ON THE RAMSEY NUMBERS $N(3,3, \ldots, 3 ; 2)$

Fan Rong K. CHUNG
Department of Mathematics, University of Pennsylvania, Philadelphia, Pa. 19104, Ui'A

Received 5 July 1972*

Abstrait. The inain results of this paper are $N(3,3,3,3 ; 2)>50$ and $f(k+1) \geq 3 f(k)+f(k-2)$,
where $f(k)=N\left(\frac{3,3, \ldots, 3 ; 2)}{k \text { times }}-1\right.$ for $k \geq 3$.

1. Introduction

The theorem of Ramsey says: Given integers $S_{1}, S_{2}, S_{3}, \ldots, S_{k}$, where $S_{1}, S_{2}, \ldots, S_{k} \geq 2$, there exists a minimum integer $N\left(S_{1}, S_{2}, \ldots, S_{k} ; 2\right)$ such that the following property is valid for all $n \geq N\left(S_{1}, S_{2}, \ldots, S_{k} ; 2\right)$. Let the edges of a complete graph of n verices be colored in k colors, then there exists a subset of S_{i} vertices with all its interconnecting segments of the $i^{\text {th }}$ color for some $i \leq k$.

Now, consider the case of $S_{1}=S_{2}=\ldots=S_{k}=3$. Let

$$
f(k)=N\left(\frac{3,3, \ldots, 3 ; 2}{k \text { times }}\right)-1 .
$$

The problem reduces to the following: If the edges of K_{n} are colored in k colors and if $n>f(k)$, then there exists some triangle with all its sides in the same color. Find $f(i)$.
It is known [1] that $2^{k} \leq f(k) \leq[k!e]$. Particularly, $f(1)=2, f(2)=$ $5, f(3)=16$. Whitehead $[3,4]$ has proved $f(4) \geq 49$. It will be shown here that $f(k+1) \geq 3 f(k)+f(k-2)$ for $k \geq 3$ and, in particular, $f(4) \geqslant 50$, thus $N(3,3,3,3 ; 2)>50$.

[^0]2. $N(3,3,3,3 ; 2)>50^{*}$

Consider the symmetric 16×16 matrix:

It is known [2] that $T_{3}(0,1,2,3)$ is the incidence matrix of one of the two non-isomorphic edge-coloring schemes of K_{16} without any onecolor triangles.

Now construct the 50×50 incidence matrix in the following way:

$T_{4}(0,1,2,3,4)=$| A | | | | |
| :---: | :---: | :---: | :---: | :---: |
| D | B | | | |
| E | F | C | | |
| $11 \ldots \ldots \ldots 1$ | $22 \ldots \ldots \ldots 2$ | $33 \ldots \ldots . .3$ | 0 | |
| $11 \ldots \ldots \ldots .1$ | $22 \ldots \ldots \ldots .2$ | $33 \ldots \ldots \ldots 3$ | 4 | 0 |

[^1]\[

where $$
\begin{aligned}
A & =T_{3}(0,2,3,4), \\
B & =T_{3}(0,3,1,4), \\
C & =T_{3}(0,1,2,4), \\
D & =T_{3}(3,2,1,4), \\
E & =T_{3}(2,1,3,4), \\
F & =T_{3}(1,3,2,4)
\end{aligned}
$$
\]

If there are some one-color triangles with vertices i, j, k, then $t_{i, j}=$ $t_{k, j}=t_{k, i}$. We may assame $k>i>j$ without loss of generality.

Case 1: $t_{i, j}=t_{k, j}=t_{k, i}=4$.
We notice that $t_{m, n}=t_{m^{\prime}, n^{\prime}=4}$ if $m \equiv m^{\prime}(\bmod 16), n \equiv n^{\prime}(\bmod 16)$ for $m, m^{\prime}, n, n^{\prime} \leq 48$. Hence we may pick $i^{\prime}, j^{\prime}, k^{\prime}$ such that $i \equiv i^{\prime}, i \equiv j^{\prime \prime}$, $k \equiv k^{\prime}(\bmod 16)$ and $i^{\prime}, j^{\prime}, k^{\prime} \leq 16 ;$ then $t_{i^{\prime}, j^{\prime}}=t_{k^{\prime}, j^{\prime}}=t_{k^{\prime}, i^{\prime}}=4$. This contradicts the fact that T_{3} is the incidence matrix of a coloring without a one-zolor triangle. In case of $k=50, i=49$, we know that $t_{50,49}=4$ and that $t_{j, 49}, t_{j, 50}$ do not have value 4 for any $j \neq 49,50$.

