Kevin Keating ${ }^{1}$
Department of Mathematics, University of Florida, Gainesville, FL 32611, USA

Received 8 August 1997; revised 15 March 1999; accepted 22 March 1999

Abstract

Let T be a tile made up of finitely many rectangles whose corners have rational coordinates and whose sides are parallel to the coordinate axes. This paper gives necessary and sufficient conditions for a square to be tilable by finitely many \mathbb{Q}-weighted tiles with the same shape as T, and necessary and sufficient conditions for a square to be tilable by finitely many \mathbb{Z}-weighted tiles with the same shape as T. The main tool we use is a variant of F.W. Barnes's algebraic theory of brick packing, which converts tiling problems into problems in commutative algebra. (c) 2000 Elsevier Science B.V. All rights reserved.

Keywords: Tile; Shape; Polynomial

1. Introduction

In [3] Dehn proved that an $a \times b$ rectangle R can be tiled by finitely many nonoverlapping squares if and only if a / b is rational. More generally, suppose we allow the squares to have weights from \mathbb{Z}. An arrangement of weighted squares is a tiling of R if the sum of the weights of the squares covering a region is 1 inside of R and 0 outside. Dehn's argument applies in this more general setting, and shows that R has a \mathbb{Z}-weighted tiling by squares if and only if a / b is rational. In [4] this result is generalized to give necessary and sufficient conditions for a rectangle R to be tilable by \mathbb{Z}-weighted rectangles with particular shapes. In this paper we consider a related question: Given a tile T in the plane made up of finitely many weighted rectangles, is there a weighted tiling of a square by tiles with the same shape as T ?

We define a rectangle in $\mathbb{R} \times \mathbb{R}$ to be a product $\left[b_{1}, b_{2}\right) \times\left[c_{1}, c_{2}\right)$ of half-open intervals, with $b_{1}<b_{2}$ and $c_{1}<c_{2}$. Let A be a commutative ring with unity. An A-weighted tile is represented by a finite A-linear combination $L=a_{1} R_{1}+\cdots+a_{n} R_{n}$ of disjoint rectangles. Associated to each such L there is a function $f_{L}: \mathbb{R}^{2} \rightarrow A$ which is supported on $\bigcup R_{i}$ and whose value on R_{i} is a_{i}. We say that L_{1} and L_{2} represent the same

[^0]

Fig. 1. Two rectangle decompositions of the same \mathbb{Z}-weighted tile.
tile if $f_{L_{1}}=f_{L_{2}}$. An example of a \mathbb{Z}-weighted tile is given in Fig. 1. We may form the sum $T_{1}+T_{2}$ of two weighted tiles T_{1}, T_{2} by superposing them in the natural way. For $a \in A$ the tile $a T$ is formed from T by multiplying all the weights of T by a. The set of all A-weighted tiles forms an A-module under these operations.

Let U be an A-weighted tile and let $\left\{T_{\lambda}: \lambda \in \Lambda\right\}$ be a set of A-weighted tiles. We say that the set $\left\{T_{\lambda}: \lambda \in \Lambda\right\} A$-tiles U if there are weights $a_{1}, \ldots, a_{n} \in A$ and tiles $\tilde{T}_{1}, \ldots, \tilde{T}_{n}$, each of which is a translation of some $T_{\lambda_{i}}$, such that $a_{1} \tilde{T}_{1}+\cdots+a_{n} \tilde{T}_{n}=U$. Note that we are allowed to use as many translated copies of each prototile T_{λ} as we need, but we are not allowed to rotate or reflect the prototiles. Given an A-weighted tile T and a real number $\rho>0$ we define $T(\rho)$ to be the image of T under the rescaling $(x, y) \mapsto(\rho x, \rho y)$. We say that an A-weighted tile T^{\prime} has the same shape as T if there exists $\rho>0$ such that T^{\prime} is a translation of $T(\rho)$. We say that $T A$-shapetiles U if $\{T(\rho): \rho>0\} A$-tiles U. If U^{\prime} has the same shape as U then $T A$-shapetiles U^{\prime} if and only if $T A$-shapetiles U.

In this paper we consider tiles T constructed from rectangles whose corners have rational coordinates. We prove two main results about such tiles. First, we show that if T is a \mathbb{Q}-weighted tile whose weighted area is not 0 , then $T \mathbb{Q}$-shapetiles a square. Second, if T is a \mathbb{Z}-weighted tile we give necessary and sufficient conditions for T to \mathbb{Z}-shapetile a square.

The author would like to thank Jonathan King for posing several questions which led to this work.

2. Polynomials and tiling

Say that T is a lattice tile if T is an A-weighted tile made up of unit squares in \mathbb{R}^{2} whose corners are in \mathbb{Z}^{2}. We will associate a (generalized) polynomial f_{T} to each A-weighted lattice tile T. Our approach is similar to that used by Barnes [2], except that the polynomials that we construct differ from Barnes's polynomials by a factor $(X-1)(Y-1)$. Including this extra factor will allow us to generalize the construction to non-lattice tiles at the end of the section.

Our polynomials will be elements of the ring

$$
A\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]:=A\left[X, Y, X^{-1}, Y^{-1}\right]
$$

which is naturally isomorphic to the group ring of $\mathbb{Z} \times \mathbb{Z}$ with coefficients in A. To begin we associate the polynomial $X^{i} Y^{j}(X-1)(Y-1)$ to the unit square $S_{i j}$ with lower left corner $(i, j) \in \mathbb{Z} \times \mathbb{Z}$. Given an A-weighted lattice tile

$$
T=\sum_{i, j} w_{i j} S_{i j}
$$

by linearity we associate to T the polynomial

$$
f_{T}(X, Y)=\sum_{i, j} w_{i j} X^{i} Y^{j}(X-1)(Y-1)
$$

One consequence of this definition is that translating a tile by a vector $(i, j) \in \mathbb{Z} \times \mathbb{Z}$ corresponds to multiplying its polynomial by $X^{i} Y^{j}$. The map $T \mapsto f_{T}$ gives an isomorphism between the A-module of A-weighted lattice tiles in the plane and the principal ideal in $A\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$ generated by $(X-1)(Y-1)$.

