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Abstract

Suppose both A and B are n× n nonsingularM-matrices. An estimate from below for the
smallest eigenvalue τ(A ◦ B−1) (in modulus) of the Hadamard product A ◦ B−1 of A and
B−1 is derived. As a special case, we obtain the inequality τ(A ◦ A−1) � 2

n (n � 2).
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1. Introduction

For a positive integer n, N denotes the set {1, 2, . . . , n} throughout.
For two real matrices A = (aij ) and B = (bij ) of the same size, the Hadamard

product of A and B is defined as the matrix A ◦ B = (aij bij ). We write A � B if
aij � bij for all i, j ∈ N .

We denote by Zn the class of all n× n real matrices all of whose off-diagonal
entries are nonpositive. An n× n matrix A is called an M-matrix if there exists an
n× n nonnegative matrix B and some nonnegative real number λ such that A =
λI − B and λ � ρ(B), where ρ(B) is the spectral radius of B, I is an identity ma-
trix; if λ > ρ(B), we call A a nonsingular M-matrix, and denote it by A ∈ Mn; if
λ = ρ(B), we call A a singularM-matrix.
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Let A ∈ Zn and denote τ(A) = min{Re(λ): λ ∈ σ(A)}, where σ(A) is the set of
all eigenvalues ofA. Basic for our purpose is the following simple facts (see Problem
16, 19 and 28 in Section (2.5) of [1]):

(i) τ(A) ∈ σ(A); τ(A) is called the minimum eigenvalue of A.
(ii) If A ∈ Mn, B ∈ Mn and A � B, then τ(A) � τ(B).

(iii) If A ∈ Mn, then ρ(A−1) is the Perron eigenvalue of the nonnegative matrix
A−1, and τ(A) = 1

ρ(A−1)
is a positive real eigenvalue of A.

Let A be an irreducible nonsingular M-matrix. It is well known that there exist
positive vectors u and v such that Au = τ(A)u, and vTA = τ(A)vT, u and v are
called right and left Perron eigenvectors of A respectively.

For A ∈ Mn, n � 2, Fiedler and Markham [2] proved that τ(A ◦ A−1) � 1
n

, and
proposed the following conjecture:

τ(A ◦ A−1) � 2

n
.

Yong [3] and Song [4] have independently proved this conjecture affirmatively.
For two independent nonsingularM-matricesA,B ∈ Mn, we exhibit lower bounds

for τ(A ◦ B−1). These bounds are strong enough to yield, upon specialization, the
conjectured lower bound of 2

n
for τ(A ◦ A−1).

2. Main results

In this section, we state and prove our main results.

Lemma 2.1 [5]. If P is irreducible, and P ∈ Mn, Pz � kz for a nonnegative non-
zero vector z, then k � τ(P ).

Lemma 2.2 [5]
(a) If A = (aij ) is an n× n strictly diagonally dominant matrix by row, that is,

|aii | >
∑
j /=i

|aij | ∀i ∈ N

then A−1 = (bij ) exists, and

|bji | �
∑
k /=j |ajk|
|ajj | |bii | for all i /= j.

(b) If A = (aij ) is an n× n strictly diagonally dominant matrix by column, that is,

|aii | >
∑
j /=i

|aji | ∀i ∈ N.



S. Chen / Linear Algebra and its Applications 378 (2004) 159–166 161

then A−1 = (bij ) exists, and

|bij | �
∑
k /=j |akj |
|ajj | |bii | for all i /= j.

Theorem 2.3. If A = (aij ) ∈ Mn, B = (bij ) ∈ Mn, B−1 = (βij ), then

τ(A ◦ B−1) � τ(A)τ(B) min
1�i�n

{(
aii

τ (A)
+ bii

τ (B)
− 1

)
βii

bii

}
. (1)

Proof. It is quite evident that (1) holds with equality for n = 1.
Below we assume that n � 2, let us distinguish two cases:

Case 1. Both A and B are irreducible. Since B − τ(B)I is a singular irreducible
M-matrix, Theorem 6.4.16 of [6] yields that

bii − τ(B) > 0 ∀ i ∈ N.
Let u = (ui), v = (vi) and y = (yi) be the right Perron eigenvectors of B, BT

and A respectively.
Define C = DB, where D = diag(v1, v2, . . . , vn), then C−1 = B−1D−1.
Since the matrix C is strictly diagonally dominant by column, by Lemma 2.2, for

all i /= j , we have

βij

vj
�
∑
k /=j |vkbkj |
vjbjj

· βii
vi

= (bjj − τ(B))vj
vj bjj

· βii
vi

hence

βij � (bjj − τ(B))vjβii
bjj vi

.

