900.
E-mail address: J.R.Willis@damtp.cam.ac.uk (J.R. Willis).

https://core.ac.uk/display/82729332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:J.R.Willis@damtp.cam.ac.uk


V. Vinogradov, J.R. Willis / International Journal of Solids and Structures 45 (2008) 3726–3738 3727
been subjected to treatments involving ensemble averaging (e.g. Groma, 1997 and succeeding work discussed
later). The objective here is to generate and solve equations that govern multipoint probability densities for the
locations of the dislocations. In early work, Groma (1997) closed his system of equations at the level of the
‘‘mean field approximation’’ and related this to classical continuum plasticity theory. Subsequent work
(e.g. Zaiser et al., 2001, Groma et al., 2003, Zaiser and Aifantis, 2006) admitted the influence of pair distribu-
tion functions on dislocation patterning, and in generating equations for continuum plasticity including the
effect of gradients of plastic strain. They derived, but did not solve, equations for the two-point functions,
obtaining these functions instead from the results of simulations.

The present work follows the line established by Groma (1997). First, a derivation is given for the ensemble
averaged descriptions of the dislocation array and the stress that it generates. A hierarchy of equations for the
multipoint densities follows once a kinetic law governing the motion of the dislocations is postulated. How-
ever, the objective of determining the multipoint densities when the dislocations are close (and so interactions
are strong) is served by recognising that equations governing their asymptotic ‘‘close’’ form require only the
postulate that the force on any dislocation must be finite. The resulting simplified hierarchy is then closed by a
standard closure assumption which neglects the interaction of three dislocations, all close together. The equa-
tion governing the two-point probability density for an array of screw dislocations, all of the same sign, all
with glide planes parallel to the ðx1; x3Þ-plane, is deduced, and a simple analytic solution is presented. When
dislocations of either sign are admitted, it is found that the governing equations admit no solution. This par-
adox is resolved by recognising that dislocations of opposite sign would come into coincidence and either can-
cel or else form dipoles that would interact only weakly with the remaining free dislocations. Support for this
proposition is provided by a simulation, reported here. Finally, reasoning like that of Groma et al. (2003) and
Zaiser and Aifantis (2006) is applied to the present system, to develop an explicit correspondence between the
present formulation and strain-gradient plasticity. The main difference between this and earlier work is that it
is completely analytical and self-contained, the two-point density having been derived from its governing
equation.

2. Equations for joint probability densities

The concern here is for an array of straight dislocations, all parallel to the axis Ox3, in a cylindrical body
whose cross-section is a domain D in the ðx1; x2Þ-plane. The possibility that D could be the whole ðx1; x2Þ-plane
is included. There could be several types of dislocations, distinguished by a Greek letter index. They are
assumed to be distributed randomly at some initial instant. Their motion will follow a deterministic law
but their subsequent positions will reflect the initial randomness. The underlying stochastic process is defined
in terms of a sample parameter x which belongs to the sample space X over which is defined a probability
measure p. Thus, in realization x the dislocations of type a have positions xa

i ðx; tÞ at time t, where i 2 Ia,
the index set identifying each individual dislocation of type a. The density of dislocations of type a is defined
as follows. Let / be a ‘‘test function’’, infinitely differentiable and having compact support within D. Then
Uðx; tÞ :¼
X
i2Ia

/ðxiðx; tÞÞ �
X
i2Ia

Z
D

/ðxÞdðx� xa
i ðx; tÞÞdx ð2:1Þ
has ensemble mean
hUiðtÞ ¼
Z

X
pðdxÞUðx; tÞ: ð2:2Þ
This is a linear functional of / and hence can be written
hUiðtÞ ¼
Z
D

qa
1ðx; tÞ/ðxÞdx; ð2:3Þ
where, formally at least, the distribution qa
1ðx; tÞ is defined by
qa
1ðx; tÞ ¼

Z
X

pðdxÞ
X
i2Ia

dðx� xa
i ðx; tÞÞ: ð2:4Þ
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Note that the introduction of the test function / ensures that all sums are finite and hence any problems relat-
ing to convergence are avoided.

A conservation law for qa
1 can now be obtained by calculating dhUi=dt in two different ways. From (2.2)

and (2.1), assuming that no dislocations are created or destroyed (so that Ia is time-independent),
dhUi
dt
¼
Z

X
pðdxÞ

X
i2Ia

_xa
i ðx; tÞ � r/ðxa

i ðx; tÞÞ �
Z
D

qa
1ðx; tÞvaðx; tÞ � r/ðxÞdx: ð2:5Þ
The superposed dot means o=ot. The definition of the velocity field vaðx; tÞ through
Z
X

pðdxÞ
X
i2Ia

_xa
i ðx; tÞwðxa

i ðx; tÞÞ ¼:

Z
D

qa
1ðx; tÞvaðx; tÞwðxÞdx ð2:6Þ
for any test function w is good so long as the density qa
1ðx; tÞ in fact is continuous.

