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Abstract 

An n x n matrix C is called a weak Mange matrix if cii + c,~ GIs + cti for all 1 < i < r, s 6 n. 
It is well known that the classical linear assignment problem is optimally solved by the identity 
permutation if the underlying cost-matrix fulfills the weak Monge property. 

In this paper we introduce d-dimensional weak Monge arrays, (d >2), and prove that d- 
dimensional axial assignment problems can be solved efficiently whenever the underlying cost- 
array fulfills the d-dimensional weak Monge property. Moreover, it is shown that all results also 
carry over into an abstract algebraic framework. Finally, the problem of testing whether or not 
a given array can be permuted to become a weak Monge array is investigated. @ 1998 Elsevier 
Science B.V. All rights reserved 

Keywords: Monge sequences; Assignment problems; Polynomially solvable special cases 

1. Introduction 

Let an m x n matrix C with real entries and two nonnegative vectors u1 = (uf , . . . , uk) 
and a2 = (a:, . . . ,a:) such that EYE, ai = Cy=, uj be given. Then the classical Hitch- 
cock transportation problem (TP) can be stated as linear program in the following 
form: 

min 2 f: CijXij 

i=l j=l 

n 

s.t. c Xij=U: for all i= l,...,m, 
j=l 
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m 

c xv = uj’ for all j = l,...,n, 
i=l 

Xij 2 0 for all i, j. 

Given a sequence Y := ((il, jl), . . . , (imn, j,,)) of mn pairwise distinct pairs of indices 
corresponding to an instance of (TP), the subsequent greedy-algorithm G(Y) 

G(S) : For k := 1 to nm do, 

Set = Xikjk := min{at,u:k}, 

a! :=a! --. 
fk lk ZkJk 7 

a2 := a2 --. 
Jk Jk IkJk 3 

always produces a feasible solution of the given instance of (TP). Hoffman [7] identified 
a necessary and sufficient condition for the sequence Y such that the greedy-algorithm 
G(Y) always finds the optimal solution of (TP) no matter which supply and demand 
vectors a’ and a2 are considered. Such a sequence 9 (with respect to the given matrix 
C) must satisfy the following condition: 

For every 1 ii, r Gm, 1 <j, s <n, whenever (i, j) precedes both (i,s) and (r, j) in S, 
the corresponding matrix entries in C are such that 

Sequences fulfilling property (1) are called Mange sequences due to an ancient work 
of Monge [8]. A subclass of m x n matrices C having a Monge sequence is the class 
of Mange matrices which fulfill 

Cu + Crs<Ci, +Crj for all 1 <i < r<m, 1 <j < s<n. (2) 

To see this, take the lexicographical sequence 9rex := (( 1, 1 ), (1,2), . . . , (m, n)) . Note 
also that the greedy-algorithm G(YpleX) degenerates to the well-known north-west comer 
rule and-as a direct consequence of the result of Hoffman - always produces an 
optimal solution of (TP) for all feasible supply and demand vectors u’ and u2, whenever 
the cost matrix satisfies property (2). 

A special case of (TP) is the linear assignment problem, (AP), where m = n, 
a/ = uj = 1 for all i, j and the variables Xij are forced to be either 0 or 1. Interpreting 
the above considerations it follows that the (AP) restricted to Monge matrices is always 
solved to optimality by the identity permutation. However, Derigs et al. [6] proved a 
more general result showing that the identity permutation is always optimal whenever 
the underlying cost-matrix C satisfies the following weaker condition: 

cii + CrsGCj.9 + Ch for all 1 <i < r<n, 1 <i < s<n. (3) 

Matrices of this type are called weak Monge matrices (cf. [4]). 
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More interesting is the step to d dimensions, d >2. The Monge property (2) was 
defined by Aggarwal and Park [2] for d-dimensional arrays. In [9] the concept of 
Monge sequences is generalized to d dimensions (cf. Section 2 for definitions). The 
main applications of these higher-dimensional Monge structures are the d-dimensional 
transportation problem, (d TP), and the closely related NP-hard d-dimensional axial 
assignment problem, (d AP). The (d TP) is formulated as follows: 

min FF...e C[il,iz ,..., id]Xi,i *.,, id 

i,=l i2=1 id=1 

s.t. c Xi, iz...id =4 forallk=l,..., d and q=l,..., nk, 
i,,‘2 ,..., ‘d ik =q 

Xilil...id 20 for all iI,&,.. .,id. 

