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Abstract 

Fouquet, J.L. and H. Thuillier, Decomposition of 3-connected cubic graphs, Discrete Mathematics 

114 (1993) 181-198. 

We solve a conjecture of Foulds and Robinson (1979) on decomposable triangulations in the plane, 

in the more general context of a decomposition theory of cubic 3-connected graphs. The decomposi- 

tion gives us a natural way to obtain some known results about specific homeomorphic subgraphs 

and the extremal diameter of 3-connected cubic graphs. 

1. Introduction 

Foulds and Robinson [4] define a decomposable triangulation in the plane as 

a triangulation having a nonfacial triangle. From Jordan’s lemma (see [ 1 l]), a decom- 

posable triangulation is obtained by gluing two smaller triangulations (smaller since 

they have less vertices) along a triangle. The converse operation (cutting along 

a nonfacial triangle) gives us two smaller triangulations. It is, thus, clear that any 

triangulation can be repeatedly cut up into smaller ones without such triangles. At this 

point, Foulds and Robinson [4] conjectured: 

Every plane triangulation can be uniquely decomposed. 

Since the dual of a plane triangulation is a 3-connected cubic graph, a separating 

triangle becomes a cyclic 3-edge cocycle (a cocycle which leaves a cycle in the two 
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distinct components). The above conjecture can, thus, be written in a dual form. We 
can even drop the planarity condition and conjecture (the definition of a decom- 
posable 3-connected cubic graph is postponed to the next section): 

Every 3-connected cubic graph is uniquely decomposable. 

Lehel [S] notes the evidence of the first conjecture; we give here a proof of the second 
one. The decomposition of a 3-connected cubic graph is used later in the study of two 
distinct problems. 

2. Definitions and notations 

Let G be a 3-connected cubic graph, G is said to be cyclically k-edge-connected if we 

cannot disconnect G into two parts C1 and C2, each of them containing a cycle, 

without deleting at least k edges. If G has a cyclic 3-edge cocycle L(G is exactly 

cyclically 3-edge-connected), we shall say that G is decomposable following L. The two 

3-connected cubic graphs G’ and G” obtained from G by cutting the edges of L, adding 

a new vertex to each of them with the same name vL, one is adjacent to the ends of L in 

Ci, the other in C2, are the graphs of the decomposition of Gfollowing L (see Fig. 1). 

A cubic 3-connected graph is indecomposable if it is cyclically 4-edge connected or 

K, or K3,3. We shall say that the family 

of cubic 3-connected graphs is an F-decomposition of G if and only if 
_ Fi is indecomposable for all i, 1 d i < k, 
- B is the family of graphs obtained from G while using recursively the decomposi- 

tion procedure. 

We can associate with this decomposition a binary tree with root G and leaves the 

graphs of 9. An internal node H of a decomposition tree of G has two sons H’ and H”, 

G’ G" 

Fig. 1. 
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which have H as ancestor. In a previous paper [S] we have studied the reducible 

(or removable) and nonreducible (or nonremovable) edges (disjoint sets S(G) and 

N(G) which partition E(G)). These notions are derived from the construction of 

3-connected cubic graphs which is a specialization of Tutte’s [12] construction of 

3-connected graphs. When G is a 3-connected cubic graphs on n vertices, we get a new 

3-connected cubic graph on n + 2 vertices by extension between two edges e and e’ of 

G (the resulting graph is denoted by E,,,, (G)); the following figure (Fig. 2) is 

a straightforward illustration of this operation. 

The reduction of G relatively to the edgef; denoted as &i’(G)), is the cubic graph 

obtained from f by deleting f and its end vertices as shown in Fig. 2. This reduction 

can be done on the edge f if and only if f does not belong to any 3-edge cocycle. Then 

f is called reducible and belongs to S(G) (N(G) will be the set E(G)\S(G)). It is clear 

that the notions of decomposability of a cubic 3-connected graph and reducible edges 

are two complementary points of view of the same problem. In this paper we develop 

the notion of decomposability. Decomposition of 3-connected cubic graphs is related 

to the decomposition theory of Cunningham and Edmonds [2]. However, we do not 

see actually how to describe our problem in the more general frame of their theory. In 

particular, using the decomposition of submodular functions [l], we can hope to 

obtain an efficient algorithm for finding cyclic 3-edge cocycle. This problem is easily 

solved in 0(n3) by ‘brute force’ (examine each triple of edges). 