The other expression for dhUi=dt is obtained from (2.3):
dhUi
dt
¼
Z
D

oqa
1

ot
/ðxÞdx: ð2:7Þ
It follows from (2.5) and (2.7) that
oqa
1ðx; tÞ
ot

þr � ðvaðx; tÞqa
1ðx; tÞÞ ¼ 0; ð2:8Þ
in the sense of distributions. If dislocations were created or destroyed, this would simply introduce a source
term on the right side of this equation (see, for instance, Aifantis, 1987).

Multipoint densities can be treated similarly. For two points, and dislocation types a and b, adopt a test
function /2ðx; yÞ defined over D�D, and let
U2ðx; tÞ :¼
X
i2Ia

X
j2Ib

/2ðxa
i ðx; tÞ; x

b
j ðx; tÞÞ: ð2:9Þ
This has ensemble mean
hU2iðtÞ ¼
Z
D

dx

Z
D

dyqab
2 ðx; y; tÞ/2ðx; yÞ; ð2:10Þ
where formally,
qab
2 ðx; y; tÞ ¼

Z
X

pðdxÞ
X
i2Ia

X
j2Ib

dðx� xa
i ðx; tÞÞdðy� xb

j ðx; tÞÞ: ð2:11Þ
Considering dhU2i=dt yields the conservation law
oqab
2 ðx; y; tÞ

ot
þrx � ðvabðx; y; tÞqab

2 ðx; y; tÞÞ þ ry � ðvbaðy; x; tÞqba
2 ðy; x; tÞÞ ¼ 0 ð2:12Þ
(assuming no sources or sinks), where vabðx; y; tÞ is defined so that
Z
X

pðdxÞ
X
i2Ia

X
j2Ib

_xa
i ðx; tÞw2ðxa

i ðx; tÞÞ; x
b
j ðx; tÞÞ ¼:

Z
D

dx

Z
D

dyqab
2 ðx; y; tÞvabðx; y; tÞw2ðx; yÞ ð2:13Þ
for any test function w2ðx; yÞ. Note that qab
2 ðx; y; tÞ ¼ qba

2 ðy; x; tÞ. Note also that vaðx; tÞ represents the ensem-
ble mean of the velocity of an a-dislocation at x at time t, conditional upon there being such a dislocation at x

at that time. Similarly, vabðx; y; tÞ is the ensemble mean of the velocity of an a-dislocation at x, conditional on
there being an a-dislocation at x and a b-dislocation at y at time t.

The continuity Eq. (2.8) of course is well-known; so, in principle, is (2.12), but the velocity terms have been
defined perhaps more carefully than is always the case, through the systematic employment of test functions.
They will also play a role in the section to follow.
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3. The stress due to an array of dislocations

Eqs. (2.8) and (2.12) cannot be solved as they stand, because they contain the velocity terms va or vab. What
is needed is a relation between dislocation velocity and stress. The simplest possibility is to invoke the linear
kinetic law
1 Eq
vector
v ¼ ks; ð3:1Þ
where v denotes the speed of motion of the dislocation in its glide plane, s denotes the corresponding resolved
shear stress and k is the rate constant. Whether or not this is adopted, it is necessary to discuss the stress pro-
duced by the dislocation array. For a dislocation of type a the relevant component of stress at ðx; tÞ may be
given as
saðx; t;xÞ ¼ rA;aðx; tÞ þ
X

b

X
j2Ib

Sabðx; xb
j ðx; tÞÞ; ð3:2Þ
where rA;a denotes the a-resolved externally-applied stress1 and Sabðx; yÞ denotes the a-resolved shear stress at
x, generated by a dislocation of type b at y. The sum can extend over all points, including x, if Sabðx; xÞ is
taken to be the ‘‘image stress’’ of the dislocation of type b at y ¼ x, so that, if the body is infinite, this term
is zero. The (unconditional) ensemble mean of this stress is
hsaiðx; tÞ ¼
Z

X
pðdxÞsaðx; t;xÞ ¼ rA;aðx; tÞ þ

X
b

Z
D

Sabðx; yÞqb
1ðyÞdy: ð3:3Þ
In the case of linear kinetics, Eq. (3.1), any conditional average of the velocity va is related linearly to the cor-
responding conditional average of sa; the case of nonlinear kinetics is more complicated unless it is assumed
that the conditional average of va is related just to the corresponding conditional average of sa. Such condi-
tional averages are now discussed.