In this formulation C is a given nr x . . . x nd cost array with real entries and 
a’,...,& are given nonnegative supply (demand) vectors where ak is a nk-dimensional 
real vector, k = l,..., d, such that CF__, u$ = C%!i ai for all 1 <k < 1 <d. Setting 
n, z... = nd, ai = 1 for 1 <k <d, 1 <q <Ilk and requiring that all variables must be 
integer we arrive at (d Ap). 

Bein et al. [3] showed that, if the cost array is a Monge array, a simple greedy 
approach determines an optimal solution of (d TP) as well as for (d AP). This greedy 
approach is a natural extension of G(Yi,) to d-dimensions. Rudolf [9] proved that 
(d TP) is still greedily solvable whenever the underlying cost-array possesses a d- 
dimensional Monge sequence. For further applications of Monge and Monge-like prop- 
erties the interested reader is referred to the survey by Burkard et al. [4]. 

The main purpose of this paper is to introduce d-dimensional weak Monge arrays 
and to show that the result of Derigs et al. [6] also carries over to d dimensions. More- 
over, some relationships between higher-dimensional Monge structures are investigated. 
Additionally, the whole concept is embedded into an algebraic framework. 

The paper is organized as follows: Starting with the definitions in Section 2 we 
investigate the relationships and differences of higher-dimensional Monge structures in 
Section 3. Section 4 contains the generalization of the result of Derigs et al. [6] and 
Section 5 finally deals with the problem whether or not a given array can be permuted 
to become a weak Monge array. 

2. Definitions 

In this section we will briefly recall the definitions of Monge arrays and higher- 
dimensional Monge sequences and introduce the concept of weak Monge arrays. 

LetCbeannixnzx-.. x&j array with da2, Nk = {l,...,nk} for all lfk<d and 
n := min{nili = 1 , . . . ,d}. We call a d-tuple of indices (i’, . . . , id) feasible, if ik E Nk 
for all 1 Gk<d. 
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Definition 1 (Aggarwal and Park [2]). An nl x n2 x. . . x nd array C is called a Monge 
array, if it fulfills 

C[.S’ )...) sd]+c[tl )...) td]& )...) id]+c[jl ,...) jd] (4) 

for all feasible tuples (i’, . . .,id) and (j’,.. . ,jd) where sk := min{ik,jk} and 
tk := max{ik,jk} for k = l,..., d. 

To define d-dimensional Monge sequences as well as weak Monge arrays some 
definitions and notations are needed. Given a set F := {(j:, . . . , j;‘), . . . , (ji,. . . , j,“)} of 
q pairwise distinct feasible d-tuples of indices we denote by .Zk(F) := G;kl(j:, . . . ,jf ) E 
9”) the associated multisets of indices occurring on the kth position of the tuples in 
the set 9. 

Letx = (i’,... ,id) be a fixed feasible tuple of indices and let 9 be given as before. 
Then 9 is called a covering with respect to x, if (i) x # F and (ii) if ik E Jk(F) for 
all 16 k <d, i.e. x is ‘covered’ by 9. If additionally no proper subset of a covering 
9 is a covering w.r.t. x then 9 is said to be minimal. And 9 is called an upper 
covering w.r.t. x whenever it is minimal and for all k = 1,. . . , d and j: E Jk(F) with 
jf # ik we have that jf > ik. Moreover, we call an upper covering w.r.t. x simple, 
whenever each element jf # ik occurs only once in the multiset Jk(F), i.e. the set 
Jk(p) \ {ik} collapses to a set. 