A d-graph is defined to be a graph homeomorphic to 8 (the graph on 2 vertices and 

3 edges). 

3. Decomposition and uniqueness 

Let P?(G)={Lr, L2,...,LP} be the set of cyclic 3-edge cocycles of G. When G is 

decomposed following Li (for some i, 1 < i<p), what can happen for Lj (i#j)? 

Lemma 3.1. Let G be a 3-connected cubic graph, LET(G). Then there is a O-graph H in 

G such that every chain of H contains one (and only one) edge of L. 

Proof. L divides the vertices of G into two 2-connected components C1 and CZ. Let 

x in Ci and y in C2; from Menger’s [9] theorem, we know that there exist three 

a t. a b 

e 

I I' 

-i 

ef 
e’ 

f 

l i--l >: Y 

c d E 
ee’ c d 
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Fig. 2. 
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internally disjoint chains between x and y. Each of these three chains must intersect L; 

the result follows. q 

Lemma 3.2. Let G be a 3-connected cubic graph, LET(G), G’ and G” be the sons of 
G when G is decomposed following L. Every edge in N (G’) (N (G”)) arises from an edge 
of N(G) by decomposing G. Furthermore, every cyclic 3-edge cocycle of G’(G”) is also 
a cyclic 3-edge cocycle of G, or arises from a cyclic 3-edge cocycle of G by 

decomposing G. 

Proof. Let vL be the vertex of G’ which is created when one decomposes G following 

L. Let eEN(G’) and L’EY(G’), which contains e: 
_ If vL is not incident with L’, L’ is clearly in P’(G), and e is in N(G). 

~ Assume that vL is incident with some edge ei of L’, which arises from the 

decomposition of G following L. If el =e then there is an edge of N(G) which is 

transformed into e by the decomposition. Otherwise, vL is not incident with e and it 

can be easily seen that e is in N(G). 0 

For brievity, we shall preserve the names of the cyclic 3-edge cocycles in the 

decomposition. The following lemma is obvious. 

Lemma 3.3. Let G be a 3-connected cubic graph, G’ and G” its two sons in the 
decomposition following LEY(G). Then ww’eE(G’) comes from one of the following two 
situations: 

(i) w and W’E V(G)n V(G’) and WW’EE(G), 
(ii) WE I’(G), w’ is the vertex vL, w is one of the ends of one edge of L. 

One can verify (cf. [S]), on the other hand, that two cyclic 3-edge cocycles are totally 

disjoint or have exactly on edge in common. 

Lemma 3.4. Let G be a 3-connected cubic graph, L and L’e.Y(G); then one and only one 
of the following conditions is true: 

(i) LnL’=@, 
(ii) lLnL’l=l, 

(iii) L = L’. 

We are now able to prove the main theorem of this section. 

Theorem 3.5. The decomposition of a 3-connected cubic graph G is unique. 

Proof. Let F and #be two decompositions of G: 

9={Fr,J’z,...,Fi), 

&={Hi, Hz ,..., Hk}. 
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A vertex in one of the graphs of one decomposition is a vertex of G or a cyclic 3-edge 

cocycle of G. We, thus, have 

V(~)=V(~)= ~ V(F,)= ~ V(Hj)=I/(G)u~{G}. 
i=l j= 1 

Let w and w’ be two vertices of Fi ( 1~ i < 1). Suppose, by contradiction, that WE Hj 

and W’E Hj( 1 < j < j’ < k). Consider the binary tree representing the X-decomposition 

of G. Let J be the first common ancestor of Hj and Hjc when going from the leaves to 

the root G. Let J’ and J” the two sons of J in the H-decomposition (J’ ancestor of 

Hj, J” ancestor of H,.). There is a cyclic 3-edge cocycle L in .9(J) which separates J’ 

and J”. From Lemma 3.2, we know that L comes from a cyclic 3-edge cocycle in Y(G) 

and we have 

Y(J)=Y(J’)u6p(J”)u{L}, 

V(Hi)= V(J’)uY(J’), 

V(Hj,)= V( J")U~((J"). 

There is exactly one vertex in Hj which has the same name as a vertex in Hjs; this is the 

vertex uL itself. In J every chain linking w to w’ (as elements of V(J)u P(J)) goes 

through L and so does every chain linking w and w’ (as elements of V(G) u P(G)) in G. 

