Note
 An eigenvalue bound for the Laplacian of a graph

J.P. Grossman
Department of Mathematics and Statistics, University of Dalhousie, Halifax, Canada B3H 3 J5

Received 11 November 2003; accepted 30 June 2005
Available online 18 August 2005

Abstract

We present a lower bound for the smallest non-zero eigenvalue of the Laplacian of an undirected graph. The bound is primarily useful for graphs with small diameter. © 2005 Elsevier B.V. All rights reserved.

Keywords: Graph Laplacian; Graph eigenvalues; Eigenvalue bounds

1. Introduction

We use the following definition for the Laplacian matrix of a graph, consistent with [3]:
Definition. Let G be an undirected graph with adjacency matrix \mathbf{A}, and let \mathbf{D} be the diagonal degree matrix defined by $d_{i i}=\operatorname{deg}\left(v_{i}\right)$ and $d_{i k}=0$ for $i \neq k$. The Laplacian of G is the matrix $\mathscr{L}=\mathbf{I}-\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}$.

The eigenvalues of \mathscr{L} are in the range [0,2]. Zero is always an eigenvalue with multiplicity equal to the number of connected components of G, and 2 occurs as an eigenvalue if and only if G is bipartite. The eigenvalues of \mathscr{L} contain additional information regarding the structure of G. They can be used to establish bounds on the diameter of G as well as distances between subsets of $G[1,4,2,5]$. The magnitudes of the eigenvalues also determine the rate of convergence of various iterative computations such as those described in [6,7]; it is therefore desirable to find bounds on the eigenvalues themselves. One of the best lower bounds for

[^0]the smallest non-zero eigenvalue λ_{1} is established in [3]
\[

$$
\begin{equation*}
\lambda_{1} \geqslant \frac{1}{D \operatorname{vol}(G)} \tag{1}
\end{equation*}
$$

\]

Here D is the diameter of G, and $\operatorname{vol}(G)$ is the sum of the degrees of all vertices. In this paper, we present a lower bound on λ_{1} which is easy to compute and is tighter than (1) for certain graphs with low diameter.

2. A lower bound for λ_{1}

Consider the similar matrix $\mathbf{L}=\mathbf{D}^{-1 / 2} \mathscr{L} \mathbf{D}^{1 / 2}=\mathbf{I}-\mathbf{D}^{-1} \mathbf{A}$ which has the same eigenvalues as \mathscr{L}. If f is an eigenfunction of \mathbf{L} corresponding to eigenvalue λ then for any vertex v

$$
\begin{equation*}
(1-\lambda) f(v)=\frac{1}{\operatorname{deg}(v)} \sum_{u \sim v} f(u), \tag{2}
\end{equation*}
$$

where $u \sim v$ denotes that the vertices u, v are connected. Let $v_{1}, v_{2}, \ldots, v_{m+1}$ be a sequence of connected vertices such that $f\left(v_{1}\right)$ is maximal and $f\left(v_{m+1}\right) \leqslant 0$. For convenience, set $x_{i}=f\left(v_{i}\right)$. Let $\alpha=1-\lambda$, and let d be the maximum degree of any vertex of G. Since $v_{1} \sim v_{2}$ and $f\left(v_{1}\right)$ is maximal, Eq. (2) gives us

$$
\begin{equation*}
\alpha x_{1}=\frac{1}{\operatorname{deg}\left(v_{1}\right)} \sum_{u \sim v_{1}} f(u) \leqslant \frac{x_{2}}{\operatorname{deg}\left(v_{1}\right)}+\frac{\left(\operatorname{deg}\left(v_{1}\right)-1\right) x_{1}}{\operatorname{deg}\left(v_{1}\right)} \leqslant \frac{x_{2}}{d}+\frac{(d-1) x_{1}}{d} . \tag{3}
\end{equation*}
$$

Similarly, since $v_{i} \sim v_{i-1}$ and $v_{i} \sim v_{i+1}$ for $2 \leqslant i \leqslant m$, we have

$$
\begin{equation*}
\alpha x_{i} \leqslant \frac{x_{i-1}+x_{i+1}}{d}+\frac{(d-2) x_{1}}{d} . \tag{4}
\end{equation*}
$$

Scaling f if necessary, we may assume that $x_{1}=1$ and rewrite inequalities (3) and (4) as

$$
\begin{align*}
& x_{2} \geqslant 1-\lambda d, \\
& x_{i+1} \geqslant \alpha d x_{i}-x_{i-1}-(d-2) . \tag{5}
\end{align*}
$$

We assume that $\lambda<1$ and $\alpha d \geqslant 1$; otherwise we have the bound $\lambda>(d-1) / d$ which is much better than the one we will derive.

Lemma. For $3 \leqslant k \leqslant m+1$ we have $x_{k} \geqslant 1-\lambda \alpha^{k-3} d^{k-2}-\lambda \alpha^{k-2} d^{k-1}$.
Proof. Our proof is by induction. Setting $i=2$ in inequality (5) establishes the base case:

$$
x_{3} \geqslant \alpha d x_{2}-1-(d-2) \geqslant \alpha d(1-\lambda d)+1-d=1-\lambda d-\lambda \alpha d^{2} .
$$