Moreover, whenever 9 is a covering w.r.t. x we define for all 1 <k <d the multisets 
Zk(F) := Jk(F) \ {ik} obtained by deleting ik exactly once from the multiset Jk(F) 
and by M(F) := {(sl,. . . , sd)lsk E Jk(5F), 1 <k<d} the set of all feasible d-tuples 
which are covered by 9. 

Now, we are prepared to define d-dimensional Monge sequences and to introduce 
weak Monge arrays. 

Definition 2 (Rudolf [9]). Given an array C and a sequence 9’ of all elements of the 
Cartesian product Ni x . . . x &. Then Y is called a d-dimensional Monge sequence, if 
the subsequent condition holds for all (i’, . . . , id) E Y and all corresponding minimal 
coverings 9 := {G:, . . . , jf )I 1~ I < q} with respect to (i’, . . . , id). 

Whenever (i’, . . . ,id) is the element which occurs first in Y among all elements 
contained in M(F), then there exist permutations 41,. . . , (bd on { 1,. . . ,q - I} such 
that 

q-1 
c[i’, . . . , idI + c C&,), i$,(,)> . . .Y i&l)1 G c 4.d ,...,_&I, 

I=1 (jj ,...j~)ER 

where if EZ~(F) for all l<Z<q- 1, k= l,...,d. 

(5) 

Definition 3. An nl x . * * x nd array C is called a d-dimensional weak Monge array, 
if for all 1~ i < n and for all simple upper coverings F := {(j:, . . . , if)1 1 d 1 d 4) 
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with respect to the d-tuple (i, i, . . . , i) there exist permutations 41,. . . , & on the set 
{l,...,q- 1) such that 

9-l 
c[i, i,. . . , il + Cd&(l), i$,(,), . . . , ‘&r,K c &il’ , . . . ,.$I, 

I=1 (j: ,...jf)E9 

(6) 

where if EZ~(F) for all l<l<q- 1, k= l,...,d. 

To make the above definition more transparent, we investigate the cases for d = 2 
and d = 3 explicitly. 

Given an n x n matrix C. Then for each (i, i), 1 <i < n, all possible simple up- 
per coverings w.r.t. (i,i) are characterized by F := {(i,s),(r,i)} with i < r<n and 
i <s<n. Note that J’(B) = {i,r},J2(B) = {i,s}, I’(F) = {r} and 12(F) = {s}. 
Thus, (6) reduces to CQ + cFJ <q, + cr,i, equivalent to (3). 

The situation is more complicated in the case d = 3. Let C be an nl x n2 x ng 

array and let (i, i, i) be a fixed triple of indices with 1 < i d n = min{ nl, n2, q}. Then 
we have seven different types of simple upper coverings with respect to (i, i, i) : ._FI = 

{(i,i,t),(i,s,i)},F2 = {(i,i,t),(r,i,i)},F3 = {(i,s,i),(r,i,i)),94 = {(i,i,fh(r,s,i>), 

F;s = {(i,s,i>,( r,i,t)},96 = {( r,i,i),(i,s,t)} and 97 = {(i,sl,tl),(rl,i,t2),(r2,S2,i)) 

where i < r,rl,r2<n], i < s,sl,s2<n2, i < t,tl,tz<ns and rl # r2, s1 # s2 and 
tl # t2 (note that this restriction is necessary, since we restrict ourselves only to 
simple upper coverings). 

Exploiting (6) for each covering from above we obtain the following conditions for 
ldi < r,rl,r2<nl,l<i < s,sl,s26n2,1<i < t,tl,tz<n3 and rl # rZ,sI # s2 and 
t1 #  t2: 

(i) c[i, i, i] + c[i, s, t] < c[i, i, t] + c[i,s, i], 
(ii) c[i, i, i] + c[r, i, t] 6 c[i, i, t] + c[r, i, i], 

(iii) c[i, i, i] + c[r, s, i] < c[i, s, i] + c[r, i, i], 
(iv) c[i, i, i] + c[r,s, t] <c[i, i, t] + c[r,s, i], 
(v) c[i, i, i] + c[r,s, t] <c[i,s, i] + c[r, i, t], 