First, hsaiaðx; tÞ is defined (c.f. (2.6)) so that, for any test function wðxÞ,
Z
D

qa
1ðxÞhsaiaðx; tÞwðxÞdx ¼

Z
X

pðdxÞ
Z
D

saðxa
i ðx; tÞÞwðxÞ

X
i2Ia

dðx� xa
i ðx; tÞÞdx: ð3:4Þ
Therefore, employing (3.2) and invoking the definitions (2.4) and (2.11),
qa
1ðx; tÞhsaiaðx; tÞ ¼ qa

1ðx; tÞrA;aðx; tÞ þ
X

b

Z
D

qab
2 ðx; y; tÞSabðx; yÞdy: ð3:5Þ
Next, in correspondence with (2.13), define hsaiabðx; y; tÞ by the relation
Z
D

dx

Z
D

dyqab
2 ðx; y; tÞhsaiabðx; y; tÞ/2ðx; yÞ ¼

Z
X

pðdxÞ
X
i2Ia

X
j2Ib

saðxa
i ðx; tÞÞ/2ðxa

i ðx; tÞ; x
b
j ðx; tÞÞ: ð3:6Þ
It follows that
qab
2 ðx; y; tÞhsaiabðx; y; tÞ ¼ qab

2 ðx; y; tÞrA;aðx; tÞ þ
X

c

Z
D

qabc
3 ðx; y; z; tÞSacðx; zÞdz; ð3:7Þ
where, formally, the three-point density qabc
3 ðx; y; z; tÞ is given by
qabc
3 ðx; y; z; tÞ ¼

Z
X

pðdxÞ
X
i2Ia

X
j2Ib

X
k2Ic

dðx� xa
i ðx; tÞÞdðy� xb

j ðx; tÞÞdðz� xc
kðx; tÞÞ: ð3:8Þ
uivalently, barA;a is the contribution from the applied stress to the Peach–Koehler force on a dislocation of type a, whose Burgers
has magnitude ba.
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4. Approximations

The mean stress hsaiðx; tÞ is given without approximation by (3.3). Approximations for the conditional
mean stresses are now considered.

Here and in the sequel, it is assumed that the positions of the dislocations are uncorrelated at separations
that are large relative to a ‘‘correlation length’’ l. Thus,
qab
2 ðx; y; tÞ � qa

1ðx; tÞq
b
1ðy; tÞ when jx� yj=l� 1: ð4:1Þ
It is necessary to make a remark about what happens when y ¼ x. If a ¼ b, it follows from the definition (2.11)
of qab

2 ðx; y; tÞ with a ¼ b that the sum of the terms with i ¼ j is qa
1ðx; tÞdðy� xÞ. It is assumed that two distinct

dislocations may not occupy the same position; thus, there is no term of this type if b 6¼ a. It is convenient to
write
qab
2 ðx; y; tÞ ¼ qa

1ðx; tÞdabdðy� xÞ þ qab0

2 ðx; y; tÞ ð4:2Þ

and to expand qab0

2 ðx; y; tÞ so that
qab0

2 ðx; y; tÞ ¼ qa
1ðx; tÞq

b
1ðy; tÞ½1þ dab

2 ðx; y; tÞ�: ð4:3Þ

It follows that the conditional mean stress hsaiaðx; tÞ is expressible in the form
hsaiaðx; tÞ ¼ hsaiðx; tÞ þ Saaðx; xÞ þ
X

b

Z
D

Sabðx; yÞqb
1ðy; tÞd

ab
2 ðx; y; tÞdy: ð4:4Þ
Thus, the mean stress experienced by a dislocation at position x is the unconditional mean stress, plus contribu-
tions from its ‘‘boundary image stress’’ and from correlation of the positions of neighbouring dislocations. The
contribution from this boundary image term appears not to have been highlighted so explicitly in previous work.

4.1. Mean field approximation

In the mean field approximation, correlations are simply ignored: dab
2 ðx; y; tÞ ¼ 0: In this approximation,

the velocity vaðx; tÞ is related to the unconditional mean stress hsaiðx; tÞ and the equations of continuity
(2.8) become a closed set for the one-point probabilities qa

1ðx; tÞ.

4.2. Correction due to correlations

Use of the exact expression (4.4) requires knowledge of the two-point functions dab
2 ðx; y; tÞ. They must con-

form to Eqs. (2.12), in which an expression for vabðx; y; tÞ is required. This motivates study of hsaiabðx; y; tÞ
which, in turn, requires discussion of the three-point functions qabc

3 . These contain contributions from one
and two points. First, if a ¼ b ¼ c,
qaaa
3 ðx; y; z; tÞ ¼

Z
X

pðdxÞ
X

i

dðx� xa
i ðx; tÞÞdðy� xÞdðz� xÞ

(

þ
X

i

X
j 6¼i

dðx� xa
i ðx; tÞÞdðy� xa

j ðx; tÞÞ½dðz� xÞ þ dðz� yÞ�

þ
X

j

X
k 6¼j

dðy� xa
j ðx; tÞÞdðz� xa

kðx; tÞÞdðx� yÞ

þ
X

i

X
j 6¼i

X
k 6¼i;j

dðx� xa
i ðx; tÞÞdðy� xa

j ðx; tÞÞdðz� xa
kðx; tÞÞ

)
: ð4:5Þ
Thus
qaaa
3 ðx; y; z; tÞ ¼ qa

1ðx; tÞdðy� xÞdðz� xÞ þ qaa0

2 ðx; y; tÞ½dðz� xÞ þ dðz� yÞ� þ qaa0

2 ðy; z; tÞdðx� yÞ
þ qaaa0

3 ðx; y; z; tÞ; ð4:6Þ
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where
qaa0