Case 2: $t_{i, j}=t_{k, j}=t_{k, i}=2$.
(1) $16 \geq j \geq 1,16 \geq i \geq 1, t_{i, j}$ is in part A.
(a) If $t_{k, j}$ is in part A, then $t_{k, i}$ is in part A. This contradicts t ? structure of T_{3}.
(b) If $t_{k, j}$ is in part D, then $t_{k, i}$ is in part D. We know that $t_{i+16, j}=$ $t_{i, j}=2$. Then $t_{i+16, j}=t_{k, j}=t_{k, i}=2$. Impossible.
(c) If $t_{k, j}$ is in part E, then $t_{k, i}$ is in part E. But there is only one entry with value 2 in each row of E. Contradiction.
(2) $16 \geq j \geq 1,32 \geq i \geq 17, t_{i, j}$ is in part D.
(a) If $t_{k, j}$ is in part D, then $t_{k, i}$ is in part B. But there is no entry with value 2 in B. This is impossibie.
(b) If $t_{k, j}$ is in part E, then $t_{k, i}$ is in part F. It is known that only the entries on the diagonal are of value 2 in E. Hence $k=32+j$. We have $t_{i, j}=t_{32+j, j}=t_{32+j, i}=2$. But $t_{32+j, i}=3$ if $t_{i, j}=2$. Contradiction.
(3) $16 \geq j \geq 1,50 \geq i \geq 33, t_{i, j}$ is in pari E. There is only one entry with value 2 in part E. This is impossible.
(4) $32 \geq j \geq 17,32 \geq i \geq 17, t_{i, j}$ is in part B. This is impossible because there is no entry with value 2 in B.
(5) $32 \geq j \geq 17,48 \geq i \geq 33, t_{i, j}$ is in part F.
(a) $t_{k, j}$ is in part F ad $t_{k, i}$ is in part C and $t_{k, i}=t_{k, i-16}=2$. Then $t_{i, j}, t_{k, j}, t_{k, i-16}$ are all in F and all with value 2 . This contradicts the structure of T_{3}.
(b) $k=49$ or 50. In this case, $t_{k, i}=3 \neq t_{i, j}$.
(6) $i=49,32 \geq j \geq 17, k=50$. Then $t_{50,+9}=4 \neq 2$. Impossible.
(7) $48 \geq i \geq 33,48 \geq i \geq 33, t_{i, j}$ is in part C. $t_{k, j}, t_{k, i}$ is in part C.

This contradicts the structure of T_{3}.
Case 3: $t_{i, j}=t_{t, j}=t_{k i}=1$. This is impossible. The proof is similar to case 2.

Case 4: $t_{i, j}=t_{k, i}=t_{k, i}=3$. Similarly impossible.
Hence we prove that $T_{4}(0,1,2,3,4)$ is the incidence matrix of the ccloring of K_{50} without a one-color triangle.

Thus, $f(4) \geq 50$, i.e., $N(3,3,3,3 ; 2)>50$.
3. $f(k+1) \geqslant 3 f(k)+f(k-2)$

The result in Section 2 can be generalized to any $k \geq 4$.
Let $T_{k}\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ be the incidence matrix of the coloring of the complete graph of n_{k} vertices without a one-color triangle in k colors.

Similarly, we construct $T_{k+1}(0,1,2, \ldots, k+1)$ as shown in Diagram 1.

Diagram 1.

$$
\begin{array}{ll}
A=T_{k}(0,2,3,4,5, \ldots, k+1), & B=T_{k}(0,3,1,4,5, \ldots, k+1), \\
C=T_{k}(0,1,2,4,5, \ldots, k+1), & D=T_{k}(3,2,1,4,5, \ldots, k+1), \\
E=T_{k}(2,1,3,4,5, \ldots, k+1), & F=T_{k}(1,3,2,4,5, \ldots, k+1), \\
G=T_{k-2}(0,4,5, \ldots, k+1) . &
\end{array}
$$

The proof that such a coloring has no one-color triangle is quite similar ts the proof in Section 2 . Hence we have $f(k+1) \geq 3 f(k)+f(k-2)$.

Acknowledgment

The author wishes to thank professor Herbert S. Wilf for his guidance and encouragement.

References

[1] R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955) 9-20.
[2] J.G. Kalbfleisch and R.G. Stanton, On the maximal triangle-iree edge-chromatic graphs in three colors, J. Combin. Theory 5 (1968) 1-7.
[3] E.G. Whitehead, Jr., Dissertation, Univ. of Southem California, Calif. (1971).
[4] E.G. Whitehead, Jr., Algebraic structure of chromatic graphs associated with the Ramsey number $N(3,3,3 ; 2)$ Discrete Math. 1 (1971) 113.

[^0]: * Original version received 18 April 1972.

[^1]: ${ }^{1}$ Dr. G.J. Porter rroved 2 independently in Univ. of \mathbb{P} ennsyivania.