(vi) c[i, i, i] + c[r,s, t] < c[r, i, i] + c[i, s, t] and 
(vii) c[i, i, il + mi+b,ti { chs4(1), Q(l)1 + c[r2,q(2), t+(2)]} G c[h, tl 1 + c[rl,i,tz 1+ 

c[rz,sl, i], where 4 and tj are arbitrary permutations of the set { 1,2}. 
Note that conditions (i)-(iii) coincide with the conditions for a two-dimensional matrix 
(one dimension is fixed) and that conditions (ivHvi) relate to condition (4), whereas 
condition (vii) is new. 

We close this section by mentioning that the definition of weak Monge arrays can 
be extended into an algebraic framework. 

Therefore, let (H, $, 5) be a totally ordered commutative semigroup such that $ is 
compatible with 5, i.e. 

adb ===+ a@cib@c forall a,b,cEH. (7) 
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Let an nl x*.. x nd array C be given whose entries are taken from H. Then we obtain 
(d-dimensional) weak algebraic Monge arrays in a straightforward way by simply 
replacing + and 6 with $ and 5 in Definition 3. With $ := max and 5 := < we 
arrive at bottleneck weak Monge arrays. Further examples for (H, CB, 5) can e.g. be 
found in Burkard et al. [4]. 

3. Relationships of higher-dimensional Monge structures 

In this section we try to relate arrays which are weak Monge arrays to Monge 
arrays and arrays possessing a higher-dimensional Monge sequence. In particular, we 
will show that Monge arrays form a proper subclass of weak Monge arrays and that 
each array possessing a Monge sequence can be permuted in such a way that it becomes 
a weak Monge array. 

To that end, we first present an equivalent characterization of Monge arrays using 
the notation introduced in the previous section. 

Lemma 4. A d-dimensional array C is a Mange array iff for all feasible tuples 
(i’,... ,id) and for all upper coverings 9 := {(j’ , , . . . ,$)I 1 < 1 Gq} with respect to 
(i’,... , id) there exist permutations 41,. . . , C$d on the set { 1,. . .,q - 1) such that 

where if EZk(F)for all l<Ziq- 1, k= l,...,d. 

Proof. ‘e’: Let (i’,. . . , id) be a feasible d-tuple of indices. Since for each upper 
covering 9 with respect to (i’, . . . , id) condition (8) holds, it holds for all upper cov- 
erings 9 := {(sl,...,Sd),(t’ , . . . , td)}. Since 9 is an upper covering with respect to 
(i’,... , id) and q = 2, each multiset Zk(9) contains exactly one entry, say jk, such that 
jk 2 ik, or in other words ik = min{sk, tk} and j” = max{ti, p}. But now, condition (8) 
turns into 

c[i’ ,..., id]+cljl ,..., jd],<c[s’ ,..., sd]+c[tl ,..., td], 

for ik = min{@,tk} and j” = max{s’,tk}. Since 9 is an arbitrary upper covering w.r.t. 
an arbitrary tuple (i’ , . . . , id), we arrive exactly at the Monge property in d dimensions. 

‘ti’: Assume that C is a Monge array. Let (i’, . . . , id) be feasible, 9 = {Gj,. . . , j;‘) 
( 1 < 16 q} be an arbitrary upper covering with respect to (i’, . . . , id) and let Jk(9) be 
the multisets associated with 9. We will show that (8) holds. First construct an ordered 
d-dimensional subarray of C which we get by deleting all entries c[s’, . . . ,sd] in C for 
which there exists a k, 1 < k<d, s.t. 2 $ Jk(9) and denote it with B(9). Note that 
B(9) is a Monge array itself, since each ordered subarray of a Monge array is Monge 
itself. In a next step, B(F) is expanded to a q x . . . x q array D. For each dimension k, 
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1 <k <d, investigate the multiset Jk(9). Whenever an element p occurs clP times in 
Jk(F), the induced (d - 1)-dimensional subarray (all elements in B(F) whose index 
at the kth position is equal to p) is replaced by exactly up copies of this subarray. 
Since IJk(9)l = q for all k we finally obtain a q x q x +. . x q array D. It is evident 
that D obtained this way is a Monge array (duplicating subarrays does not violate the 
Monge condition (4)). Therefore - since D is a Monge array-it follows from the 
result of Bein et al. [3] applied to d-dimensional assignment problems that the sum of 
the main diagonal in D is less or equal than the value of any other assignment. Thus, 
it follows that there exist appropriate permutations 41,. . . ,4d acting on { 1,. . . , q - 1) 
such that 