Every chain from w to w’ must use the vertex vL (w, w’ and vL considered as vertices of 

the F-decomposition). We, thus, have a contradiction, since vL is now an articulation 

point in Fi. Hence, we have Hj= Hj’ and, thus, V(Hj)= V(Fi), 

Let us now show that ww’ is an edge of E(F,) if and only if ww’ is an edge of E(Hj). 

Let ww’ be an edge of Fi; Lemma 4.3, applied to every ancestor of Fi (from Fi to G), 

gives us one of the following three situations for ww’: 

(i) ww’eS(G), 

(ii) WE V(G), w’EY(G) and w is incident with one edge of w’, 

(iii) WE??(G), w’E_Y(G) and w and w’ have exactly one edge in common. 

Indeed, if ww’ is an edge of G, it is certainly an edge of S(G); otherwise, there exists 

LEA!?(G) containing ww’ and the two vertices w and w’ would be separated by the 

decomposition following L. When ww‘ is not an edge of G, this means that at least one 

vertex (w or w’) belongs to Y(G). If WE-Y(G) and W’E V(G) then, by Lemma 4.3, w’ is 

the end of one edge of w. Finally if WET(G) and w’E_Y’(G), let L= {xy, x’y’, x”y”} and 

L’ = { uv, u’d, u”v”) such that w = vL and w’ = vL,, we have two cases: 

Case 1: LnL’=@. 

When we split a cyclic 3-edge cocycle, we create two new vertices with the same 

name (one in each son of the decomposition) without deleting any vertex; thus, the 

decomposition following L creates the vertex w whose neighborhood is contained in 

{x, x’, x”, y, y’, y”}, while the decomposition following L’ creates the vertex w’ whose 

neighborhood is contained in (u, u’, u”, v, v’, v“}. It is, thus, clear that w and w’ cannot 

be adjacent. 
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Case 2: LnL’#@ 
In this case (Lemma 3.4) L and L’ have exactly one edge in common, thus, insuring 

the link ww’. 

From (i)-(iii) above, it is easy to verify that w and w’ are adjacent in any P- 

decomposition. 

Fi and Hj, thus, are the same graphs; hence, we have got the uniqueness of the 

decomposition. 0 

One consequence of the previous theorem is that the order of decomposition does 

not matter; in some problems it will be helpful to begin the decomposition of a cubic 

3-connected graph following a convenient cyclic 3-edge cocycle. 

The binary tree representing the decomposition has I Y(G) I+ 1 leaves (the number 

of graphs in F). An easy lower bound for this number is as follows. 

Proposition 3.6. The decomposition of a cubic 3-connected graph G contains at least as 

many graphs as the number of connected components of S(G). 

Proof. Any edge e in S(G) appears in one graph of the decomposition, its two ends 

being vertices of this graph, thus, the whole connected component of S(G) containing 

e is itself included in this graph by connectivity. The result follows. 0 

A 3-connected cubic graph is said to be k-decomposable if every graph of its 

decomposition has the same number k of vertices, and K-decomposable if they all are 

isomorphic to a given graph K. We are interested now in the following problem: Is 

there any property of G induced by the graphs of its decomposition? In this direction 

we have two results. 

Theorem 3.7. Let G and H be k-decomposable 3-connected cubic graphs. Zf the two 

decompositions have the same number ofgraphs then G and H have the same number of 

vertices. 

Proof (By induction on the number of graphs in the decompositions of G and H). Let 

9={G1, G2,..., GP} be the decomposition of G, X = {HI, Hz, . . . , HP} the decompo- 

sition of H and 

) I’( Gi) 1 = 1 V( Hi) I= k for all 1 < i < p. 

If k= 1, G is reduced to G1 and H to HI; G and H, thus, have the same number of 

vertices. Let us suppose that the property is true for any pair of k-decomposable 

3-connected cubic graphs whose decomposition contains p- 1 graphs. 

In G (H), let LET(G) (MEL(H)) such that the decomposition of G following L (M) 
gives two sons G’ and G” (H’ and H”) such that 

G’ or G”E?~ (H’ or H”E.Z). 
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Since the order of the decomposition is meaningless, it is sufficient to find LEY(G) 

(ME_Y(H)) such that a connected component of G-L (H-M) is a connected 

component of S(G) (S(H)). In [S] we have shown that such a cyclic 3-edge cocycle 

exists (the connected components of S(G) with this property are the so-called s-ends). 