Now suppose the inequality holds for $k \leqslant i$, where $i \geqslant 3$. If we add the inequalities (5) up to $i+1$ we obtain

$$
\begin{aligned}
& x_{2} \geqslant 1-\lambda d \\
& x_{3} \geqslant \alpha d x_{2}-1-(d-2), \\
& x_{4} \geqslant \alpha d x_{3}-x_{2}-(d-2), \\
& \vdots \\
& x_{i} \geqslant \alpha d x_{i-1}-x_{i-2}-(d-2), \\
& +x_{i+1} \geqslant \alpha d x_{i}-x_{i-1}-(d-2), \\
& x_{i+1} \geqslant(\alpha d-2)\left(x_{2}+x_{3}+\cdots+x_{i-1}+x_{i}\right)+x_{i}-\lambda d-(i-1)(d-2),
\end{aligned}
$$

so by induction

$$
\begin{aligned}
x_{i+1} \geqslant & (\alpha d-2)\left((i-1)-2 \lambda d-2 \lambda \alpha d^{2}-\cdots-2 \lambda a^{i-3} d^{i-2}-\lambda a^{i-2} d^{i-1}\right) \\
& +\left(1-\lambda \alpha^{i-3} d^{i-2}-\lambda \alpha^{i-2} d^{i-1}\right)-\lambda d-(i-1)(d-2) \\
= & 1-(i-4) \lambda d+2 \lambda \alpha d^{2}+2 \lambda \alpha^{2} d^{3}+\cdots+2 \lambda \alpha^{i-4} d^{i-3}+\lambda \alpha^{i-3} d^{i-2} \\
& -\lambda \alpha^{i-2} d^{i-1}-\lambda \alpha^{i-1} d^{i} \\
\geqslant & 1-(i-4) \lambda d+2 \lambda d+2 \lambda d+\cdots+2 \lambda d+\lambda d-\lambda \alpha^{i-2} d^{i-1}-\lambda \alpha^{i-1} d^{i} \\
= & 1+(i-3) \lambda d-\lambda \alpha^{i-2} d^{i-1}-\lambda \alpha^{i-1} d^{i} \geqslant-\lambda \alpha^{i-2} d^{i-1}-\lambda \alpha^{i-1} d^{i} .
\end{aligned}
$$

Theorem. Let G be a graph with diameter D and maximum vertex degree d. Then

$$
\begin{equation*}
\lambda_{1} \geqslant \frac{1}{(d+1) d^{[D / 2\rceil-1}} . \tag{6}
\end{equation*}
$$

Proof. Since the distance from a vertex which maximizes f to one which minimizes f is at most D, we can obtain the described sequence of connected vertices with $m \leqslant\lceil D / 2\rceil$, negating f if necessary. Then applying the lemma to x_{m+1} we have

$$
0 \geqslant x_{m+1} \geqslant 1-\lambda_{1} \alpha^{m-2} d^{m-1}-\lambda_{1} \alpha^{m-1} d^{m} \geqslant 1-\lambda_{1} d^{m-1}-\lambda_{1} d^{m}
$$

from which the result follows.

3. Discussion

Since the size of the denominator of (6) is exponential in D, the bound is primarily useful for graphs of low diameter. Note that in the special case $D=2$ we have $0 \geqslant x_{2} \geqslant 1-\lambda_{1} d$ which gives us the improved bound

$$
\lambda_{1} \geqslant \frac{1}{d}
$$

Table 1
Maximum value of d for which the bound (6) is necessarily tighter on d-regular graphs

D	5	6	7	8	9	10
d	10	18	7	5	3	3

In general, the bound (6) will be tighter than (1) when $(d+1) d^{[D / 2\rceil-1} \leqslant D \operatorname{vol}(G)$. For d-regular graphs in which all vertices have degree d, this condition becomes

$$
\begin{equation*}
(d+1) d^{\lceil D / 2\rceil-2} \leqslant D|G| . \tag{7}
\end{equation*}
$$

This is always true for $D=3,4$. For $D=5$, a d-regular graph has at least $2 d+4$ vertices, so condition (7) will certainly be satisfied if $(d+1) d \leqslant 5(2 d+4)$ which is true for $d \leqslant 10$; for $D=6$ a d-regular graph has at least $3 d+3$ vertices, so (7) will be satisfied if ($d+$ $1) d \leqslant 6(3 d+3)$, i.e. if $d \leqslant 18$. Continuing in this manner we obtain Table 1 which lists, for $5 \leqslant D \leqslant 10$, the maximum value of d for which condition (7) is guaranteed to be satisfied.

References

[1] F.R.K. Chung, Diameters and eigenvalues, J. Amer. Math. Soc. 2 (2) (1988) 187-196.
[2] F.R.K. Chung, Eigenvalues of graphs, Proceedings of the ICM, Zürich, 1994, pp. 1333-1342.
[3] F.R.K. Chung, Spectral Graph Theory, CBMS Lecture Notes, Regional Conference Series in Mathematics, vol. 92, American Mathematical Society, Providence, RI, 1995, 207pp.
[4] F.R.K. Chung, V. Faber, T.A. Manteuffel, An upper bound in the diameter of a graph from eigenvalues associated with its Laplacian, SIAM J. Discrete Math. 7 (3) (1994) 443-457.
[5] F.R.K. Chung, A. Grigor'yan, S.T. Yau, Eigenvalues and diameters for manifolds and graphs, Tsing Hua Lectures on Geometry and Analysis, International Press, Cambridge, MA, 1997, pp. 79-106.
[6] J. Moody, Peer influence groups: identifying dense clusters in large networks, Social Networks 23 (2001) 261-283.
[7] W.D. Richards Jr., A.J. Seary, Convergence Analysis of Communication Networks, (http://www.sfu. ca/ \sim richards/Pages/converge.pdf), 1999, 36pp.

[^0]: E-mail address:jpg@alum.mit.edu.

 0012-365X/\$ - see front matter © 2005 Elsevier B.V. All rights reserved.
 doi:10.1016/j.disc.2005.06.017