l=l cjf ,...j: )EF 

where i: E Ik(F) for all l<l<q- 1, k = l,... ,d. (Note that since F is an upper 
covering, (i’ , . . . , id) is the lexicographically smallest tuple of indices occurring in D 
and therefore always part of the main diagonal in D.) 0 

As a direct consequence of Definition 3 and Lemma 4 we get the following corollary. 

Corollary 5. Each Monge array is a weak Monge array. 

Next, the relationship between permuted weak Monge arrays and arrays having a 
d-dimensional Monge sequence is established. An nl x . . ’ x nd array C is a permuted 
(weak) Monge array whenever there exist permutations $1,. . . , $d acting on the sets 
h$, 1 <k <d such that the permuted array C$,,,..,tid := (c[$l(i’), . . . , $d(id)]) is a (weak) 
Monge array. 

Burkard et al. [4] show that if a given n x n matrix C possesses a Monge sequence, 
then C is a permuted weak Monge matrix. The situation in d dimensions is similar. 

Lemma 6. Let C be an nl x ... x nd array. If c pOSSesseS a MOnge SeqUence 9, 
then C is a permuted weak Monge array, too. 

Proof. We show in the following that, given a d-dimensional Monge sequence 9, it 
is always possible to define permutations $1,. . . , $d such that B := C$,,,..,tid is weak 
Monge. Let 9 = {(if ,..., if) ,..., (it ,..., if)} with v = ni=, nk. Define &(l) = if 
for k = 1 ,..., d, i.e. b[l,..., l] := c[ii , . . . , if]. Since 9 is a Monge sequence and 
(ii,..., if) is the first element in 9, condition (5) holds for each simple and minimal 
covering 4 with respect to (it,. . . , if). No matter how the permutations I,$, . . . , $d are 
completed, any such covering 9 turns into a simple upper covering with respect to 
(l,..., 1) in B. Therefore condition (6) is fulfilled for (1,. . . , 1) and the array B. 

Now, we are almost done. Construct a new array C’ by deleting all entries c[sr , . . . ,sd] 
such that there 3k s.t. Sk = ik, i.e. we remove all (d - 1)-dimensional subarrays from 
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C which contain the entry c[i’ , . . . , id]. At the same time we also remove the tuples of 
indices from the Monge sequence Y corresponding to these entries and get a smaller 
sequence 9’. After this deletion an (nl - 1) x . . . x (nd - 1) array C’ and a Monge 
sequence 9” for C’ remain (since 9’ was a Monge sequence for C, 9” is also a 
Monge sequence for C’). 

Thus it is possible to recursively define the permutations &(i) using this procedure 
for all 1 <k <d and 2 d i < n where n := min{nk) 1 <k Q d}. Finally, after n steps all 
conditions (6) are verified for B. In the last step the permutations are completed in an 
arbitrary way. So B is a weak Monge array and the lemma is proven. 0 

4. An application of weak Monge arrays 

In this section the main result of this paper is given, namely that each instance of 
an (algebraic) d-dimensional axial assignment problem can be solved in polynomial 
time, if the underlying cost structure fulfills the weak (algebraic) Monge property in 
d dimensions. This result generalizes the result obtained by Derigs et al. [6] for two 
dimensions. 