Example 2.1. Let a, b, c, d be integers such that $a, b \geqslant 1$ and let T be the $a \times b$ rectangle whose lower left corner is at (c, d). Then the polynomial associated to T is

$$
\begin{aligned}
f_{T}(X, Y) & =\sum_{i=c}^{c+a-1} \sum_{j=d}^{d+b-1} X^{i} Y^{j}(X-1)(Y-1) \\
& =X^{c} Y^{d}\left(X^{a}-1\right)\left(Y^{b}-1\right)
\end{aligned}
$$

In Section 4 we will need to work with non-lattice tiles. To represent these more general tiles systematically we introduce a new set of building blocks to play the role that the unit squares $S_{i j}$ play in the theory of lattice tiles. For $\alpha, \beta \in \mathbb{R}^{\times}$let $R_{\alpha \beta}$ denote the oriented rectangle with vertices $(0,0),(\alpha, 0),(\alpha, \beta),(0, \beta)$. Note that if exactly k of α, β are negative then $R_{\alpha \beta}$ is equal to $(-1)^{k}$ times a translation of $R_{|\alpha|,|\beta|}$. We can express any rectangle in terms of the rectangles $R_{\alpha \beta}$:

Example 2.2. Let $\alpha, \beta>0$ and let $R_{\alpha \beta}^{\prime}$ be the translation of the rectangle $R_{\alpha \beta}$ by the vector $(\sigma, \tau) \in \mathbb{R}^{2}$. Then $R_{\alpha \beta}^{\prime}=R_{\alpha+\sigma, \beta+\tau}-R_{\alpha+\sigma, \tau}-R_{\sigma, \beta+\tau}+R_{\sigma \tau}$. In particular, we have $S_{i j}=R_{i+1, j+1}-R_{i+1, j}-R_{i, j+1}+R_{i j}$.

In fact the following holds:
Lemma 2.3. Every A-weighted tile T can be expressed uniquely as an A-linear combination of rectangles $R_{\alpha \beta}$ with $\alpha, \beta \in \mathbb{R}^{\times}$.

Proof. By Example 2.2 every rectangle is an A-linear combination of the rectangles $R_{\alpha \beta}$. Therefore, every A-weighted tile is an A-linear combination of the $R_{\alpha \beta}$. Suppose

$$
c_{1} R_{\alpha_{1} \beta_{1}}+c_{2} R_{\alpha_{2} \beta_{2}}+\cdots+c_{n} R_{\alpha_{n} \beta_{n}}=0
$$

is a linear relation such that the pairs $\left(\alpha_{i}, \beta_{i}\right)$ are distinct and $c_{i} \neq 0$ for $1 \leqslant i \leqslant n$. Choose j to maximize the distance from the origin to the far corner $\left(\alpha_{j}, \beta_{j}\right)$ of $R_{\alpha_{j} \beta_{j}}$. None of the other rectangles in the sum can overlap the region around $\left(\alpha_{j}, \beta_{j}\right)$. Since $c_{j} \neq 0$, this gives a contradiction. Therefore, the set $\left\{R_{\alpha \beta}: \alpha, \beta \in \mathbb{R}^{\times}\right\}$is linearly independent over A, which implies the uniqueness part of the lemma.

In order to represent arbitrary A-weighted tiles algebraically we introduce a generalization of the polynomials f_{T}. Let $A\left[X^{\mathbb{R}}, Y^{\mathbb{R}}\right]$ denote the set of 'polynomials' with coefficients from A where the exponents of X and Y are allowed to be arbitrary real numbers. The natural operations of addition and multiplication make $A\left[X^{\mathbb{R}}, Y^{\mathbb{R}}\right]$ a commutative ring with unity. The ring $A\left[X^{\mathbb{R}}, Y^{\mathbb{R}}\right]$ is naturally isomorphic to the group ring of $\mathbb{R} \times \mathbb{R}$ with coefficients in A, and contains $A\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$ as a subring.

For $\alpha, \beta \in \mathbb{R}^{\times}$define $f_{R_{\alpha \beta}}=\left(X^{\alpha}-1\right)\left(Y^{\beta}-1\right) \in A\left[X^{\mathbb{R}}, Y^{\mathbb{R}}\right]$. By Lemma 2.3 this definition extends linearly to give a well-defined element $f_{T} \in A\left[X^{\mathbb{R}}, Y^{\mathbb{R}}\right]$ associated to any A-weighted tile T. It follows from Example 2.2 that this definition agrees with that given earlier if $T=S_{i j}$ is a unit lattice square, and hence also if T is any lattice tile. The map $T \mapsto f_{T}$ gives an isomorphism between the A-module of A-weighted tiles and an A-submodule of $A\left[X^{\mathbb{R}}, Y^{\mathbb{R}}\right]$. The next lemma implies that this A-submodule is actually an ideal in $A\left[X^{\mathbb{R}}, Y^{\mathbb{R}}\right]$.

Lemma 2.4. Let T be an A-weighted tile and let T^{\prime} be the translation of T by the vector $(\sigma, \tau) \in \mathbb{R} \times \mathbb{R}$. Then $f_{T^{\prime}}=X^{\sigma} Y^{\tau} f_{T}$.

Proof. Let $R_{\alpha \beta}^{\prime}$ be the translation of $R_{\alpha \beta}$ by (σ, τ). Using Example 2.2 we get

$$
f_{R_{\alpha \beta}^{\prime}}=X^{\sigma} Y^{\tau}\left(X^{\alpha}-1\right)\left(Y^{\beta}-1\right)=X^{\sigma} Y^{\tau} f_{R_{\alpha \beta}},
$$

so the lemma holds for $T=R_{\alpha \beta}$. Therefore, by Lemma 2.3 the lemma holds for all tiles T.

The next result gives a further relation between ideals and tiling.
Proposition 2.5. Let U be a tile, let $\left\{T_{\lambda}: \lambda \in \Lambda\right\}$ be a collection of tiles, and let $\tilde{I} \subset A\left[X^{\mathbb{R}}, Y^{\mathbb{R}}\right]$ be the ideal generated by the set $\left\{f_{T_{\lambda}}: \lambda \in \Lambda\right\}$. Then $\left\{T_{\lambda}: \lambda \in \Lambda\right\}$ A-tiles U if and only if $f_{U} \in \tilde{I}$.

Proof. We have $f_{U} \in \tilde{I}$ if and only if

$$
f_{U}(X, Y)=\sum_{i=1}^{k} a_{i} X^{\sigma_{i}} Y^{\tau_{i}} f_{T_{\lambda_{i}}}(X, Y)
$$

for some $a_{i} \in A, \sigma_{i}, \tau_{i} \in \mathbb{R}$, and $\lambda_{i} \in \Lambda$. Since $X^{\sigma_{i}} Y^{\tau_{i}} f_{T_{\lambda_{i}}}(X, Y)$ is the polynomial associated to the translation of $T_{\lambda_{i}}$ by the vector $\left(\sigma_{i}, \tau_{i}\right)$, we have $f_{U} \in \tilde{I}$ if and only if $U=a_{1} \tilde{T}_{1}+\cdots+a_{k} \tilde{T}_{k}$, with \tilde{T}_{i} a translation of $T_{\lambda_{i}}$. Therefore, $f_{U} \in \tilde{I}$ if and only if $\left\{T_{\lambda}: \lambda \in \Lambda\right\} A$-tiles U.

