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Abstract

We consider supersymmetric gauge theories coupled to hypermultiplets on five- and six-dimensional orbifolds and determine
the bulk and local fixed point renormalizations of the gauge couplings. We infer from a component analysis that the hyper-
multiplet does not induce renormalization of the brane gauge couplings on the five-dimensional arbifbd This is not
due to supersymmetry, since the bosonic and fermionic contributions cancel separately. We extend this investitfatin to
orbifolds using supergraph techniques in six dimensions. On geAgralrbifolds the gauge couplings do renormalize at the
fixed points, except for thg, fixed points of even ordered orbhifolds. To cancel the bulk one-loop divergences a dimension six
higher derivative operator is needed, in addition to the standard bulk gauge kinetic term.

0 2005 Elsevier B.V. Open access under CC BY license,

1. Introduction and summary

The investigation of theories of extra dimensions has been an active field of research initifie?].lyiost
of the phenomenological activity has focused on five-dimensional (5D) models, in particular models on simple
orbifolds like $1/Z or §1/Z, x 7%, [3-5]. An important issue of such investigations was the running of the 4D
gauge coupling in extra dimensions and possible gauge coupling unifif@ffdnA complication is that the gauge
couplings are sensitive to the ultra-violet (UV) completion of the th¢®fyin this Letter we study the gauge cou-
pling running by calculating the self-energy in extra dimensions. In particular, we investigate the renormalization
of bulk and fixed point gauge operators in supersymmetric (SUSY) field theories on 5D and 6D orbifolds.
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As a warm up, we start our analysis with a single complex scalar coupled to a gauge field in the$ylk of
To cancel the divergences of the scalar loop both bulk and brane localized counter terms are needed for the gauge
field. This result is an example of the generic fact that on an orbifold both bulk and fixed point localized operators
renormalizg9-11]. However, such localized counter terms are not always required: a charged bulk fermion does
not require counter terms for the gauge field at the orbifold fixed points. The absence of brane gauge counter terms
persists in SUSY models, because the contributions of the complex scalars of the hypermultiplet also cancel.

This raises the question, whether this is an accident of the sisip&, orbifold or holds more generically for
T2/Zy orbifolds in 6D SUSY theories. We investigate this question by computing the one-loop self-energy for
the vector multiplet in 6D. To this end we set up a 6D extensiaVef 1 supergraphs based on representing 6D
SUSY theories byV = 1 4D superfield§12—-14] We find that for generi@y orbifolds the gauge couplings at
almost all fixed points do renormalize due to bulk hyper multiplets. There is no contradiction with thi&/Zp
result, becausés, fixed points of even ordered orbifolds (and therefé@reorbifolds in particular) are the only
fixed points that do not receive any gauge coupling renormalization.

Since we compute the full one-loop gauge multiplet self-energy, we can determine the bulk renormalization
of the gauge multiplet. We find that a dimension six higher derivative term for the gauge multiplet is generated.
(Higher derivative counter terms are also needed in 5D orbifold models if brane localized interactions for bulk
fields are considerefd 5].) Such higher derivative theories may have remarkable UV propétidsThe higher
derivative operators act as regulators that make many loop graphs finite. Higher derivative hypermultiplet operators
do not seem to be allowed by gauge and 6D Lorentz invariance combined. (All gauge coupling corrections at one
loop would be finite if they were present.)

Let us close with a few comments on the context and possible extensions of our work. In 6D the constraints
of anomalies are very sevelEr,18], but since we were only interested in the gauge coupling running, we do not
take these constraints into account. Moreover, we restrict ourselves to Abelian theories only; in a future publication
[19] we investigate non-Abelian theories and work out the details of the threshold corrections we identify. Our
investigation is restricted to one-loop corrections only. However, we expect that the results in fact hold to all orders
in perturbation theory up to infra-red (IR) effects. Both at the fixed points and in the bulk holomorphicity arguments
[20-24]of N'=1 SUSY field theories in 4D apply.

The outline is as follows: in Sectidhwe study the running of local gauge couplings due to scalars and fermions
onS1/Z5. In Sectior3 we perform a manifestly SUSY one-loop computation of the gauge multiplet self-energy on
genericT?/Zy in 6D. We determine the bulk and fixed point renormalizations of the gauge coupling and identify
a higher derivative operator in the bulk. Appendix Awe describe the regularization of the divergent integral
encountered in 4, 5 and 6D.

2. Bulk and fixed point localized correctionson S1/Z,
2.1. Scalar orst/Z»

We begin our analysis with a complex scajazoupled to a 1) gauge fieldd ;; in 5D compactified ors1/Z.
The coordinate of the covering circles® is periodicy ~ y 4+ 27 R. TheZ, reflection acts on these fields as

P(=N=Zd»), A (=) =Au0(),  As(—y)=—As(y), 1

where we have suppressed the 4D coordin&teTo be able to trace the dependence on the orbifold boundary
conditions, we keep the parity eigenvaltie= + of the scalarp arbitrary. In many studies of the orbifokt /Z, the

fields are expanded into even and odd mode functions. For sufficiently simple orbifolds this is a useful procedure,
but since we want to extend our analysis eventually to more complicated orbifolds, we choose instead to obtain
orbifold compatible fields from fields defined on the covering sj@kd-or example, lep be a complex scalar on
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the covering circle. By employing an orbifold projector we obtain a fgekhtisfying(1) as

~ 1
S0 =350 +Zo(=). )
Extensions to other fields are obvious. We define orbifold compatible functional differentiation as
- 8 1
bo1= =2 = S(6%2— y1) + Z8°(v2 + y)). 3)
8, 2

where J is the source coupled #. Here and throughout the Letter we only indicate the internal coordinate(s)
explicitly where the orbifolding is non-trivial, i.e52(y2 £ y1) = §*(x2 — x1)8 (y2 £ y1).

