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Abstract 

In this paper, a hybrid three-species food-chain model with Beddington-DeAngelis functional response has been 
studied. Local stability of the equilibria described by this model have been proved. By means of computer 
simulations, the complex dynamics of the model, especially chaos, have been identified. Furthermore, the largest 
Lyapunov exponen has been used to demonstrate the chaotic dynamics. 
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1. Introduction 

Various types of interaction can occur between two species, including Holling-I, Holling-II, Holling-III, 
Beddington-DeAngelis, and others. Two-species continuous-time models of interacting species have been 
proposed by many authors(Gutierrez et al.,1992; Holling et al.,1965;Leslie et al.,1960) . However, the 
dynamic behaviors of these models are not complex: they exhibit dynamics only of steady states and of 
limit cycles. As a result, more and more researchers have began to investigate three-species food-chain 
models(Gakkhar et al.,2003; Gakkhar et al.,2006; Gakkhar et al.,2007; Hastings et al.,1991; Lv et al.,2008; 
Wang et al.,2008; Zhao et al.,2009a) and have found rich dynamics, including limit cycles, quasi-periodic 
behavior, and chaos. Especially in models of the Leslie-Gower type(Nindjin et al.,2008;Wang et al.,2008), 
chaos is frequently observed. 

 In the past few years, some authors have investigated a class of semi-ratio-dependent predator-prey 
systems, as described by the following equations: 
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Recently, Wang and Pang investigated a hybrid ratio-dependent three-species food-chain model, which 
can be described as: 
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where 2( ) ( )c x a x t= , ( ) ( ) ( ( ))F y by t y tδ= + .
They investigated the persistence and Hopf bifurcations of the system and carried out computer 

simulations to support their conclusions. 
In this paper, the authors report on a three-species food-chain model which can be described by the 

following system: 
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where 1r , 2r , 0g , 1g , 1a , 2a , 1k , 2k , b , c , e , 1b , and 2d  are positive constants, 1r , 2r
represent the intrinsic growth rate of the prey x  and the intermediate predator y  respectively, 1 0r g
represents the carrying capacity, 1g  is the limiting value of available resources, 1 1( )a xy x k+ is
Holling-II function response, 2

2 2( )a y x k+  is the modified Leslie-Gower scheme, ( )byz c y ez+ + and
1 ( )b yz c y ez+ +  are the Beddington-DeAngelis functional response, and 2d  is the death rate of the top 

predator z .Because of its biological significance, the state space of system (1.1) will be defined as: 
{ }3 ( , , ) | 0, 0, 0R x y z x y z+ = ≥ ≥ ≥ .

2. Local stability of equilibria 

In the following discussion, the Jacobean matrix is used to analyze the local stability of system (1.1). 
(1)The Jacobean matrix of system (1.1) at the equilibrium point 0 (0,0,0)E =  is: 
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The roots of the characteristic equation of (0,0,0)J  are 1 1 0 1 0,r g gλ = > 2 2 0,rλ = >  and 
3 2 0,dλ = − <  and therefore 0 (0,0,0)E =  is a saddle point. 

(2)The Jacobean matrix of system (1.1) at the equilibrium point 1 0( ,0,0)E g=  is:  
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with
2 2 3 3 4 2

11 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 0 1( 2 ) ( )a r g k r g k r g g r g g k r g g g= + − − + − , 12 1 0 0 1( )a a g g k= − + , 13 0a = , 21 0a = ,
2 2 2

22 2 2 2 0 0 2( ) (( ) )a r k c r g c g k c= + + , 23 0a = , 31 0a = , 32 0a = , and 33 2a d= − .
Because 2 2 2

2 2 2 2 0 0 2( ) (( ) ) 0r k c r g c g k cλ = + + > , so 1 0( ,0,0)E g=  is a saddle point. 
(3)The equilibrium point * *

3 ( , ,0)E x y= can be analyzed in terms of a subsystem of the equations in 
system (1.1): 
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When system (1.1) is limited to the ( , )x y  plane, clearly * *
3 ( , ,0)E x y=  exhibits the same behavior as 

* *
31 ( , )E x y= , which is a non-negative equilibrium point of subsystem (2.1). The Jacobean matrix of 

subsystems (2.1) at * *
31 ( , )E x y=  is:  
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The characteristic equation of * *( , )J x y  is 2
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asymptotically stable if and only if 0( 1,2)i iδ > = .
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By the Routh-Hurwitz criterion, * * *
2 ( , , )E x y z=  is locally and asymptotically stable if and only if 

1 3 1 2 30, 0,σ σ σ σ σ> > > .

3. Numerical analysis 

In this section, the global dynamic behaviors of the model are investigated by numerical simulation.  

3.1. Bifurcation analysis 

Figure 1 shows the bifurcation diagram of system (1.1) for successive maxima of species y  and z .
Here, successive maxima of y  and z  are plotted as functions of the bifurcation parameter 0g . The 
interval of variation of 0g  is 03 6.5g≤ ≤ .

Figure 1. Bifurcation diagram of system (1.1): ( )a maxima for species y ; ( )b  maxima for species z .

Figure 2. Magnified version of Figure 1 ( )b : ( )a 04 5.3g≤ ≤ ; ( )b 05.3 6.5g≤ ≤ .

To see the dynamics of the system more clearly, the diagram must be magnified. Because the two 
diagrams are similar, only Figure 1(b) is magnified and shown in Figure 2. Figure 2 clearly shows the rich 
dynamics of the system, such as period-halving bifurcations and chaotic bands with periodic windows. 

Figure 3 shows the bifurcation diagram of system (1.1) for successive maxima of species y  and z
too. But here, successive maxima of y  and z  are plotted as functions of the bifurcation parameter 1r .
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The interval of variation of 1r  is 11 3.5r≤ ≤ .
To see the dynamics of the system clearly, Figure 3(b) is magnified and shown in Figure 4. Figure 4 

clearly shows the rich dynamics of the system, such as period-doubling bifurcations and chaotic bands 
with periodic windows. 

Figure 3. Bifurcation diagram of system (1.1): ( )a  maxima for species y ; ( )b  maxima for species z .

Figure 4. Magnified version of Figure 3 ( )b : ( )a 11.5 2.35r≤ ≤ ; ( )b 12.35 3.2r≤ ≤ .

3.2. The largest Lyapunov exponent 

The largest Lyapunov exponent is used in this model to demonstrate the existence of chaos. The 
largest Lyapunov exponent is supposed to be the best quantitative measure of chaotic behavior(Zhao et 
al.,2009b; Zhao et al.,2009c). If the dynamics of the system are chaotic, then the largest Lyapunov 
exponent λ  is positive. If they are periodic, then λ  is negative. By plotting separately the largest 
Lyapunov exponent with respect to the two parameters 1r 0g  (Figure 5), the chaotic behavior of the 
system can clearly be seen. 
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Figure 5. ( )a The largest Lyapunov exponent of system (1.1) as a function of parameter 1r : 11.5 3r≤ ≤ ; ( )b  The largest 
Lyapunov exponent of system (1.1) as a function of parameter 0g : 04 6.5g≤ ≤ .

4. Conclusions 

This research has revealed the rich dynamic behaviors of a three-species food-chain model, including 
chaotic bands with periodic windows, period-doubling bifurcations, period-halving bifurcations, and 
chaos. From the bifurcation diagram, it is apparent that the system is sensitive to the values of the 
bifurcation parameters. The model also reveals that the system is particularly sensitive to the carrying 
capacity of the environment. Using the methods—the largest Lyapunov exponent, the chaotic behavior of 
the system is demonstrated. 
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