Corollary 2.6. Let $\left\{T_{\lambda}: \lambda \in \Lambda\right\}$ be a collection of lattice tiles, let I be the ideal in $A\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$ generated by the set $\left\{f_{T_{\lambda}}: \lambda \in \Lambda\right\}$, and let U be a lattice tile such that $f_{U} \in I$. Then $\left\{T_{\lambda}: \lambda \in \Lambda\right\}$ A-tiles U.

The last result in this section shows what happens to f_{T} when we replace T by a rescaling.

Lemma 2.7. Let T be an A-weighted tile and let ρ be a positive real number. Then $f_{T(\rho)}=f_{T}\left(X^{\rho}, Y^{\rho}\right)$.

Proof. Let $\alpha, \beta \in \mathbb{R}^{\times}$. Then $R_{\alpha \beta}(\rho)=R_{\rho \alpha, \rho \beta}$ and hence

$$
f_{R_{\alpha \beta}(\rho)}=\left(X^{\rho \alpha}-1\right)\left(Y^{\rho \beta}-1\right)=f_{R_{\alpha \beta}}\left(X^{\rho}, Y^{\rho}\right) .
$$

Therefore the lemma holds for $T=R_{\alpha \beta}$. It follows from Lemma 2.3 that the lemma holds for all tiles T.

3. Tiling with rational weights

This section is devoted to proving the following theorem:

Theorem 3.1. Let T be a \mathbb{Q}-weighted tile made up of rectangles whose corners all have rational coordinates. Then $T \mathbb{Q}$-shapetiles a square if and only if the weighted area of T is not zero.

Proof. It is clear that if the weighted area of T is zero then T cannot shapetile a square with nonzero area. Assume conversely that T has nonzero weighted area. By rescaling and translation we may assume that T is a lattice tile in the first quadrant. Let $T(\mathbb{N})$ denote the set $\{T(k): k \in \mathbb{N}\}$ of positive integer rescalings of T. To complete the proof of Theorem 3.1 it suffices to prove that $T(\mathbb{N}) \mathbb{Q}$-tiles a square. First, we will prove that $T(\mathbb{N}) \mathbb{C}$-tiles a square; from this it will follow easily that $T(\mathbb{N}) \mathbb{Q}$-tiles a square.

Since T is a lattice tile in the first quadrant, $f_{T} \in \mathbb{Q}[X, Y]$ is a polynomial in the ordinary sense. We begin by interpreting the hypothesis that the weighted area of T is nonzero in terms of f_{T}.

Lemma 3.2. There is a polynomial $f_{T}^{*} \in \mathbb{Q}[X, Y]$ such that

$$
f_{T}(X, Y)=(X-1)(Y-1) f_{T}^{*}(X, Y)
$$

Moreover, the weighted area of T is equal to $f_{T}^{*}(1,1)$, and hence $f_{T}^{*}(1,1) \neq 0$.
Proof. Since the polynomial associated to the unit square $S_{i j}$ is

$$
f_{S_{i j}}(X, Y)=X^{i} Y^{j}(X-1)(Y-1),
$$

the lemma holds for $S_{i j}$. It follows by linearity that the lemma holds for all lattice tiles in the first quadrant.

Let I denote the ideal in $\mathbb{C}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$ generated by $\left\{f_{T(k)}: k \in \mathbb{N}\right\}$ and let

$$
g_{l}(X, Y)=\left(X^{l}-1\right)\left(Y^{l}-1\right)
$$

be the polynomial associated to an $l \times l$ square with lower left corner $(0,0)$. To show that $T(\mathbb{N}) \mathbb{C}$-tiles a square it suffices by Corollary 2.6 to show that $g_{l} \in I$ for some positive integer l. In order to get information about I we consider the set $V(I) \subset \mathbb{C}^{\times} \times \mathbb{C}^{\times}$of common zeros of the elements of I. The set $V(I)$ is essentially the union of the lines $X=1$ and $Y=1$ with the 'shape variety' of $T(\mathbb{N})$ as defined by Barnes [2, Section 3].

We wish to determine which points $(\alpha, \beta) \in \mathbb{C}^{\times} \times \mathbb{C}^{\times}$might be in $V(I)$. Let m be the X-degree of f_{T}, let n be the Y-degree of f_{T}, and define $\Upsilon \subset \mathbb{C}^{\times}$by

$$
\Upsilon=\left\{\zeta \in \mathbb{C}^{\times}: \zeta^{k}=1 \text { for some } 1 \leqslant k \leqslant 2 m n\right\}
$$

Lemma 3.3. $V(I) \subset\left(\mathbb{C}^{\times} \times \Upsilon\right) \cup\left(\Upsilon \times \mathbb{C}^{\times}\right)$.

Proof. Let $(\alpha, \beta) \in V(I)$, and suppose neither α nor β is in Υ. By Lemmas 2.7 and 3.2 we have

$$
0=f_{T(k)}(\alpha, \beta)=f_{T}\left(\alpha^{k}, \beta^{k}\right)=\left(\alpha^{k}-1\right)\left(\beta^{k}-1\right) f_{T}^{*}\left(\alpha^{k}, \beta^{k}\right)
$$

for all $k \geqslant 1$. Since α and β are not in Υ this implies $f_{T}^{*}\left(\alpha^{k}, \beta^{k}\right)=0$ for $1 \leqslant k \leqslant 2 m n$. Therefore, by Lemma 3.4 below there exist $c, d \in \mathbb{Z}$ such that $f_{T}^{*}\left(X^{c}, X^{d}\right)=0$. It follows that $f_{T}^{*}(1,1)=0$, contrary to Lemma 3.2. We conclude that if $(\alpha, \beta) \in V(I)$ then at least one of α, β must be in γ.

Lemma 3.4. Let K be a field and let $f^{*} \in K[X, Y]$ be a nonzero polynomial with X-degree $m-1$ and Y-degree $n-1$. Assume there are $\alpha, \beta \in K^{\times}$such that

1. α and β are not k th roots of 1 for any $1 \leqslant k \leqslant 2 m n$, and
2. $f^{*}\left(\alpha^{k}, \beta^{k}\right)=0$ for all $1 \leqslant k \leqslant 2 m n$.