Now let z be the vector (zi), where

zi = yibii

vi(bii − τ(B)) > 0 ∀ i ∈ N.
We define P = A ◦ B−1. Since B−1 is positive by Theorem 6.2.7 of [6], then P

is irreducible as well, and for any i ∈ N ,

(P z)i = aiiβiizi −
∑
j /=i

|aij |βij zj

� aiiβiizi −
∑
j /=i

|aij | · (bjj − τ(B))vjβii
bjj vi

· yjbjj

vj (bjj − τ(B))

= aiiβiizi − βii

vi

∑
j /=i

|aij yj |

= aiiβiizi − βii

vi
· (aii − τ(A))yi
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= βiizi
[
aii − 1

bii
(aii − τ(A))(bii − τ(B))

]

= βii

bii
· τ(A)τ(B)

[
aii

τ (A)
+ bii

τ (B)
− 1

]
zi

� τ(A)τ(B) min
1�k�n

{(
akk

τ (A)
+ bkk

τ (B)
− 1

)
βkk

bkk

}
zi

By Lemma 2.1, this shows that Theorem 2.3 is valid.

Case 2. One of A and B is reducible. It is well known that a matrix in Zn is a
nonsingularM-matrix if and only if all its leading principal minors are positive (see
condition (E17) of Theorem 6.2.3 of [6]). If we denote by T the n× n permuta-
tion matrix (tij )with t12 = t23 = · · · = tn−1,n = tn1 = 1, the remaining tij zero, then
both A− εT and B − εT are irreducible nonsingular M-matrices for any chosen
positive real number ε, sufficiently small such that all the leading principal minors
of bothA− εT and B − εT are positive. Now we substituteA− εT and B − εT for
A and B respectively in the previous case, and then letting ε → 0, the result follows
by continuity. �

Remark 2.4. Under the hypotheses of Theorem 2.3, in view of that

diag(a11, a22, . . . , ann) � A

we have min1�i�n aii � τ(A). Thus(
aii

τ (A)
+ bii

τ (B)
− 1

)
βii

bii
� βii

τ (B)
.

Therefore

τ(A ◦ B−1) � τ(A)τ(B) min
1�i�n

{(
aii

τ (A)
+ bii

τ (B)
− 1

)
βii

bii

}
� τ(A) min

1�i�n
βii .

This shows that Theorem 2.3 is better than Theorem 5.7.31 of [1].

Theorem 2.5. LetA = (aij ) ∈ Mn, B = (bij ) ∈ Mn. SupposeB is irreducible, u =
(ui) and v = (vi) are right and left Perron eigenvectors of B respectively, such that
min1�i�n{uivi} = 1. Then

(a) τ (A ◦ B−1) � τ(A)

τ(B)
min

1�i�n




aii
τ (A)

+ bii
τ (B)

− 1

1 +
(
bii
τ (B)

− 1
)∑n

k=1 ukvk


 , (2)

(b) τ (B ◦ B−1) � 2∑n
k=1 ukvk

, n � 2. (3)
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Proof. It is not difficult to verify that (2) holds with equality for n = 1. Now
we assume that B−1 = (βij ) and n � 2. The strategy is to estimate βii

bii
, and thus

min1�i�n
βii
bii

, and then apply Theorem 2.3.

Partition B as B =
(
b11 B12
B21 B22

)
, where B22 is a matrix of order n− 1. Since

Bu = τ(B)u, and vTB = τ(B)vT, we have

b11u1 + B12(u2, . . . , un)
T = u1τ(B), (4)

B21u1 + B22(u2, . . . , un)
T = τ(B)(u2, . . . , un)

T, (5)

b11v1 + (v2, . . . , vn)B21 = τ(B)v1, (6)

B12v1 + (v2, . . . , vn)B22 = τ(B)(v2, . . . , vn). (7)

From (5), we have

B−1
22 B21u1 + (u2, . . . , un)

T = τ(B)B−1
22 (u2, . . . , un)

T,

B12B
−1
22 B21u1 + B12(u2, . . . , un)

T = τ(B)B12B
−1
22 (u2, . . . , un)

T.

Using (4), we obtain

B12B
−1
22 B21u1 + (τ (B)− b11)u1 = τ(B)B12B

−1
22 (u2, . . . , un)

T,

(b11 − B12B
−1
22 B21)u1v1 = τ(B)[u1v1 − v1B12B

−1
22 (u2, . . . , un)

T]. (8)

On the other hand, (7) implies that

v1B12B
−1
22 + (v2, . . . , vn) = τ(B)(v2, . . . , vn)B

−1
22 ,

v1B12B
−1
22 (u2, . . . , un)

T +
n∑
k=2

ukvk = τ(B)(v2, . . . , vn)B
−1
22 (u2, . . . , un)

T.