Theorem 7. Zf the n x . . . x n cost array C of a d-dimensional axial assignment 
problem is a d-dimensional weak Mange array, then the optimal value is obtained by 

c c[i, i, . . . , i]. 
i=l 

Proof. Let X denote the solution obtained by setting x[i,. . . , i] = 1 for all i = 1,. . . , n 
and zero otherwise and assume that X is not optimal. Consider all optimal solu- 
tions of (dAP) with respect to C and denote with Y an optimal solution where i := 
min~lvU,...,A # 1) is maximum. Since Y # X, i < n - 1. Now, investigate the 
set 9, defined as 9, := {(j:,jf,. . .,jf)]y[j:,jf,. . .,$I = 1) \ {(j,j,. . .,j)]l <j < i}. 
Now, let 9 C 9, be a minimal covering with respect to (i, . . . , i) and let q := IF”). 
Due to the fact that Y is a d-dimensional assignment and since y[j,. . . ,j] = 1 for all 
1 <j < i, the set 91 is a simple upper covering with respect to (i, . . . , i), since jf > i 
for all jf E Jk(9) and Jk(9) \ {i} collapses to a set. Since C is a weak Monge array, 
due to condition (6), there exist permutations 41,. . . , C$d such that 

q--l 
c[i, i,. . . , il + C c[i$,(lj,. . . , &(,)I =S c 4i: , . . . ,_&I, 

l=l Cj;,...,j;‘)EF 

where$EZR(9)forall l<l<q-l,k=l,..., d. But now, we are able to construct a 
new feasible solution Y* in the following way: set y*[i, i,. . . , i] = 1, y*rj:, . . . , j;‘] = 0 
for all (jf,. . ., jf) E 9, y*[i$,(,), . . . ,i$&j = 1 for all I = 1,. . . ,q - 1 and leave all 
other elements of Y unchanged. Due to the above inequality, it is easy to see that 
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Y* is also an optimal assignment and since y*[[j,. . . ,j] = 1 for all j = 1,. . . , i we 
have achieved a contradiction to the choice of Y w.r.t. the maximality of i. Thus, the 
theorem is proven. 0 

It is evident that Theorem 7 also holds in the algebraic case. For example, we obtain 
a polynomial-time solvable special case of the bottleneck d-dimensional assignment 
problem, if the underlying cost-structure is a bottleneck weak Monge array. 

5. Recognizing permuted algebraic weak Monge arrays 

Before we investigate the problem of recognizing permuted weak (algebraic) Monge 
arrays we briefly mention the results and algorithms derived for the two-dimensional 
case. Given an n x n matrix C we ask for permutations 4 and I+$ such that C#,$ is a 
permuted weak (algebraic) Monge matrix. 

An efficient algorithm with running time 0(n4) which can be improved to O(n3 log n) 
time is due to Cechlarovb and Szabo [5]. However, we will follow another approach 
due to Burkard et al. [4]. Although it does not improve the time complexity, it is much 
simpler and also works in an abstract algebraic setting. This algorithm is based on the 
fact that matrices having a Monge sequence are permuted weak Monge. Therefore their 
algorithm can be seen as a minor adjustment of the algorithm of Alon et al. [l] for 
the detection and construction of Monge sequences. It works as follows: 

Start with an empty graph consisting of n2 nodes corresponding to all pairs of indices. 
Consider all pairs (i,j) and (r, s) with i # r and j # s and add an edge from (i,j) to 
(Y, s) whenever cii + c, > cis + cjr. Set k = 1. As long as there exists an isolated node 
(i,j) in G, set 4(k) = i and $(k) = i, increase k by one and update G as follows: 
Delete the node (i,j), all nodes (i,s) and (r,j) and all edges incident to those nodes. 
The algorithm stops, if G is empty or there is no isolated node in G. In the first case 
Cb,$ is a weak (algebraic) Monge matrix, in the latter one C is not a permuted weak 
(algebraic) Monge matrix. 

This approach can also be adapted for the higher-dimensional case. Starting from the 
algorithm for constructing and detecting d-dimensional (weak) Monge sequences given 
in [9] we are able to modify this algorithm in the same way as before to recognize 
permuted weak (algebraic) Monge arrays. 