Then there exist relatively prime integers c, d with $1 \leqslant c \leqslant n-1$ and $1 \leqslant|d| \leqslant m-1$ such that $f^{*}\left(X^{c}, X^{d}\right)=0$.

Proof. Define an $m n \times m n$ matrix M whose columns are indexed by pairs (i, j) with $0 \leqslant i \leqslant m-1$ and $0 \leqslant j \leqslant n-1$ by letting the k th entry in the (i, j) column of M be $\alpha^{i k} \beta^{j k}$. Since $f^{*}\left(\alpha^{k}, \beta^{k}\right)=0$ for $1 \leqslant k \leqslant m n$, the coefficients of f^{*} give a nontrivial element of the nullspace of M. Since M is essentially a Vandermonde matrix this implies

$$
0=\operatorname{det}(M)=\alpha^{n m(m-1) / 2} \beta^{m n(n-1) / 2} \cdot \prod_{(i, j)<\left(i^{\prime}, j^{\prime}\right)}\left(\alpha^{i^{\prime}} \beta^{j^{\prime}}-\alpha^{i} \beta^{j}\right)
$$

for an appropriate ordering of the pairs (i, j). It follows that $\alpha^{i^{\prime}} \beta^{j^{\prime}}=\alpha^{i} \beta^{j}$ for some $\left(i^{\prime}, j^{\prime}\right) \neq(i, j)$, so $\alpha^{d_{0}}=\beta^{c_{0}}$ for some $\left(c_{0}, d_{0}\right) \neq(0,0)$ with $\left|c_{0}\right| \leqslant n-1$ and $\left|d_{0}\right| \leqslant m-1$. The first assumption implies that $c_{0} \neq 0$ and $d_{0} \neq 0$, so we may assume without loss of generality that $c_{0} \geqslant 1$.

Let $e=\operatorname{gcd}\left(c_{0}, d_{0}\right)$ and set $c=c_{0} / e$ and $d=d_{0} / e$. Then since $\left(\alpha^{e}\right)^{d}=\left(\beta^{e}\right)^{c}$ with $\operatorname{gcd}(c, d)=1$ there is a unique $\gamma \in K$ such that $\gamma^{c}=\alpha^{e}$ and $\gamma^{d}=\beta^{e}$. Let q be an integer such that $1 \leqslant q \leqslant 2 m n / e$. Then by the second assumption we have

$$
0=f^{*}\left(\alpha^{e q}, \beta^{e q}\right)=f^{*}\left(\gamma^{c q}, \gamma^{d q}\right)
$$

and so $f^{*}\left(X^{c}, X^{d}\right) \in K\left[X, X^{-1}\right]$ has zeros at $X=\gamma^{q}$ for $1 \leqslant q \leqslant 2 m n / e$. If these zeros are not distinct then for some $1 \leqslant r \leqslant 2 m n / e$ we have $\gamma^{r}=1$ and hence $1=\gamma^{c r}=\alpha^{e r}$, which violates the first assumption. Therefore $f^{*}\left(X^{c}, X^{d}\right)$ has at least $\lfloor 2 m n / e\rfloor$ distinct zeros. On the other hand, the degree of the rational function $f^{*}\left(X^{c}, X^{d}\right)$ is at most $(m-1)|c|+(n-1)|d|$, and since $|c|=\left|c_{0} / e\right| \leqslant(n-1) / e$ and $|d|=\left|d_{0} / e\right| \leqslant(m-1) / e$ we have

$$
(m-1)|c|+(n-1)|d| \leqslant 2(m-1)(n-1) / e<\lfloor 2 m n / e\rfloor .
$$

Therefore $f^{*}\left(X^{c}, X^{d}\right)=0$.
Let $l \geqslant 1$ and recall that $g_{l}(X, Y)=\left(X^{l}-1\right)\left(Y^{l}-1\right)$ is the polynomial associated to an $l \times l$ square with lower left corner $(0,0)$. The set $V\left(g_{l}\right) \subset \mathbb{C}^{\times} \times \mathbb{C}^{\times}$of zeros of g_{l} is the union of the lines $X=\zeta$ and $Y=\zeta$ as ζ ranges over the l th roots of 1 . It follows from Lemma 3.3 that if we choose l appropriately (say $l=(2 m n)!$) then $V\left(g_{l}\right) \supset V(I)$. This need not imply that g_{l} is in I, but by Hilbert's Nullstellensatz [5, VII, Theorem 14] we do have $g_{l}^{k} \in I$ for some $k \geqslant 1$.

To show there exists l such that $g_{l} \in I$ we use the theory of primary decompositions (see, e.g., Chapters 4 and 7 of Atiyah and Macdonald [1]). Let A be a commutative ring with 1 . We say that the ideal $Q \subset A$ is a primary ideal if whenever $x y \in Q$ with $x \notin Q$ there exists $a \geqslant 1$ such that $y^{a} \in Q$. By the Hilbert basis theorem, $\mathbb{C}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$ is a Noetherian ring [1, Corollary 7.7]. Therefore, there are primary ideals Q_{1}, \ldots, Q_{r} in $\mathbb{C}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$ such that $I=Q_{1} \cap \cdots \cap Q_{r}$ [1, Theorem 7.13]. The radical ideal

$$
P_{i}=\sqrt{Q_{i}}=\left\{f \in \mathbb{C}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]: f^{r} \in Q_{i} \text { for some } r \geqslant 1\right\}
$$

of the primary ideal Q_{i} is automatically prime, and is called the prime associated to Q_{i}. We may also characterize P_{i} as the smallest prime ideal containing Q_{i}.

Since $I=Q_{1} \cap \cdots \cap Q_{r}$ we need to show that there exists $l \geqslant 1$ such that $g_{l} \in Q_{i}$ for all $1 \leqslant i \leqslant r$. Observe that if $l \mid l^{\prime}$ then $g_{l} \mid g_{l^{\prime}}$. Therefore, it is enough to show that for each i there is l_{i} such that $g_{l_{i}} \in Q_{i}$, since in that case we have $g_{l} \in I$ with $l=1 \mathrm{~cm}\left\{l_{1}, \ldots, l_{r}\right\}$. To accomplish this we first restrict the possibilities for the prime ideals P_{i}.

Let $q=(2 m n)$!. We observed above that $g_{q}^{k} \in I$ for some positive integer k. Since $P_{i} \supset Q_{i} \supset I$ this implies that $g_{q}^{k} \in P_{i}$. Therefore, some irreducible factor of

$$
g_{q}(X, Y)^{k}=\prod_{\zeta q=1}(X-\zeta)^{k}(Y-\zeta)^{k}
$$

lies in the prime ideal P_{i}. It follows that $X-\zeta \in P_{i}$ or $Y-\zeta \in P_{i}$ for some $\zeta \in \mathbb{C}^{\times}$ such that $\zeta^{q}=1$.