By (8), we deduce that

(b11 − B12B
−1
22 B21)u1v1

= τ(B)
[

n∑
k=1

ukvk − τ(B)(v2, . . . , vn)B
−1
22 (u2, . . . , un)

T

]
. (9)

Let

B−1
22 (u2, . . . , un)

T = (u2y2, . . . , unyn)
T, yi = min

2�k�n
yk.

Then

B22(u2y2, . . . , unyn)
T = (u2, . . . , un)

T,
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ui =
n∑
j=2

bijuj yj � yi
n∑
j=2

bijuj = (τ (B)ui − bi1u1)yi,

uivi � [τ(B)uivi − vibi1u1]yi
�
[
τ(B)uivi − u1

n∑
k=2

bk1vk

]
yi

= [
τ(B)uivi + (b11 − τ(B))u1v1

]
yi.

Therefore

yi � uivi

τ (B)uivi + (b11 − τ(B))u1v1
,

(v2, . . . , vn)B
−1
22 (u2, . . . , un)

T =
n∑
k=2

ukvkyk � yi
n∑
k=2

ukvk

� uivi
∑n
k=2 ukvk

τ (B)uivi + u1v1(b11 − τ(B)) .

According to (9), we infer that

(b11 − B12B
−1
22 B21)u1v1

� τ(B)
[
n∑
k=1

ukvk − τ(B)uivi
∑n
k=2 ukvk

τ (B)uivi + u1v1(b11 − τ(B))

]

= u1v1τ(B)
[
τ(B)uivi + (b11 − τ(B))∑n

k=1 ukvk
]

τ(B)uivi + u1v1(b11 − τ(B)) ,

b11 − B12B
−1
22 B21 �

τ(B)
[
τ(B)uivi + (b11 − τ(B))∑n

k=1 ukvk
]

τ(B)uivi + u1v1(b11 − τ(B)) ,

β11 = detB22

detB
= 1

b11 − B12B
−1
22 B21

� τ(B)uivi + u1v1(b11 − τ(B))
τ (B)

[
τ(B)uivi + (b11 − τ(B))∑n

k=1 ukvk
] .

Taking into account that ukvk � 1 (∀k ∈ N), we have

(uivi − 1)
n∑
k=1

ukvk + u1v1 − uivi

= (uivi − 1)
n∑
k=1

ukvk − (uivi − 1)+ (u1v1 − 1)

= (uivi − 1)

(
n∑
k=1

ukvk − 1

)
+ (u1v1 − 1) � 0.
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which yields that

[
τ(B)uivi + u1v1(b11 − τ(B))]

[
τ(B)+ (b11 − τ(B))

n∑
k=1

ukvk

]

− [τ(B)+ (b11 − τ(B))]
[
τ(B)uivi + (b11 − τ(B))

n∑
k=1

ukvk

]

= τ(B)(b11 − τ(B))
[
(uivi − 1)

n∑
k=1

ukvk + u1v1 − uivi
]

+ (b11 − τ(B))2(u1v1 − 1)
n∑
k=1

ukvk � 0.

This means that

τ(B)uivi + u1v1(b11 − τ(B))
τ (B)uivi + (b11 − τ(B))∑n

k=1 ukvk
� b11

τ(B)+ (b11 − τ(B))∑n
k=1 ukvk

,

β11 � b11

τ(B)
[
τ(B)+ (b11 − τ(B))∑n

k=1 ukvk
] .

We can similarly prove

βii � bii

τ (B)
[
τ(B)+ (bii − τ(B))∑n

k=1 ukvk
] ∀ i ∈ N,

βii

bii
� 1

τ(B)
[
τ(B)+ (bii − τ(B))∑n

k=1 ukvk
] .

Substitution into the inequality (1) of Theorem 2.3 yields the asserted inequality
(2).

When n � 2,
∑n
k=1 ukvk � 2. For any i ∈ N , observe that

2bii
τ (B)

− 1

1 +
(
bii
τ (B)

− 1
)∑n

k=1 ukvk

=
2
(
bii
τ (B)

− 1
)

+ 1(
bii
τ (B)

− 1
)∑n

k=1 ukvk + 1
� 2∑n

k=1 ukvk
.

This means that (3) holds by (2). �

Corollary 2.6. Let B ∈ Mn, n � 2. Then

τ(B ◦ B−1) � 2

n
.

Proof. By examining the known proof of Theorem 3 of [2] carefully, we may as-
sume that B is irreducible, and B−1 is a doubly stochastic matrix, in this case, Cor-
ollary 2.6 follows immediately from Theorem 2.5(b), since both Perron eigenvectors
u = (ui) and v = (vi) can be chosen as e, the vector of all ones. �
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