2 ðx; y; tÞ ¼
Z

X
pðdxÞ

X
i

X
j 6¼i

dðx� xa
i ðx; tÞÞdðy� xa

j ðx; tÞÞ � qa
1ðx; tÞqa

1ðy; tÞ½1þ daa
2 ðx; y; tÞ� ð4:7Þ
and
qaaa0

3 ðx; y; z; tÞ ¼
Z

X
pðdxÞ

X
i

X
j 6¼i

X
k 6¼i;j

dðx� xa
i ðx; tÞÞdðy� xa

j ðx; tÞÞdðz� xa
kðx; tÞÞ: ð4:8Þ
It is useful now to expand qaaa0
3 as follows:
qaaa0

3 ðx; y; z; tÞ ¼ qa
1ðx; tÞqaa0

2 ðy; z; tÞ þ qa
1ðy; tÞqaa0

2 ðz; x; tÞ þ qa
1ðz; tÞqaa0

2 ðx; y; tÞ
� 2qa

1ðx; tÞqa
1ðy; tÞqa

1ðz; tÞ þ qa
1ðx; tÞqa

1ðy; tÞqa
1ðz; tÞdaaa

3 ðx; y; z; tÞ: ð4:9Þ
The complete expression for qaaa
3 follows from (4.6) and (4.9). If c ¼ a or c ¼ b and a 6¼ b, similar expansions

are applicable but they have less terms. The complete expression, for all a; b and c, is
qabc
3 ðx; y; z; tÞ ¼ qa

1ðx; tÞdbadcadðy� xÞdðz� xÞ þ ½qab0

2 ðx; y; tÞdcadðz� xÞ þ qab0

2 ðx; y; tÞq
c
1ðz; tÞ�

þ ½qbc0

2 ðy; z; tÞdabdðx� yÞ þ qbc0

2 ðy; z; tÞqa
1ðx; tÞ� þ ½q

ab0

2 ðx; y; tÞdbcdðy� zÞ

þ qca0

2 ðz; x; tÞq
b
1ðyÞ� � 2qa

1ðx; tÞq
b
1ðy; tÞq

c
1ðz; tÞ

þ qa
1ðx; tÞq

b
1ðy; tÞq

c
1ðz; tÞd

abc
3 ðx; y; z; tÞ: ð4:10Þ
Evidently, dabc
3 tends to zero whenever two of x, y, z are separated by a large amount in comparison with the

correlation length.
The relation (3.7) for hsaiab can now be expanded, when y 6¼ x, to the form
qab
2 ðx; y; tÞhsaiabðx; y; tÞ ¼ qab

2 ðx; y; tÞ½hsaiðx; tÞ þ Saaðx; xÞ þ Sabðx; yÞ� þ qa
1ðx; tÞq

b
1ðy; tÞ

�
X

c

Z
D

qc
1ðz; tÞ dca

2 ðz; x; tÞ þ dbc
2 ðy; z; tÞ þ dabc

3 ðx; y; z; tÞ
� �

Sacðx; zÞdz: ð4:11Þ
An approximate relation, which involves only one- and two-point functions and thus closes the system of
equations, is obtained by simply assuming that
dabc
3 ðx; y; z; tÞ ¼ 0: ð4:12Þ
This approximation is adopted henceforth.

5. Asymptotic solution for the two-point functions

Regardless of the detail of the kinetic law, it is reasonable to suppose that the force on every dislocation
remains finite, and therefore the conditionally-averaged stress component hsaiabðx; y; tÞ must be finite. Since
the kernel functions Sacðx; zÞ become unbounded as z approaches x, a minimal requirement is that the terms that
could be singular in (4.11) must ultimately cancel. Thus, asymptotically, when x and y are close and not adjacent
to a boundary,
ð1þ dab
2 ðx; y; tÞÞSabðx� yÞ þ

X
c

Z
qc

1ðzÞd
bc
2 ðy; zÞSacðx� zÞdz ¼ 0: ð5:1Þ
Here Sac has been given as a function of ðx� zÞ because its asymptotic infinite-body form is implied; likewise, the
integral is extended over all space. With just one further approximation, that the unconditional probabilities qc

1

vary slowly with z on the scale of the correlation length, qc
1ðzÞ can be replaced by qc

1ðxÞ. It then becomes consistent
to take the two-point functions dbc

2 to depend on ðy; zÞ only in the combination ðy� zÞ. Eqs. (5.1) then become
ð1þ dab
2 ðx� y; tÞÞSabðx� yÞ þ