G is, thus, decomposed into G’ and G” (H in H’ and H”), with 

1 V(G’)I =k (I VG”)I =k), 

I V(H’)I =k (I V(H”)I=k). 

Let us suppose that I V(G’) I = I V(H’)I = k, G” and H” are k-decomposable, and 

their decompositions having p- 1 graphs; G” and H”, thus, have the same number of 

vertices (from the induction hypothesis) and 

I V(G)/ =) I’(G’)l+l I’(G”-2=l V(H)l=l Z’(H’)I+I V(H”)l -2. 0 

Let us note here that, under the additional hypothesis that all graphs in the 

decompositions are isomorphic, we cannot insure the isomorphism between G and H, 

as it can be seen for the two graphs in Fig. 3. 

Theorem 3.8. Let G be a cubic 3-connected graph. If G is 4decomposable then G is 
planar. 

Proof. In the decomposition of G, every graph is isomorphic to a complete graph with 

4 vertices. Let us show our property by induction on the number of graphs in the 

Fig. 3. 
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decomposition. The planarity of K4 being well known, let us suppose that every graph 

4-decomposable in p - 1 graphs (p 3 2) is planar. Let LET(G) such that one of the two 

sons G’ and G” of G, say G’, is a K4. G” is a cubic 3-connected graph which is 

4-decomposable in p - 1 K4. G” is, thus, planar (from the induction hypothesis). One 

can obtain G from G” while transforming vL in a triangle (reconstruction of G from G’ 

and G”); this operation clearly preserves the planarity. 0 

In fact, one can prove the more general theorem (the proof is left to the 

reader). 

Theorem 3.9. Let G be a cubic 3-connected graph, the orientable or non orientable genus 
is less than the sum of the genus of the graphs of the decomposition. 

4. F-Homeomorphism 

Let H be a subgraph of a cubic 3-connected graph G, homeomorphic to an 

indecomposable graph. Then what is the behaviour of H under the decomposition? 

We shall study here this problem. 

Let G be a cubic 3-connected graph and H a subgraph of G homeomorphic to 

a cubic graph K. A vertex of H of degree 3 will be called a major vertex (we shall 

consider a major vertex as a vertex of H or a vertex of G as well). A major vertex is 

linked in a natural way to three other major vertices (its neighbours a, b, c in K) by 

three chains P,,, Pvb and P,, called here v-major chains. 

Lemma 4.1. Let G be a cubic 3-connected graph, H a subgrapk komeomorpkic to an 

indecomposable graph K, eeN(G)n E(H), LEE’ containing e. For any major vertex 
v, we have one of the following situations: 

(i) L does not intersect any v-major chain, 
(ii) L intersects exactly once every v-major chain, 

(iii) L intersects twice one v-major chain only; the third edge of L is not in E(H). 

Proof. Let C1 and Cz be the two 2-connected components of G-L. Let us colour 

C1 in blue and Cz in red. This colouring induces a ‘natural’ colouring of V(K). 
If K has vertices in the two colours, it means that H-L is not connected and, thus, 

K -L’ (where L’ is the set of edges of K, whose homeomorphic images in H are chains 

containing the edges of L) is not connected. L’ is, thus, a 3-edge cocycle of K, which is 

indecomposable. L’ is, thus, the elementary cocycle of one vertex of K. Hence, we have 

one of the cases (i) or (ii) for every vertex of H. 
If the vertices of K are in the same class (say red), it means that either H is connected 

in G-L (E(H)n L=@) and we, thus, have situation (i) for every vertex or H is 

disconnected. In that case, it is easy to see that we are in situation (iii) for two vertices 

v and v’ of H linked by the chain. 0 
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Proposition 4.2. Let G be a cubic 3-connected graph and Leg(G), and H a subgraph of 

G homeomorphic to an indecomposable graph K. One (and only one) of the two sons G’ 

and G” of G in the decomposition following L contains a subgraph H’ homeomorphic to 

K whose set of major vertices is the set of major vertices of H except possibly vt,, which 

has been put in place of one major vertex of H. 

Proof. We have two cases: 
_ LnE(H)=O. H is, thus, a subgraph of G’. or (exclusively) G”. The property is 

obvious. 
_ Ln E(H)#@. Let H’ and H” be the two graphs (subgraphs of G’ and G”, 

respectively) which we have obtained from the decomposition of G following L. 