Assume without loss of generality that $X-\zeta \in P_{i}$. Then P_{i} contains the prime ideal $(X-\zeta)$ generated by the irreducible polynomial $X-\zeta$. If $P_{i} \neq(X-\zeta)$ let h be an element of P_{i} which is not in $(X-\zeta)$. By dividing $X-\zeta$ into $h(X, Y)$ we see that $h(\zeta, Y) \in P_{i}$. Since P_{i} is prime and \mathbb{C} is algebraically closed this implies that some linear factor $Y-\alpha$ of $h(\zeta, Y)$ is in P_{i}. Therefore, P_{i} contains the maximal ideal $(X-\zeta, Y-\alpha)$, so in fact $P_{i}=(X-\zeta, Y-\alpha)$. Moreover, we must have $\alpha \neq 0$ since Y is a unit in $\mathbb{C}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$. It follows that if $X-\zeta \in P_{i}$ then either $P_{i}=(X-\zeta)$ or $P_{i}=(X-\zeta, Y-\alpha)$ for some $\alpha \in \mathbb{C}^{\times}$.

We will make repeated use of the following elementary fact about primary ideals.
Lemma 3.5. Let Q be a primary ideal and set $P=\sqrt{Q}$. If $g h \in Q$ with $h \notin P$ then $g \in Q$.

Proof. Since $h \notin P$ we have $h^{a} \notin Q$ for all $a \geqslant 1$. Therefore, by the definition of primary ideal we have $g \in Q$.

Assume now that $P_{i}=(X-\zeta)$ with $\zeta^{q}=1$. Then $X^{q}-1$ has a simple zero at $X=\zeta$. Therefore by Lemmas 2.7 and 3.2 we have

$$
\begin{aligned}
f_{T(q)}(X, Y) & =f_{T}\left(X^{q}, Y^{q}\right) \\
& =\left(X^{q}-1\right)\left(Y^{q}-1\right) f_{T}^{*}\left(X^{q}, Y^{q}\right) \\
& =(X-\zeta) h(X, Y)
\end{aligned}
$$

for some $h \in \mathbb{C}[X, Y]$. Moreover we have $h(\zeta, Y) \neq 0$, since otherwise $0=f_{T}^{*}\left(\zeta^{q}, Y^{q}\right)=$ $f_{T}^{*}\left(1, Y^{q}\right)$, which would imply $f_{T}^{*}(1,1)=0$, contrary to Lemma 3.2. Therefore $h \notin P_{i}=(X-\zeta)$. It follows by Lemma 3.5 that $X-\zeta \in Q_{i}$, and hence that $g_{q} \in Q_{i}$.

Now assume $P_{i}=(X-\zeta, Y-\alpha)$. If α is an r th root of 1 for some $r \geqslant 1$ then $X^{q r}-1$ has a simple zero at $X=\zeta$ and $Y^{q r}-1$ has a simple zero at $Y=\alpha$. As in the previous case this implies

$$
\begin{aligned}
f_{T(q r)}(X, Y) & =\left(X^{q r}-1\right)\left(Y^{q r}-1\right) f_{T}^{*}\left(X^{q r}, Y^{q r}\right) \\
& =(X-\zeta)(Y-\alpha) h(X, Y)
\end{aligned}
$$

for some $h \in \mathbb{C}[X, Y]$. Since $f_{T}^{*}\left(\zeta^{q r}, \alpha^{q r}\right)=f_{T}^{*}(1,1) \neq 0$, we have $h(\zeta, \alpha) \neq 0$, and hence $h \notin P_{i}$. Applying Lemma 3.5 we get $(X-\zeta)(Y-\alpha) \in Q_{i}$, and hence $g_{q r} \in Q_{i}$. If α is not a root of 1 we may choose $r \geqslant 1$ so that $f_{T}^{*}\left(\zeta^{q r}, \alpha^{q r}\right)=f_{T}^{*}\left(1, \alpha^{q r}\right) \neq 0$, since $f_{T}^{*}(1,1) \neq 0$ implies that $f_{T}^{*}(1, Y)$ has only finitely many zeros. Then $X^{q r}-1$ has a simple zero at $X=\zeta$ and $Y^{q r}-1$ is nonzero at $Y=\alpha$. By an argument similar to those used above we have $f_{T(q r)}(X, Y)=(X-\zeta) h(X, Y)$ for some $h \in \mathbb{C}[X, Y]$ such that $h(\zeta, \alpha) \neq 0$. This implies $h \notin P_{i}$, so by Lemma 3.5 we get $X-\zeta \in Q_{i}$, and hence $g_{q} \in Q_{i}$.

We have shown now that for each $1 \leqslant i \leqslant r$ there is $l_{i} \geqslant 1$ such that $g_{l_{i}} \in Q_{i}$. Therefore we have $g_{l} \in I$ with $l=\operatorname{lcm}\left\{l_{1}, \ldots, l_{r}\right\}$. It follows from Corollary 2.6 that $T(\mathbb{N}) \mathbb{C}$-tiles
an $l \times l$ square. To prove that $T(\mathbb{N}) \mathbb{Q}$-tiles a square it is sufficient to prove that g_{l} is in the ideal I_{0} in $\mathbb{Q}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$ generated by $T(\mathbb{N})$. Equivalently, we need to show that g_{l} is in the \mathbb{Q}-span of the set

$$
\mathscr{E}=\left\{X^{i} Y^{j} f_{T(k)}: i, j, k \in \mathbb{Z}, k \geqslant 1\right\} .
$$

We have shown that g_{l} is in the \mathbb{C}-span of \mathscr{E}. Since g_{l} and the elements of \mathscr{E} are all in $\mathbb{Q}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$, and

$$
\mathbb{C}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right] \cong \mathbb{Q}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right] \otimes_{\mathbb{Q}} \mathbb{C},
$$

it follows immediately that g_{l} is in the \mathbb{Q}-span of \mathscr{E}. This completes the proof of Theorem 3.1.

Corollary 3.6. Let T be a \mathbb{Z}-weighted tile made up of rectangles whose corners all have rational coordinates. Assume that the weighted area of T is not zero. Then there exists a positive integer w such that $T(\mathbb{N}) \mathbb{Z}$-tiles a square with weight w.