X
c

qc
1ðx; tÞ

Z
dbc

2 ðy� z; tÞSacðx� zÞdz ¼ 0: ð5:2Þ
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6. A single population of screw dislocations

Consider, as a first example, an array of screw dislocations, assumed to be able only to glide in the direction
parallel to Ox1. Since there is only a single population of dislocations, there is only one function d2. Further-
more, since time enters only through q1ðx; tÞ, dependence on time is suppressed. Finally, without loss, x is
taken equal to zero. Eqs. (5.2) thus become
ð1þ d2ð�yÞÞSð�yÞ þ q1

Z
d2ðy� zÞSð�zÞdz ¼ 0: ð6:1Þ
The relevant stress component, now called simply S, is r23 if the dislocation has Burgers vector ð0; 0; bÞ with
b > 0, or �r23 if the dislocation has Burgers vector ð0; 0;�bÞ. Thus, for a positive screw dislocation at z, the
stress component r23 at x ¼ 0 is
Sð�zÞ ¼ �B
z1

z2
1 þ z2

2

ð6:2Þ
where B ¼ lb=ð2pÞ, with l the shear modulus of the medium. To evaluate the integral it is convenient to use
complex variables introducing n0 ¼ y1 þ iy2 ¼ jyjei/ and n ¼ ðy1 � z1Þ þ iðy2 � z2Þ ¼ jnjeih, such that the shear
stress at the origin due to a dislocation at z is equal to
Sð�zÞ ¼ Re
1

n0 � n
; ð6:3Þ
where the constant �B is omitted because in any case it cancels through the equation. The analysis to follow
will demonstrate the consistency of taking the function d2ðy� zÞ to depend only on the distance r ¼ jy� zj.

The integral in (6.1) can be split into two parts according to the integration regions.
Z
Sð�zÞd2ðrÞdz ¼ Re

Z
r<jn0j

1

n0 � n
d2ðrÞdnþRe

Z
r>jn0j

1

n0 � n
d2ðrÞdn: ð6:4Þ
For r > jn0j we get
Re

Z
r>jn0j

1

n0 � n
d2ðrÞdz ¼ �Re

Z 1

jn0j

Z 2p

0

1

n
1

1� n0=n
d2ðrÞr dr dh

¼ �Re

Z 1

jn0j

Z 2p

0

X1
k¼0

1

n
n0

n

� �k

d2ðrÞr dr dh

¼ �Re

Z 1

jn0j

Z 2p

0

X1
k¼0

e�ih

r
jn0j

r

� �k

eik/e�ikhd2ðrÞr dr dh ¼ 0: ð6:5Þ
For r < jn0j,
Re

Z
r<jn0j

1

n0 � n
d2ðrÞdz ¼ Re

Z jn0j

0

Z 2p

0

1

n0

1

1� n=n0

d2ðrÞr dr dh

¼ Re

Z jn0j

0

Z 2p

0

X1
k¼0

1

n0

n
n0

� �k

d2ðrÞr dr dh

¼ Re

Z jn0j

0

Z 2p

0

X1
k¼0

e�i/

jn0j
r
jn0j

� �k

e�ik/eikhd2ðrÞr dr dh

¼ 2pRe
e�i/

jyj

� � Z jyj

0

d2ðrÞr dr ¼ 2p
cosð/Þ
jyj

Z jyj

0

d2ðrÞr dr

¼ 2pSð�yÞ
Z jyj

0

d2ðrÞr dr: ð6:6Þ
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Thus, the factor Sð�yÞ cancels through Eq. (6.1), leaving
1þ d2ðjyjÞ þ 2pq1

Z jyj

0

d2ðrÞr dr ¼ 0: ð6:7Þ
Differentiating with respect to jyj gives a simple first order linear differential equation, with solution
d2ðjyjÞ ¼ �e�pq1jyj2 ; ð6:8Þ

the constant having been chosen so that (6.8) is satisfied. Finally, the two point density function can be written
in the form
q02ðx; yÞ ¼ q2
1ð1� e�pq1jx�yj2Þ: ð6:9Þ
7. Screw dislocations of opposite signs

Consider now a system of positive and negative screw dislocations, able to glide in the direction parallel to
Ox1. There are thus two dislocation types, a ¼ þ and a ¼ �, and if the definition (6.2) is retained for S, then
Sþþ ¼ S�� ¼ �Sþ� ¼ �S�þ ¼ S. It will emerge below that Eqs. (5.2) have no solution in this case, so that some
additional physical considerations will be required. However, we first record the equations and then perform
some elementary analysis. In an abbreviated notation in which arguments are left implicit, the equations are:
ð1þ dþþ2 ÞS þ
Z
ðqþ1 dþþ2 � q�1 dþ�2 ÞS dz ¼ 0; �ð1þ dþ�2 ÞS þ

Z
ðqþ1 d�þ2 � q�1 d��2 ÞS dz ¼ 0;