H being homeomorphic to an indecomposable graph, it has at least 4 major-vertices. 

From Lemmas 3.1 and 4.1, H’ or H” (say H “) is homeomorphic to a O-graph or 

a cycle. If H” is a cycle, H’ is homeomorphic to K and has the same set of major 

vertices as H; while if H” is a B-graph, H’ is homeomorphic to H and VL is the only 

new major vertex possible. 0 

The unique subgraph H’ homeomorphic to H so defined is said to be P--homeo- 

morphic to H. We shall say that two graphs H and H’ are 9-homeomorph when it is 

possible to construct H from H’ by a series of 9-homeomorphisms (along the path 

between the two nodes containing H and H’ of the binary tree of the decomposition). 

From this point, we obtain in an obvious way the main result in this section. 

Theorem 4.3. Let G be a cubic 3-connected graph, and H a subgraph homeomorphic to 

an indecomposable graph. If F is a decomposition of G then there is only one graph F in 

the decomposition which contains a subgraph H’ 9-homeomorphic to H. 

This proposition allows us to prove the following enhanced version of a result due 

to Jackson [6]. 

Theorem 4.4. If G is a cubic 3-connected graph, then G contains a subgraph H homeo- 

morphic to one of the two indecomposable graphs on 8 vertices (the ‘cube’ and the ‘twisted 

cube’ of Fig. 4) tf and only tfG is not { Kq, K,,,}-decomposable. 

Fig. 4. 
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Proof. If G is {K4, K,,,}-decomposable, we cannot find a subgraph of G homeo- 

morphic to an indecomposable graph of order at least 8. Indeed, from Theorem 4.3, 

one of the graphs in the decomposition must contain also such a subgraph, but these 

graphs have 4 or 6 vertices, which is impossible. 

If G is not {K,, K,, ,}-decomposable, let us show by induction on n, the number 

of vertices, that G contains a homeomorph to the cube or the twisted cube. For n = 8, 

the property is easily verified on the four 3-connected cubic graphs of order 8. Let 

us suppose the property for graphs up to yl’<n vertices. Let us examine G with 

n vertices. 

Case 1: G is decomposable. 

One of the graph in the decomposition has at least 8 vertices (G is not (K4, K3,3}- 

decomposable); from the induction hypothesis, we clearly have the result. 

Case 2: G is indecomposable. 
Let e be an edge, e, 1 (G) = G ’ is a cubic 3-connected graph on n - 2 vertices. If G’ is 

not { K4, K3, 3 )-decomposable, it contains a graph homeomorphic to the cube or the 

twisted cube (from the induction hypothesis), it can be easily verified that it is also 

a subgraph of G. If G’ is { K4, K,, ,}-decomposable, it means that G’ is decomposable 

in exactly two graphs, each of them being a K4 or a K3,3. In each possible case, one 

can easily verify that G’ contains a subgraph, as claimed, which is also a subgraph 

of G. 0 

5. Diameter extremal graphs 

What is the maximum diameter of a cubic 3-connected graph of order n? A related 

question (What is the minimum order of a cubic 3-connected graph of a given 

diameter d, a (d, 3, 3)-graph in the literature?) has been answered by various authors 

(see [3, 7, lo]). We shall give here an answer to this problem via the decomposition 

theory developed in the previous sections. As a by-product, we shall obtain a complete 

description of (d, 3, 3)-graphs. 

Dmax(n) denotes the maximum diameter of a 3-connected cubic graph of order n. We 

shall say that a graph in this family having a diameter equal to Dmax(n) is an extremal 
graph. Two vertices x and y at maximum distance in an extremal graph constitute an 

extremal pair of vertices, a vertex is extremal when it belongs to an extremal pair. Let 

us recall that in a 3-connected graph any two vertices are joined by three internal 

disjoint paths (Menger’s theorem), a 3-rail in the sequel. 