Proof. By Theorem 3.1 we know that $T(\mathbb{N}) \mathbb{Q}$-tiles a square R, so there are rational numbers a_{1}, \ldots, a_{n} and tiles T_{1}, \ldots, T_{n}, each a translation of some $T\left(k_{i}\right) \in T(\mathbb{N})$, such that $R=a_{1} T_{1}+\cdots+a_{n} T_{n}$. Let $w \geqslant 1$ be a common denominator for a_{1}, \ldots, a_{n}. Then $w R=w a_{1} T_{1}+\cdots+w a_{n} T_{n}$, and $w a_{i} \in \mathbb{Z}$ for $1 \leqslant i \leqslant n$. Therefore $T(\mathbb{N}) \mathbb{Z}$-tiles $w R$.

4. Tiling with integer weights

Let T be a \mathbb{Z}-weighted lattice tile, and assume that the weighted area of T is not zero. By Corollary 3.6 we know that $T \mathbb{Z}$-shapetiles a square with weight w for some positive integer w. We wish to find necessary and sufficient conditions for T to \mathbb{Z}-shapetile a square with weight 1 . To express these conditions we need a definition. Given $\mu \in \mathbb{Q} \cup\{\infty\}$ we say that two lattice squares $S_{i j}$ and $S_{i^{\prime} j^{\prime}}$ belong to the same μ-slope class if the line joining their centers has slope μ. The tile T can be decomposed into a sum $T=C_{1}+\cdots+C_{k}$ of lattice tiles such that for each i the unit lattice squares which make up C_{i} all belong to the same μ-slope class.

Proposition 4.1. Let T be a \mathbb{Z}-weighted lattice tile and let n be a positive integer. Let c and d be relatively prime integers and set $\mu=-c / d$. Then the μ-slope classes of T all have weighted area divisible by n if and only if f_{T} is an element of the ideal $\left(\left(X^{d}-Y^{c}\right)(X-1)(Y-1), n(X-1)(Y-1)\right)$ in $\mathbb{Z}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$.

Proof. The μ-slope classes of T all have weighted area divisible by n if and only if we can write $T=T_{1}+n T_{2}$, where T_{1} and T_{2} are \mathbb{Z}-weighted lattice tiles such that the μ-slope classes of T_{1} all have weighted area zero. Write the decomposition of T_{1} into its μ-slope classes as $T_{1}=C_{1}+\cdots+C_{k}$. Since $\mu=-c / d$ with c and d relatively prime, the lattice squares $S_{i j}$ and $S_{i^{\prime} j^{\prime}}$ are in the same μ-slope class if and only if $S_{i^{\prime} j^{\prime}}$ is the
translation of $S_{i j}$ by $(d r,-c r)$ for some $r \in \mathbb{Z}$. Therefore, if C_{t} is the μ-slope class of T_{1} containing $S_{i j}$ we have

$$
f_{C_{t}}(X, Y)=g\left(X^{d} Y^{-c}\right) X^{i} Y^{j}(X-1)(Y-1)
$$

for some $g \in \mathbb{Z}\left[X^{\mathbb{Z}}\right]$. Since the weighted area of C_{t} is zero we see that $0=f_{C_{t}}^{*}(1,1)=$ $g(1)$, which implies $X-1 \mid g(X)$. It follows that $\left(X^{d} Y^{-c}-1\right)(X-1)(Y-1)$ divides $f_{C_{t}}$ for $1 \leqslant t \leqslant k$, and hence also that $\left(X^{d} Y^{-c}-1\right)(X-1)(Y-1)$ divides $f_{T_{1}}$. Conversely, if $\left(X^{d} Y^{-c}-1\right)(X-1)(Y-1)$ divides $f_{T_{1}}$, it is easy to check that the μ-slope classes of T_{1} all have weighted area zero. It follows that the μ-slope classes of T all have area divisible by n if and only if we can write

$$
f_{T}(X, Y)=\left(X^{d} Y^{-c}-1\right)(X-1)(Y-1) h_{1}(X, Y)+n(X-1)(Y-1) h_{2}(X, Y)
$$

for some $h_{1}, h_{2} \in \mathbb{Z}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$. Since Y^{c} is a unit in $\mathbb{Z}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$ this is equivalent to $f_{T} \in\left(\left(X^{d}-Y^{c}\right)(X-1)(Y-1), n(X-1)(Y-1)\right)$.

Theorem 4.2. Let T be a \mathbb{Z}-weighted lattice tile. Then $T \mathbb{Z}$-shapetiles a square if and only if the following two conditions hold:

1. The weighted area of T is not zero.
2. For every $\mu \in \mathbb{Q}^{\times}$the gcd of the weighted areas of the μ-slope classes of T is 1 .

Proof. Let T be a tile which satisfies conditions 1 and 2 . To show that $T \mathbb{Z}$-shapetiles a square it is sufficient by Corollary 3.6 to show that $T(\mathbb{N}) \cup\{w R\} \mathbb{Z}$-tiles a square, where R is an $l \times l$ square and l, w are positive integers. Let $S=S_{00}$ be the unit lattice square with lower left corner $(0,0)$. If $T(\mathbb{N}) \cup\{w S\} \mathbb{Z}$-tiles an $a \times a$ square then by rescaling we see that $T(\mathbb{N}) \cup\{w R\} \mathbb{Z}$-tiles an $l a \times l a$ square. Therefore, it is sufficient to show that $T(\mathbb{N}) \cup\{w S\} \mathbb{Z}$-tiles a square. Let J be the ideal in $\mathbb{Z}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$ generated by $\left\{f_{T(k)}: k \in \mathbb{N}\right\} \cup\{w(X-1)(Y-1)\}$. By Corollary 2.6 it is sufficient to show that $g_{l} \in J$ for some $l \geqslant 1$.

By the Hilbert basis theorem $\mathbb{Z}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$ is a Noetherian ring. Therefore the ideal J has a primary decomposition $J=Q_{1} \cap \cdots \cap Q_{t}$. We need to show that there exists $l \geqslant 1$ such that $g_{l} \in Q_{i}$ for all i. As in the proof of Theorem 3.1 it is enough to show that for each i there is $l_{i} \geqslant 1$ such that $g_{l_{i}} \in Q_{i}$. Let $P_{i}=\sqrt{Q_{i}}$ be the prime associated to Q_{i}, and suppose $w \notin P_{i}$. Then since $w(X-1)(Y-1) \in Q_{i}$, by Lemma 3.5 we see that $(X-1)(Y-1)=g_{1}$ is in Q_{i}. If $w \in P_{i}$ then since P_{i} is a prime ideal it follows that P_{i} contains a prime integer p which divides w, and hence that $P_{i} \cap \mathbb{Z}=p \mathbb{Z}$.