� ð1þ d�þ2 ÞS �
Z
ðqþ1 dþþ2 � q�1 dþ�2 ÞS dz ¼ 0; ð1þ d��2 ÞS �

Z
ðqþ1 d�þ2 � q�1 d��2 ÞSdz ¼ 0: ð7:1Þ
Adding the first and third, and then the second and fourth, of these equations gives
dþþ2 ¼ d�þ2 ; dþ�2 ¼ d��2 : ð7:2Þ

Substituting for dþ�2 and d�þ2 then gives the two equations
ð1þ dþþ2 ÞS þ
Z
ðqþ1 dþþ2 � q�1 d��2 ÞS dz ¼ 0; ð1þ d��2 ÞS �

Z
ðqþ1 dþþ2 � q�1 d��2 ÞS dz ¼ 0: ð7:3Þ
Hence,
2þ dþþ2 þ d��2 ¼ 0; ð7:4Þ

a contradiction, since by hypothesis dab

2 ðy� zÞ decays to zero when y and z are widely separated. Note, fur-
thermore, that since this conclusion was reached without invoking the exact form of the kernel S, it would
apply equally to arrays of edge dislocations.

A possible resolution is as follows: suppose, to be definite, that qþ1 > q�1 . A possibility, not allowed for
above, is that all of the negative dislocations could attach themselves to positive dislocations. In the absence
of further hypotheses, the dislocation pairs would cancel each other and would, in effect, mutually annihilate,
to leave a density qþ1 � q�1 of positive dislocations. In practice, they would more probably form dipoles which
would interact only weakly with one another and with the surplus positive dislocations, so that their exact
distribution would be indeterminate. In any case, what would be needed is some further injection of physics.
It is perhaps worth noting in this context that discrete dislocation simulations have built into them some
assumption about close interactions: Van der Giessen et al. (2001) for instance simply assume mutual annihi-
lation if dislocations of opposite sign come within a certain distance of each other. With the assumption of
mutual annihilation (or at least disregard) of dislocation pairs, the problem is reduced to the one solved in
the preceding section, now with the density q1 taken as the net density qþ1 � q�1 which, incidentally, is the den-
sity of ‘‘geometrically-necessary dislocations’’. The solution arrived at in this way is a kind of ‘‘limiting case’’,
which might be expected to approximate the results of simulations. It carries no direct implication for simu-
lation results such as those Bakó and Groma (1999), in which dislocations of opposite sign did not annihilate.
Dislocation annihilation could be prevented, in the present framework, by modifying the kernel functions
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Sþ� and S�þ so that dislocations of opposite signs repelled each other at very close separations. Such a mod-
ification would imply that Sþþ 6¼ �Sþ� for instance, and would remove at least the ‘‘contradiction’’ developed
above. We have made no attempt in this work to pursue further this kind of alternative.

8. Simulations

In order to illustrate the predicted behaviour of the dislocations a small discrete dislocation simulation is
performed. In the presented example 128 positive and 64 negative screw dislocations are distributed randomly
over a periodic cell �1=2 6 x1; x2;6 1=2. The dislocation slip planes are parallel to the Ox1 axis. The disloca-
tions allocated initially at random are allowed to adjust themselves during the simulation, which is imple-
mented by numerically solving the system of linear motion Eq. (3.1).

In discrete dislocation simulations it is common to use finite element analysis to compute the boundary
image stress. In the case of periodic array of dislocations it can be done analytically by direct summation
a

b

Fig. 1. Initial (a) and relaxed (b) dislocation distributions. The crosses are used to indicate the locations of positive dislocations, and
circles indicate negative dislocations.



V. Vinogradov, J.R. Willis / International Journal of Solids and Structures 45 (2008) 3726–3738 3735
of the dislocation replica contributions. For example, the shear stress on a positive dislocation at x due to a
positive dislocation at the origin and its replicas is given by
SðxÞ ¼ B
X1

k¼�1

X1
m¼�1

x1 þ k

ðx1 þ kÞ2 þ ðx2 þ mÞ2
: ð8:1Þ
The correct summation should provide periodic stress field and the right type of singularity at the origin. It is
achieved by the following transformation
SðxÞ ¼ B
X1

k¼�1

X1
m¼�1

x1 þ k

ðx1 þ kÞ2 þ ðx2 þ mÞ2

¼ B
1

2

X1
k¼�1

X1
m¼�1

1

x1 þ k þ iðx2 þ mÞ þ
1

x1 þ k � iðx2 þ mÞ

� �

¼ B
p
2

X1
m¼�1

cotðpðx1 þ iðx2 þ mÞÞÞ þ cotðpðx1 � iðx2 þ mÞÞÞ½ �

¼ B
p
2

X1
m¼�1

sinð2px1Þ
cosh2ðpðx2 þ mÞÞ � cos2ðpx1Þ

: ð8:2Þ
This series converges very fast: only a few terms with positive and negative m are required to get high accuracy.
The initial and resultant relaxed distributions are shown in Fig. 1. One can observe that the negative dis-

locations make an attempt to approach the positive ones as close as possible. Due to initially random distri-
bution of the dislocations, they do not necessarily move on the same slip planes. Thus, since no annihilation
mechanism is assumed here, attraction of the dislocations of opposite signs results in formation of ‘‘dipoles’’.
The interaction of dipoles leads to formation of column-like structures, which minimizes the force a disloca-
tion applies on the dipole neighbour. Similar behaviour was observed by Bakó and Groma (1999) in their dis-
crete dislocation simulations performed for a random array of edge dislocations.