5.1. Arithmetical properties of extremal graphs 

Lemma 5.1. 
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Proof. Let x and y be a pair of extremal vertices in an extremal graph G of order n, 

Pi (1~ i < 3) the 3 paths of a 3-rail joining this two vertices. Since the diameter of G is 

Dmax(n), we have 

From 

1 V(P,) 13 Dmax(n) for all 1 <id 3. 

I I (J v(pi) =2+ i (I v(pi)l-2), 

i=l i=l 

we have 

11~1 I’(G)1 32+ 2 (I v(Pi)I-2). 
i=l 

Thus, 

n>2+3(D,,,(~)-1) 

and the result follows. 0 

We shall construct now, for each n >, 1, a 3-connected cubic graph whose diameter is 

exactly L(n + 1)/3]. Inspection of the 3-connected cubic graphs on n = 4,6,8 vertices 

shows that this bound is attained for these 3 distinct values of n. In Fig. 5, we have 

drawn the extremal graphs of order at most 8 with a pair of extremal vertices (in 

white). 

Fig. 5 
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Let G be an extremal graph on n vertices, x and y an extremal pair joined by Pr, 

P2 and P3 a 3-rail such that the length of each Pi is Dmax(n) (this is possible for 

n=3p+2). 

Let ei (1 <i< 3) be the edge of Pi with end x. It is an easy matter to verify that the 

following 3 graphs, G, , Gz and G3, on, respectively, n + 2, n + 4 and n + 6 vertices are 

extremal graphs: 

G1 =seze3(G) (x and y is a pair of extremal vertices, e, and e3 are 

transformed into e2 and e;). 

Gz =E,,~;(G) (x and y is a pair of extremal vertices, e, and e; are 

transformed into e; and e;). 

G3 =q.;(G) ( x and y is a pair of extremal vertices, e; and e> are 

transformed into e’; and e’;). 

The sequence of extensions transforms the original 3-rail into a 3-rail for which the 

length of each path is, respectively, 

Dmax(n), Dmax(n)+ 1, Dmax(n)+ 1 for n=4 modulo 6, 

k&), &dn), b&4 + 1 for n = 0 modulo 6, 

for n=2 modulo 6. 

This last relation ensures that we can repeat the construction (with G3 instead of G). It 

can be pointed out that these extremal graphs are such that there is no vertices outside 

the 3-rails. In the general case we have, in fact, the following result. 

Lemma 5.2. Let G be an extremal graph on n vertices, and Pi (1~ i < 3) the three paths 

of a 3-rail between x and y, the two extremal vertices. If k is the number of vertices which 
are not on one of the Pi (1 <i < 3) then: 

(i) k=O ifn-2 modulo 6, 

(ii) k=O, 1 or 2 if n=4 modulo 6, 
(iii) k=O or 1 if n=O modulo 6, 

Proof. We clearly have 

n=k+l W1)I+l v(P~)l+l VP3)1-4; 

since1 V(Pi)I(l<i<3) is at least D,,,(n)+l, we get 

k d n - 3&,,,(n) + 1, 
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but Dmax(n) is exactly L(FI + 1)/3] (Lemma 5.1 and the above construction). Hence, we 

have 

n=6p, DInax = 2P and k<l, 

n=6p+2, D,,,(n)=2p+ 1 and k=O, 

n=6p+4, D,,,(n)=2p+l and k<2. 0 

The following lemma gives the possible lengths of the paths in a 3-rail between two 

extremal vertices of an extremal graph. 

Lemma 5.3. Let G be an extremal graph on n vertices, Pi (1 <i < 3) the three paths of 

a 3-rail between x and y, the two extremal vertices, and k the number of vertices which 

are not on the 3-rail. Then we have one of the following possibilities: 

(i) n=6p, k=O and D,,,(n)=2p, l(P,)=l(P,)=D,,,(n), l(P3)=D,,,(n)+1, 

(ii) n=6p, k=l and D,,,(n),=2p, l(P1)=l(P,)=l(P,)=D,,,(n), 

(iii) n=6p+2, k=O and D,,,(n)=2p+ 1, l(P,)=l(P,)=l(P,)=D,,,(n), 

(iv) n=6p+4, k=O and D,,,(n)=2p+l, l(P1)=l(P,)=D,,,(n), 

l(P,) = h&) + 2, 
(v) n=6p+4, k=O and D,,,(n)=2p+ 1, l(P,)=D,,,(n), 

l(P~)=l(P~)=&,,(n)f 1, 

(vi) n=6p+4, k= 1 and D,,,(n)=2p+ 1, l(P,)=l(P,)=D,,,(n), 

l(P,)=&,,(n)+ 1, 
(vii) n=6p+4, k=2 and D,,,(n)=2p+ 1, l(P,)=l(P,)=l(P,)=D,,,(n). 