For $f \in \mathbb{Z}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$ let $\bar{f} \in \mathbb{F}_{p}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$ be the reduction of f modulo p, where $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ is the field with p elements. Let \bar{P}_{i} be the ideal in $\mathbb{F}_{p}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$ consisting of the reductions modulo p of the elements of P_{i}. Since $p \in P_{i}$ the ideal \bar{P}_{i} is prime. Let $\bar{J} \subset \mathbb{F}_{p}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$ be the ideal consisting of the reductions modulo p of the elements of J. Then \bar{J} is generated by $\left\{\bar{f}_{T(k)}: k \geqslant 1\right\}$. Since $P_{i} \supset J$, we have $\bar{P}_{i} \supset \bar{J}$.

Let K be an algebraic closure of \mathbb{F}_{p} and let $V(\bar{J}) \subset K^{\times} \times K^{\times}$be the set of common zeros of the elements of \bar{J}. Let m be the X-degree of \bar{f}_{T}, let n be the Y-degree of \bar{f}_{T},
and define $\bar{\Upsilon} \subset K^{\times} \times K^{\times}$by

$$
\bar{\Upsilon}=\left\{\zeta \in K^{\times}: \zeta^{k}=1 \text { for some } 1 \leqslant k \leqslant 2 m n\right\} .
$$

Lemma 4.3. $V(\bar{J}) \subset\left(K^{\times} \times \bar{\Upsilon}\right) \cup\left(\bar{\Upsilon} \times K^{\times}\right)$.
Proof. Let $(\alpha, \beta) \in V(\bar{J})$ and suppose neither α nor β is in $\bar{\Upsilon}$. Then for $1 \leqslant k \leqslant 2 m n$ we have

$$
0=\bar{f}_{T(k)}(\alpha, \beta)=\bar{f}_{T}\left(\alpha^{k}, \beta^{k}\right)=\left(\alpha^{k}-1\right)\left(\beta^{k}-1\right) \bar{f}_{T}^{*}\left(\alpha^{k}, \beta^{k}\right)
$$

Since α and β are not in $\bar{\Upsilon}$ this implies that $\bar{f}_{T}^{*}\left(\alpha^{k}, \beta^{k}\right)=0$ for $1 \leqslant k \leqslant 2 m n$. Therefore, by Lemma 3.4 there are relatively prime integers c, d with $c \geqslant 1$ and $d \neq 0$ such that $\bar{f}_{T}^{*}\left(X^{c}, X^{d}\right)=0$. Let \mathscr{A} be the quotient ring $\mathbb{F}_{p}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right] /\left(X^{d}-Y^{c}\right)$, and let x, y denote the images of X, Y in \mathscr{A}. Then x and y are units in \mathscr{A} satisfying $x^{d}=y^{c}$ with $\operatorname{gcd}(c, d)=1$, so there is $z=x^{a} y^{b}$ in \mathscr{A}^{\times}such that $x=z^{c}$ and $y=z^{d}$. Therefore, the image of \bar{f}_{T}^{*} in \mathscr{A} is given by $\bar{f}_{T}^{*}(x, y)=\bar{f}_{T}^{*}\left(z^{c}, z^{d}\right)$, which equals zero since $\bar{f}_{T}^{*}\left(X^{c}, X^{d}\right)=0$. It follows that $X^{d}-Y^{c}$ divides \bar{f}_{T}^{*}, and hence that f_{T}^{*} is in the ideal $\left(X^{d}-Y^{c}, p\right)$ in $\mathbb{Z}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$. Therefore, $f_{T}=(X-1)(Y-1) f_{T}^{*}$ is in the ideal

$$
\left(\left(X^{d}-Y^{c}\right)(X-1)(Y-1), p(X-1)(Y-1)\right)
$$

in $\mathbb{Z}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$. Proposition 4.1 now implies that every μ-slope class of T has area divisible by p. This violates condition 2 of the theorem, so we have a contradiction.

Set $q=(2 m n)$! and let $V\left(\bar{g}_{q}\right) \subset K^{\times} \times K^{\times}$be the set of zeros of \bar{g}_{q}. Since $X^{q}-1$ has zeros at all elements of $\bar{\Upsilon}$, we have $V\left(\bar{g}_{q}\right) \supset\left(K^{\times} \times \bar{\Upsilon}\right) \cup\left(\bar{\Upsilon} \times K^{\times}\right)$. Therefore Lemma 4.3 implies $V\left(\bar{g}_{q}\right) \supset V(\bar{J})$. Since $\bar{P}_{i} \supset \bar{J}$ we have $V(\bar{J}) \supset V\left(\bar{P}_{i}\right)$, and hence $V\left(\bar{g}_{q}\right) \supset V\left(\bar{P}_{i}\right)$. As in Section 3 Hilbert's Nullstellensatz implies that $\bar{g}_{q}^{k} \in \bar{P}_{i}$ for some $k \geqslant 1$. Since \bar{P}_{i} is prime and

$$
\bar{g}_{q}(X, Y)^{k}=\left(X^{q}-1\right)^{k}\left(Y^{q}-1\right)^{k}
$$

we have either $X^{q}-1 \in \bar{P}_{i}$ or $Y^{q}-1 \in \bar{P}_{i}$. It follows that P_{i} contains one of the ideals $\left(X^{q}-1, p\right)$ or $\left(Y^{q}-1, p\right)$. We may assume without loss of generality that $P_{i} \supset\left(X^{q}-1, p\right)$.

By [1, Proposition 7.14] we have $Q_{i} \supset P_{i}^{u}$ for some $u \geqslant 1$. Therefore, it is enough to prove that for every $u \geqslant 1$ there is $l \geqslant 1$ such that $g_{l} \in P_{i}^{u}$. Let t be a positive integer. Expanding $X^{q t}-1$ in powers of $X^{q}-1$ gives

$$
\begin{aligned}
X^{q t}-1 & =-1+\left(\left(X^{q}-1\right)+1\right)^{t} \\
& =\sum_{j=1}^{t}\binom{t}{j}\left(X^{q}-1\right)^{j} .
\end{aligned}
$$

If we choose t to be divisible by a large power of p then for small values of $j \geqslant 1$ the binomial coefficient $\binom{t}{j}$ is divisible by a large power of p. Thus, every term in this expansion is divisible either by a large power of p or a large power of $X^{q}-1$. It
follows that there exists $t \geqslant 1$ such that $X^{q t}-1 \in\left(X^{q}-1, p\right)^{u}$. Since $P_{i}^{u} \supset\left(X^{q}-1, p\right)^{u}$ we get $g_{q t} \in P_{i}^{u}$, as required.