9. Implications for plasticity

Attempts to relate the phenomenon of plastic deformation and the associated continuum theory of plastic-
ity to dislocation dynamics have been made for the last half-century. Early papers include those of Mura
(1965, 1967), Berdichevskii and Sedov (1967) and more recent ones include that of Groma (1997) and subse-
quent contributions mentioned below. The early work of Groma (1997) was explicitly based on equations of
motion for dislocations, employing the linear kinetic law (3.1). A hierarchy of equations was generated, and
the hierarchy closed by making the ‘‘mean field’’ approximation, in which correlations are ignored. Although
developed less formally, the work of Mura (1965, 1967), and others, implicitly makes the same approximation.
Groma et al. (2003) allowed for correlations and obtained thereby equations that contained a length scale,
associated with the mean spacing of dislocations. A drawback of the approach of Groma (1997) and Groma
et al. (2003) is that their resulting continuum description would inevitably reflect the underlying ‘‘linear vis-
cosity’’ of the assumed linear kinetic law. They were able, however, to identify departures from the mean field
approximation, resulting from the admission of the two-point correlation, and estimated the new non-local
term from the form of the two-point correlation, as obtained from a set of direct discrete-dislocation
simulations.

The philosophy to be adopted here is similar in some respects, except that we circumvent the adoption of
any kinetic law (linear or nonlinear) and so make no explicit prediction of a set of equations for continuum
plasticity. Instead, we note that the (ensemble) mean stress at any point x is given exactly by (3.3), and remark
that, in conventional continuum plasticity, the flow law relates the plastic strain-rate at any instant to this
mean stress. Now, as anticipated in Section 5, we note (for linear kinetics) or postulate (for nonlinear kinetics)
that mean dislocation velocity depends not on the unconditionally-averaged stress, but on the stress averaged
conditionally on the presence of a dislocation at the point of interest. The difference between unconditionally-
and conditionally-averaged stress is given, without approximation, by (4.4). It is this difference that provides
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departures from conventional continuum plasticity, much more generally than in the case of linear kinetics
discussed by Groma et al. (2003). It is perhaps worth noting that the ‘‘image stress’’ term in (4.4) provides
a departure from conventional plasticity, resulting in a ‘‘size effect’’, even if the two-point correlation is dis-
regarded. Here, however, our concern is for behaviour ‘‘in the bulk’’, so that the infinite-body form for the
kernel S is adopted. Eq. (4.11) gives hsaiab exactly, and the argument given in Section 5 that it must contain
no singularity as y approaches x has to apply. Eq. (5.1) reflect this requirement, having made the closure
approximation of neglecting the three-point term dabc

3 . Zaiser et al. (2001) reach a similar conclusion, based
on their study of linear kinetics, but they choose a different approximation to close the system, due to Kirk-
wood (1938):
qabc0

3 ðx; y; zÞ ¼
qab0

2 ðx; yÞq
bc0

2 ðy; zÞq
ca0

2 ðz; xÞ
qa

1ðxÞq
b
1ðyÞq

c
1ðzÞ

: ð9:1Þ
They discuss the properties of the solution of their equation but do not attempt to solve it, relying instead on
direct simulation. Groma et al. (2003) and also Zaiser and Aifantis (2006) make use of the same simulation
results.

Now consider the case of antiplane shear of a medium, containing a single set of slip planes parallel to the
ðx1; x3Þ-plane in which only screw dislocations are activated. In general, decomposing the rate of distortion
o _ui=oxj into elastic and plastic parts thus:
o _ui=oxj ¼ _be
ij þ _bp

ij; ð9:2Þ
it follows in the present case that
_bp
32 ¼ qþ1 vþ þ q�1 v� ¼ ðqþ1 � q�1 Þvþ; ð9:3Þ
with all other components of _bp
ij equal to zero. A kinetic relation for vþ thus generates a continuum flow law.

