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An eigenvalue bound for the Laplacian of a graph
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Abstract

We present a lower bound for the smallest non-zero eigenvalue of the Laplacian of an undirected
graph. The bound is primarily useful for graphs with small diameter.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Weuse the following definition for the Laplacian matrix of a graph, consistent with[3]:

Definition. LetGbeanundirected graphwith adjacencymatrixA, and letDbe the diagonal
degree matrix defined bydii = deg(vi) anddik = 0 for i �= k. TheLaplacianof G is the
matrixL = I − D−1/2AD−1/2.

TheeigenvaluesofLare in the range [0, 2]. Zero is alwaysaneigenvaluewithmultiplicity
equal to the number of connected components ofG, and 2 occurs as an eigenvalue if and
only if G is bipartite. The eigenvalues ofL contain additional information regarding the
structure ofG. They can beused to establish bounds on the diameter ofGaswell as distances
between subsets ofG [1,4,2,5]. Themagnitudes of the eigenvalues also determine the rate of
convergence of various iterative computations such as those described in[6,7]; it is therefore
desirable to find bounds on the eigenvalues themselves. One of the best lower bounds for
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the smallest non-zero eigenvalue�1 is established in[3]

�1� 1

D vol(G)
. (1)

HereD is the diameter ofG, and vol(G) is the sum of the degrees of all vertices. In this
paper, we present a lower bound on�1 which is easy to compute and is tighter than (1) for
certain graphs with low diameter.

2. A lower bound for �1

Consider the similarmatrixL =D−1/2LD1/2=I −D−1A which has the sameeigenvalues
asL. If f is an eigenfunction ofL corresponding to eigenvalue� then for any vertexv

(1− �)f (v) = 1

deg(v)

∑

u∼v

f (u), (2)

whereu ∼ v denotes that the verticesu,v are connected. Letv1, v2, . . . , vm+1 be a sequence
of connected vertices such thatf (v1) is maximal andf (vm+1)�0. For convenience, set
xi = f (vi). Let � = 1 − �, and letd be the maximum degree of any vertex ofG. Since
v1 ∼ v2 andf (v1) is maximal, Eq. (2) gives us

�x1 = 1

deg(v1)

∑

u∼v1

f (u)� x2

deg(v1)
+ (deg(v1) − 1)x1

deg(v1)
� x2

d
+ (d − 1)x1

d
. (3)

Similarly, sincevi ∼ vi−1 andvi ∼ vi+1 for 2� i�m, we have

�xi �
xi−1 + xi+1

d
+ (d − 2)x1

d
. (4)

Scalingf if necessary, we may assume thatx1 = 1 and rewrite inequalities (3) and (4) as

x2�1− �d,

xi+1��dxi − xi−1 − (d − 2). (5)

We assume that� <1 and�d �1; otherwise we have the bound� > (d − 1)/d which is
much better than the one we will derive.

Lemma. For 3�k�m + 1we havexk �1− ��k−3dk−2 − ��k−2dk−1.

Proof. Our proof is by induction. Settingi = 2 in inequality (5) establishes the base case:

x3��dx2 − 1− (d − 2)��d(1− �d) + 1− d = 1− �d − ��d2.
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Now suppose the inequality holds fork� i, wherei�3. If we add the inequalities (5) up to
i + 1 we obtain

x2�1− �d,

x3��dx2 − 1− (d − 2),

x4��dx3 − x2 − (d − 2),
...

xi ��dxi−1 − xi−2 − (d − 2),

+ xi+1��dxi − xi−1 − (d − 2),

xi+1�(�d − 2)(x2 + x3 + · · · + xi−1 + xi) + xi − �d − (i − 1)(d − 2),

so by induction

xi+1�(�d − 2)((i − 1) − 2�d − 2��d2 − · · · − 2�ai−3di−2 − �ai−2di−1)

+ (1− ��i−3di−2 − ��i−2di−1) − �d − (i − 1)(d − 2)

= 1− (i − 4)�d + 2��d2 + 2��2d3 + · · · + 2��i−4di−3 + ��i−3di−2

− ��i−2di−1 − ��i−1di

�1− (i − 4)�d + 2�d + 2�d + · · · + 2�d + �d − ��i−2di−1 − ��i−1di

= 1+ (i − 3)�d − ��i−2di−1 − ��i−1di � − ��i−2di−1 − ��i−1di. �

Theorem. Let G be a graph with diameter D and maximum vertex degree d. Then

�1� 1

(d + 1)d�D/2�−1
. (6)

Proof. Since the distance from a vertex which maximizesf to one which minimizesf is
at mostD, we can obtain the described sequence of connected vertices withm��D/2�,
negatingf if necessary. Then applying the lemma toxm+1 we have

0�xm+1�1− �1�
m−2dm−1 − �1�

m−1dm �1− �1d
m−1 − �1d

m

from which the result follows. �

3. Discussion

Since the size of the denominator of (6) is exponential inD, the bound is primarily useful
for graphs of low diameter. Note that in the special caseD = 2 we have 0�x2�1− �1d
which gives us the improved bound

�1� 1

d
.
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Table 1
Maximum value ofd for which the bound (6) is necessarily tighter ond-regular graphs

D 5 6 7 8 9 10
d 10 18 7 5 3 3

In general, the bound (6) will be tighter than (1) when(d + 1)d�D/2�−1�D vol(G). For
d-regular graphs in which all vertices have degreed, this condition becomes

(d + 1)d�D/2�−2�D|G|. (7)

This is always true forD = 3,4. ForD = 5, ad-regular graph has at least 2d + 4 vertices,
so condition (7) will certainly be satisfied if(d + 1)d �5(2d + 4) which is true ford �10;
for D = 6 ad-regular graph has at least 3d + 3 vertices, so (7) will be satisfied if(d +
1)d �6(3d + 3), i.e. if d �18. Continuing in this manner we obtainTable 1which lists, for
5�D�10, the maximum value ofd for which condition (7) is guaranteed to be satisfied.
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