Assume conversely that $T \mathbb{Z}$-shapetiles a square. Then the weighted area of T is clearly not equal to zero, so condition 1 of Theorem 4.2 is satisfied. We need to show that for every $\mu \in \mathbb{Q}^{\times}$the gcd of the weighted areas of the μ-slope classes of T is equal to 1 . If we knew that the scale factors and the coordinates of the translation vectors used in shapetiling the square were all in \mathbb{Z}, or even in \mathbb{Q}, we could prove this using polynomials in $\mathbb{Z}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$. Since we have no right to make this assumption, we need to work in the ring $\mathbb{Z}\left[X^{\mathbb{R}}, Y^{\mathbb{R}}\right]$.

We may assume that the square which is shapetiled by T is $S=S_{00}$, the unit square with lower left corner $(0,0)$. We have then $S=a_{1} T_{1}+\cdots+a_{k} T_{k}$, where $a_{i} \in \mathbb{Z}$ and each T_{i} is a translation of some $T\left(\rho_{i}\right)$. Let p be prime and suppose that for some $\mu \in \mathbb{Q}^{\times}$ the areas of the μ-slope classes of T are all divisible by p. Let c, d be integers such that $\operatorname{gcd}(c, d)=1$ and $\mu=-c / d$. Let $\bar{f}_{T} \in \mathbb{F}_{p}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$ be the reduction of f_{T} modulo p, and for $1 \leqslant i \leqslant n$ let $\bar{f}_{T_{i}} \in \mathbb{F}_{p}\left[X^{\mathbb{R}}, Y^{\mathbb{R}}\right]$ be the reduction of $f_{T_{i}}$. Then by Proposition 4.1 we see that $\left(X^{d}-Y^{c}\right)(X-1)(Y-1)$ divides \bar{f}_{T} (in $\mathbb{F}_{p}\left[X^{\mathbb{Z}}, Y^{\mathbb{Z}}\right]$, and hence also in $\left.\mathbb{F}_{p}\left[X^{\mathbb{R}}, Y^{\mathbb{R}}\right]\right)$. Therefore, by Lemmas 2.7 and 2.4 we see that $\bar{f}_{T_{i}}$ is divisible by

$$
\left(X^{\rho_{i} d}-Y^{\rho_{i} c}\right)\left(X^{\rho_{i}}-1\right)\left(Y^{\rho_{i}}-1\right)
$$

Define a ring homomorphism $\Psi: \mathbb{F}_{p}\left[X^{\mathbb{R}}, Y^{\mathbb{R}}\right] \rightarrow \mathbb{F}_{p}\left[X^{\mathbb{R}}\right]$ by setting $\Psi(f)=f\left(X^{c}, X^{d}\right)$. Since $\Psi\left(X^{\rho_{i} d}-Y^{\rho_{i} c}\right)=0$, the divisibility relation from the preceding paragraph implies that $\Psi\left(\bar{f}_{T_{i}}\right)=0$ for $1 \leqslant i \leqslant n$. On the other hand, since $\bar{f}_{S}=\bar{g}_{1}=(X-1)(Y-1)$, we have

$$
\Psi\left(\bar{f}_{S}\right)=X^{c+d}-X^{c}-X^{d}+1
$$

which is nonzero since c and d are nonzero. Since $S=a_{1} T_{1}+\cdots+a_{k} T_{k}$ we have $\bar{f}_{S}=\bar{a}_{1} \bar{f}_{T_{1}}+\cdots+\bar{a}_{k} \bar{f}_{T_{k}}$ with $\bar{a}_{i} \in \mathbb{F}_{p}$, which gives a contradiction. Therefore the areas of the μ-slope classes of T can't all be divisible by p, so condition 2 is satisfied. This completes the proof of Theorem 4.2.

Example 4.4. Let T be the lattice tile pictured in Fig. 2a. Since T has area $4 \neq 0$, it follows from Theorem 3.1 that $T \mathbb{Q}$-shapetiles a square. But since the nonempty 1 -slope classes of T both have area 2, Theorem 4.2 implies that T does not \mathbb{Z}-shapetile a square.

Example 4.5. Let a, b, c, d be positive integers with $a>c$ and $b>d$. We construct a lattice tile T by removing a $c \times d$ rectangle from the upper right corner of an $a \times b$ rectangle, as in Fig. 2b. The area of T is $a b-c d>0$, so the first condition of Theorem 4.2 is satisfied. If $\mu>0$ there is a μ-slope class of T consisting of just the upper left corner square, while if $\mu<0$ there is a μ-slope class of T consisting of just the lower left corner square. In either case T has a μ-slope class whose area is 1 . Therefore the second condition of Theorem 4.2 is also satisfied, so $T \mathbb{Z}$-shapetiles a square.

Fig. 2. Two tiles.

Fig. 3. $\mathrm{A} \mathbb{Z}$-shapetiling of a square.

Example 4.6. The simplest case of Example 4.5 occurs when $a=b=2$ and $c=d=1$. In this case we have $f_{T}(X, Y)=(1+X+Y)(X-1)(Y-1)$. A straightforward calculation shows that

$$
\begin{aligned}
X Y g_{3}(X, Y)= & \left(X^{3} Y^{3}-X^{2} Y^{2}-X^{4}-X^{4} Y-X^{4} Y^{2}-Y^{4}-X Y^{4}-X^{2} Y^{4}\right) f_{T}(X, Y) \\
& +(X Y-1) f_{T(2)}(X, Y)+f_{T(3)}(X, Y) .
\end{aligned}
$$

This gives the \mathbb{Z}-tiling of a 3×3 square with lower left corner $(1,1)$ depicted in Fig. 3. The left side of Fig. 3 has tiles with weight 1 and the right side has tiles with weight -1 . The total weights of the tiles covering each region are indicated.

References

[1] M.F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969.
[2] F.W. Barnes, Algebraic theory of brick packing I, Discrete Math. 42 (1982) 7-26.
[3] M. Dehn, Über die Zerlegung von Rechtecken in Rechtecke, Math. Ann. 57 (1903) 314-332.
[4] K. Keating, J.L. King, Shape tiling, Electron. J. Combin. 4 (2) (1997) R12.
[5] O. Zariski, P. Samuel, Commutative Algebra, Vol. II, Springer, New York, 1960.

[^0]: E-mail address: keating@math.ufl.edu (K. Keating)
 ${ }^{1}$ Partially supported by NSF grant 9500982.