Note that ðqþ1 � q�1 Þ is the density of ‘‘geometrically-necessary’’ dislocations, and
bðqþ1 � q�1 Þ ¼ �obp
32=ox1: ð9:4Þ
Note that it has been assumed that, as defined, q1 > 0.
Now employing the solution given in Section 7, with x taken to define the origin of coordinates, the relation

(4.4) gives
hsþiþð0Þ ¼ hsþið0Þ þ lb
2p

Z
y1

y2
1 þ y2

2

q1ðyÞe�pq1ð0Þjyj2 dy; ð9:5Þ
where here q1 ¼ qþ1 � q�1 . To leading order, assuming that q1 varies slowly on the length scale ½pq1ð0Þ�
�1=2, so

that q1ðyÞ � q1ð0Þ þ y � rq1ð0Þ, this relation is, asymptotically,
hsþiþð0Þ � hsþið0Þ þ lb
2p

oq1ð0Þ
ox1

Z 1

0

Z 2p

0

cos2 he�pq1r2

r dr dh ¼ hsþið0Þ þ lb
4pq1ð0Þ

oq1ð0Þ
ox1

¼ hsþið0Þ � l
4pq1ð0Þ

o
2bp

32

ox2
1

: ð9:6Þ
A relation of this form was given by Zaiser and Aifantis (2006), in the context of an array of edge dislocations,
except that the constant multiplying the ‘‘gradient’’ term was not calculated precisely. If the present criterion
for dislocation motion is hsþiþ ¼ scrit, then equation (9.6) implies the continuum yield criterion
hsþi ¼ scrit 1þ l2 o2bp
32

ox2
1

� �
; ð9:7Þ
where
l2 ¼ l
4pq1ð0Þscrit

¼ lb
4pjbp

32;1ð0Þjscrit
: ð9:8Þ
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A similar conclusion was reached by Groma et al. (2003); the difference here is that there has been no resort to
simulation, nor to any assumption about the form of the kinetic law for the motion of the dislocations. The
result (9.7) has the general form proposed phenomenologically by Aifantis (1984); see also Fleck and Hutch-
inson (2001).

10. Concluding remarks

The main contribution of this work has been a reasonably careful setting up of equations needed to describe
the interaction of arrays of dislocations of sufficient geometrical complexity that they are best modelled as ran-
dom. Their subsequent re-organisation through motion depends on a kinetic law. Here, we have chosen to
depart from the common practice of assuming linear kinetics, and have instead pursued the implication of
assuming only that the force on any dislocation must remain finite. This permitted the development of equa-
tions that must apply to dislocations in close proximity, regardless of the detail of the kinetic law. Of course
these equations should apply in any particular case, including linear kinetics. Such equations have been given
previously (explicitly for linear kinetics) by Zaiser et al. (2001). The main novelty here is that the system has
been closed and a solution of the resulting equation has been found analytically, for a distribution of screw
dislocations.

We have tried to follow through the implications of our formulation, without injecting further hypotheses
on the way. This led, however to the conclusion that there could be no asymptotic solution at small separa-
tions for arrays of dislocations of positive and negative signs. The paradox was resolved by introducing the
one further hypothesis that positive and negative dislocations would either form dipole pairs, or else annihilate
each other, until one population was eliminated or neutralized. A direct simulation of discrete dislocations
provided some support for the hypothesis of dipole formation.

Next, essentially following Groma et al. (2003) (but not assuming any particular kinetic law), some impli-
cations were drawn for continuum plasticity theory. It emerged, asymptotically to lowest order in gradient
terms, that the yield stress in classical plasticity would be enhanced by a gradient term, in the way proposed
by Aifantis (1984) and, later, Fleck and Hutchinson (2001). It should be remarked, too, that the possibility of
such dependence was recognised much earlier, by Berdichevskii and Sedov (1967) in a very sophisticated devel-
opment of plasticity from the theory of continuous distributions of dislocations. It emerges also, from much
more recent studies of crystal plasticity, such as Gurtin (2000). Here, anyway, the length scale that enters
thereby was calculated explicitly from the pair distribution function of the geometrically-necessary disloca-
tions. The model assumed in the present work, of a population of positive and negative screw dislocations,
of course is very special. Furthermore, the asymptotic analysis, although ‘‘honest’’, is subject to all of the lim-
itations assumed in its development. In particular, three-dimensional configurations would allow dislocation
entanglement,‘‘statistically-stored’’ dislocations certainly would remain, and the ‘‘geometrically-necessary’’
dislocations would exist only as resultants and not as identifiable single entities as in the present case. Thus,
further ‘‘gradient’’ effects cannot be excluded, but it is interesting that the present completely explicit calcula-
tions have demonstrated a clear effect of the geometrically-necessary dislocations.

One final remark is perhaps in order. For application to boundary-value problems, strain-gradient plastic-
ity, as derived in this work, requires the introduction of higher-order boundary conditions, and once these
have been selected, scale effects will be predicted. However, even at the level of the ‘‘mean field’’ approxima-
tion, the presence of the ‘‘image stress’’ term in (4.4) will provide a scale effect, and only ‘‘classical’’ boundary
conditions are required. The question of which effect is the more significant remains to be addressed.
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