For the ease of illustration let us assume that we only treat n x n x . . . x n arrays 
(an extension to ni x n2 x . . . x nd arrays is straightforward). 

Again we start by building a directed graph G having nd nodes corresponding to 
all possible d-tuples of indices. The arcs of G are constructed in the following way. 
For each d-tuple of indices (i’ , . . . , id) we investigate all minimal and simple coverings 
B w.r.t. (i’ , . . . , id) and look at all active inequalities, i.e. we identify each set of d 
permutations 41, . . . , C$d such that 
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where i;k E Zk(F) for all 1 < 1 <q - 1, k = 1,. , . , d. Then define for each active 
inequality directed arcs from each d-tuple of indices occurring on the left side of 
inequality (9) to each d-tuple occurring on the right and associate with each of these 
arcs a common unique label. 

After having constructed G, we are able to fix d permutations $1,. . . , $d such that 
C+,,.,.,tid is a weak Monge array step by step (if they exist at all): In each step j, j = 
1 1**., n, we are looking for a node v E G with indegree equal to zero. If no such 
node v exists, we can stop, C is not an permuted weak Monge array. Otherwise - 
assuming that (i’ , . . . , id) is the corresponding d-tuple to node v - fix @k(j) = ik for 
k=l , . . . , d. The remaining part in this step concerns the update of the graph G. Apart 
from node (i’ , . . . , id) we also delete all nodes corresponding to G’, . . . ,j”) with jk = ik 
for at least one k, all incident arcs to these nodes and all arcs having the same labels. 
Note that this is equivalent to canceling all active inequalities of type (9) in which 
at least one index ik is involved, or in other words we delete all (d - 1 )-dimensional 
subarrays of C which contain the entry c[i’, . . . , id]. 

Finally, after n steps, all permutations are completely determined. 

Theorem 8. The algorithm above either determines permutations $1,. . . , $d such that 
C+,,...,IL~ is a weak Mange array or proves that no such permutations exist. 

Its running time is O(d*(d - l)!dndZ). 

Proof. The correctness of the algorithm is straightforward: Whenever the algorithm 
stops while G is non-empty, then each node v E G has an indegree greater than zero. 
This is equivalent that all d-tuples of indices occur at least once on the right-hand side 
of an active inequality of type (9) and therefore no d-tuple satisfies condition (6). 

If the algorithm stops with d permutations $1,. . . , $d, we have to show that B := 
C$,,,.,,tid is a weak Monge array. Assume the contrary, i.e. that B is not a weak Monge 
array, then there exists a d-tuple of indices (i, . . . , i) and a simple, upper covering Sr 
w.r.t. (i, . . . , i) such that for all permutations 41,. . . , &j 

q--l 
b[i, i,. . . , il + c bP$,,crj, i&l), . . . , i$,,(J > c b[j:,...,.#l, (10) 

I=1 ci: ,...,$w 

where if eZk(P) for all l<Z<q- 1, k= l,...,d. Note that this means that during 
the ith step the node in G corresponding to ($1 (i), . . . , $d(i)) has indegree greater than 
zero, a contradiction to its choice. 

Next, we prove the complexity bound of the algorithm. First observe that the directed 
graph G described above can be constructed in 0(d2(d - l)!dnd2) time. For each 
fixed d-tuple (i,‘, if,. . . , if) we have O(PJ~(~-‘) ) possible simple, minimal coverings. 
For each such covering there are O((d - l)!d) possible sets of permutations 41,. . . , &i 
and therefore, the same maximal number of active inequalities. And since each active 
inequality generates at most d* arcs, G can be constructed in overall O(d*(d - l)!dnd2) 
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time. Since during the deletion steps only arcs and nodes constructed in the initialization 
step are removed, we end up with the same number of basic steps. 0 

Since the above algorithm for recognizing permuted weak Monge arrays is mainly 
based on condition (lo), we can simply replace the operation + by $ and > by + 
in (10) and finally arrive at an algorithm for recognizing permuted weak algebraic 
Monge arrays having the same number of basic steps. 
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