The proof is an easy arithmetical manipulation (use Lemma 5.2) and we have it to 

the reader. 

5.2. Cutting and gluing extremal graphs 

We are concerned now with the following problem: Under what condition(s) does 

the reconstruction (in the sense of Section 2) from two extremal graphs give an 

extremal graph? 

Theorem 5.4. Let G1 and Gz be two extremal graphs on n1 and n, vertices, (xi, vi) 

(i= 1,2) an extremal pair in each of them. Let H be one of the six graphs obtained by 

deleting vI in Gr and v2 in G2 and adding a matching between the two neighbourhoods. 

Then H is extremal and (x1, x2) is an extremal pair in each of the following cases: 

(i) nI=6PI, ng=6P,, 
(ii) nl=6p,, n,=6p,+2, 

(iii) nI = 6p, + 2, n2 = 6~2 + 2, 

(iv) n,=6p,+2, n2=6p2+4. 
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Proof. Let P be a path of minimum length between x1 and x2 in H, and let PI (Pz) be 

the trace of P in Gi (G2) between x1 and r1 (x2 and Q). We have 

I(P)>l(P,)+I(P,)- 1. 

Since Gi (i= 1, 2) is extremal, we certainly have (Lemma 5.1) 

L(Pi)3L(ni+ l)V3 19 

which gives the following: 

Case (i): n, =6pi, n2=6p,. 
In this case we have (cf. proof of Lemma 5.2) 

Drnax(ni)=2Pi 

and, thus, 

but 
UP)32(Pl +P2)- 1 

n=6(p,+p2)-2=6(p1+p2-1)+4 

and (cf. proof of Lemma 5.2) 

Qnax(4=2(P1 +p2- I)+ 1=2(p, +Pz)- 1. 

The two vertices x1 and x2 are, thus, extremal in H. 

Case (ii): n,=6p,, n2=6p,+2. 
In this case we have 

Q,AQ)=~P~ and &,,,(~2)=2~2+ 1, 

W32(Pl +p2), 

n=6(p, ~~21, 

Qnax(~)=2(Pl+P2). 

Cuse(iii): n,=6p,+2,n2=6p2+2. 

In this case we have 

Rd%) = 2~1 + 1 and %,x(n2) = 2p2 + 1, 

Qp)32(P,+P2)+ 1, 

n=6(pl+p2)+2 

&ax(n)=2(pl +p2)+ 1, 

Case (iv): rri = 6p, + 2, n2 = 6p, + 4. 
In this case we have 

&,&~)=2pi+l and R,,,,(n2)=2p,+l, 

QP)32(Pl +p2)+ 1, 

n=6(pl +p2)+4 

k&)=2(p1 +p2)+ 1. 0 
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It can be pointed out that in the two other cases (n, =6p, and nz=6p, +4; 

nI = 6p, +4 and n2 = 6~2 +4), we can obtain a graph H which is not extremal (see 

Fig. 6), but in these cases analogous calculus gives Dmax(n)- 1 as diameter for H. 

Conversely, we cannot ensure that the decomposition of an extremal graph 

gives two extremal graphs. However, in some cases the decomposition leads to the 

expected result; we shall describe now one of them. We need for this purpose some 

definitions. 

Let G be an extremal graph, x an extremal vertex, and V; the set of vertices which 

are at distance i from x (or Vi when there is no possible confusion). From the 

3-connectivity of G, each Vf has at least 3 vertices. When Vf has exactly 3 vertices, 

this set is a vertex separator of G. Since the vertex connectivity and the edge 

connectivity are equal in cubic graphs, it is not difficult to see that there is certainly 

a 3-edge cocycle which is incident to the 3 vertices of V;. Let Ls_Y(G), we shall say 

that L is natural when L is a cyclic 3-edge cocycle whose ends are in Vf and Vr+ 1 (for 

some i, 1 <idD,,,(n)-2). 

Theorem 5.5. Let G be an extremal graph on n vertices, (x, y) an extremal pair and 

LEY(G) such that x and y are in distinct component of G - L. If L is natural then the 

two sons of G, G’ and G”, in the decomposition following L are extremal. Moreover, 

(v,, x) and (vt, y) are extremal pairs in these graphs. 

We omit the straightforward but tedious proof. 

5.3. Construction of extremal graphs 

We are concerned now with the construction of extremal graphs. We shall give 

a symbolic construction of the so-called fundamental primitive graphs (defined later), 

Fig. 6. 
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which can be seen as the generating family of extremal graphs. All the needed 

information is clearly contained in this description and it is an easy matter to 

construct an example of fundamental primitive graphs in each case. On the other 

hand, an extremal graph on 6p or 6p + 2 is merely a (2p, 3,3) minimum ((2~ + 1,3,3) 

minimum) graph since, for n < 6p, the diameter is at most 2p- 1 (at most 2p for 

n < 6p + 1). These classes of graphs having been depicted in the literature (see [3,7, lo]) 

from another point of view, we refer the reader to these works. 

An n-primitive graph in the sequel denotes an extremal graph on n vertices without 

natural 3-edge cocycle. In view of Theorems 5.4 and 5.5, it is clear that the construc- 

tion of extremal graphs on n vertices will be achieved with the knowledge of the whole 

set of n’-primitive graphs, with n’<n. In fact, it is not necessary to know all the 

primitive graphs, as can be seen now. 

For this purpose, we need to define a transformation of a cubic graph in another 

one. Let ab and cd be two independent edges in a cubic graph G; we get a new 

cubic graph G’ from G by deleting the edges ab and cd and adding the new 

edges ac and bd. Let G be an extremal graph with (x, y) as extremal pair, let 

Vr={a,,a,,aj)and Vf+i= {b,, bZ, b3} and let us suppose that we have albl, azbz, 
a3 b3 the 3 edges of the 3-rail between x and y, a, b2 and a2 bl or a, b2 and a2 b3 as only 

edges between V; and V:+ 1 (Fig. 7). It is easy to see that the graph G’ obtained by the 

above transformation on a, b2 and a2 b, in the former, on a, b2 and a2 b3 in the latter 

one, remains extremal, since the two sets V; and VT+ 1 are not changed. Moreover, we 

can see that Vf- and Vf+ 1 are joined by a natural 3-edge cocycle L in the transformed 

graph. 

Fig. 7. 
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Proposition 5.6. Let G be an n-primitive graph with (x, y) as extremal pair. Let us 

suppose that,for some i, (2 < i < Dmax(n) - 2). We have 1 VP I= 1 Vf+ 1 1 = 1 Vf+ 2 I= 3; then 

V;+I is an independent set and exactly one of the following is true: 

(i) V; and VF+ 1 are joined by 4 edges and VT+ 1 and VF+:,, are joined by 5 edges, 

(ii) V; and VF+l are joined by 5 edges and Vf+ 1 and Vf+ z are joined by 4 edges. 

Proof. If Vf+ 1 is not independent, then it contains exactly one edge (the 3-rail going 

through Vf+ 1 uses the 3 edges between VT and Vf+“+,, and the 3 edges between 

V;+I and V:+2). There is, thus, one edge more between V: and Vic,l or between 

V:+I and V;+z. We, thus, get a natural 3-edge cocycle between Vf+I and Vf+* or 

Vf and V:+ 1, respectively, a contradiction. 0 

In view of the previous transformation in the class of extremal graphs, this 

proposition means that the construction of n-primitive graphs is reduced to the 

construction of n-primitive graphs without 3 consecutive sets VT, Vf+I and 

VT+ 2 having 3 vertices each (fundamental primitive graphs). 

We shall give now a quick description of these fundamental primitive graphs. For 

this purpose (except for n d 8, for which all the fundamental graphs are depicted in 

Fig. 5), we give only an abstract partition of the vertex sets. For example, 

x VI V, Vj V4 {y, z}, is the symbolic representation of a fundamental 16-primitive 

graph with (x, y) or (x, z) as extremal pairs (d(x, y) = d(x, z) = 5); each Vi has 3 vertices 

except for V,, which has 4 vertices. The other interpretations are straightforward. 

Fundamental 6p + 2-primitive graphs 

x VI Vzy, n=S. 

Fundamental 6p-primitive graphs 

X V1 {Y,z}, n=6, 

x VI V; V,y, n= 12, 

xv, V,VfV,V,y, n=18. 

Fundamental 6p + 4primitive graphs 

x {Y> z, t>, n = 4, 

xv1 v2{Y,z,t), n=lO, 

x Vl v; {Y> z}, n= 10, 

x Vl vyy, n= 10, 

xv1 VIV3V4{Y,Z}, n=16, 
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