We used this method to obtain the gauge field self-energy at one loop due to the complex sétdahargey .
There is a tadpole (seagull) diagram

o~ - 1 -
2 5 M AN
=q /dX A7 AT nyNS21—————021, 4)
\AAQ\F (FX)12A7 A7 (05 — m?)2

and a genuine self-energy diagram
oy~ 1 ~ 1m0 ~
2 5 M N 1M 92N
o o= &°X),,AM A 51 821
1 ./( )AL A2 <(D5 —m?)2 7 (05 —m?);

v N >
— 821 821 ). ©))
(05 —m?)2 (05 — m?)2

Here (d°X)1,> denotes the integration over the coordinaxél% = (xf, y1) and Xé” = (xé‘, y2), and partial dif-
ferentiation w.r.t.Xé” is indicated bydoy = 8/8X§4. The spacetime metrigy;y uses the mostly plus con-
vention, and the 4D and 5D kinetic operators read- 949, and 0s = O + 85, respectively. Notice that all

terms in both expressions contain two orbifold delta functiéns i.e., the orbifold projector is inserted twice.

Since a projector squared is the projector again, one of them can be replaced by a conventional delta function
821 — 821 =8%x2 — x1)8(y2 — y1). This can be confirmed explicitly by insertitfg) for one of the orbifold delta
functions and perform a change of coordinates> —y». The leftovers,; consists of two parts, s€8): the first

part, %821, gives rise to contributions in 5D compactified on a circle, with an additional normalization fac%or of

The second part of the orbifold delta function re@éﬁ“(xz —x1)8(y2 + y1). If there were no derivatives, inte-
gration overy, would lead to the fixed point delta functidg2y1) and hence to localization at the orbifold fixed
points. In the presence of thederivatives in the propagators the amplitude acquires non-local contributions which
are sourced by the fixed points. However, the counter terms needed to cancel the divergences are local. As the
4D-localized parts are proportional to the facH#yyrit follows that for two complex scalars of opposite parities (and
equal or opposite charges) all localized contributions cancel identically.

2.2. Fermion onst/Z,

Next we move to a Dirac fermiotr on the same orbifold, which satisfies the boundary conditions

V=), P =) =30 (=), ®)
so that the kinetic terms are invariant. The functional derivative w.r.t. the scfuﬁunexff reads
- 8 1
=2 =C (85(v2 — y1) — 158> (32 + y1)). (7)
81 2

where we again suppressed the 4D coordinate dependence in the delta function. Functional differentiation w.r.t. the
sourceJ for ¢ definess in a similar fashion; it is obtained frodby replacingys — —ys. Using similar steps as
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in the scalar calculation, we can evaluate the photon self-energy due to the fermion: all orbifold projectors in the
loop can be removed except for one

2
W@\/\P: Yr= % f (AX) 12t [ A1 (@ + m) T 81242 + m)5 2521). (8)

Here the trace is over the four component spinor indicesfadA™ y,,. Again we see from the expression for
the delta function for the fermiof¥) that the amplitude consists of 5D and 4D localized parts. In fact, the localized
part vanishes.

To see this, we expand the localized part in momentum space:

q_2 dpdic 1 Z 1
4 | (27)® (2rR)? [p2+n3+m2|[(p + k)2 +nj +m?]

2Fap=—
ny,n2€Z/R

x { AP (k, n1) AY (—k, n2) tr[ysy, (b + nays + im)yy (b + K + nays +im)|
+ A(k, n1) A>(=k, n) tr[ y2(p + nays + im)ys(p + K + nays +im)]}. 9

Here p, k are 4D (loop) momenta. The loop Kaluza—Klein (KK) momenta 2 no — n1 and 2ig = —np — n1

are expressed in terms of those of the external photons. As these are localized contributions, the KK number is
not preservedu, need not be equal ten;. Insteadn1 andny are either both even or both odd, hence there is

no mixing betweerd® and A*. The presence ofs in these expressions shows that all traces vanish identically
except for tfysy, pyvk]. By employing a Feynman parameterization of the propagators, the loop integral implies
thatp, ~ k,, and therefore also this trace vanishes.

2.3. Hypermultiplet gauge coupling renormalization $tyZ,

We use the previous results to get some feeling for the localization of gauge couplings in SUSY theories: the two
chiral multiplets inside a hypermultiplet have oppo&iteboundary conditions. From Secti@ril we know that two
scalars with opposite boundary conditions do not give localized gauge coupling contributions. And in 3&ction
we reached the same conclusion for a Dirac fermion, i.e., two chiral fermions with opposite charges and boundary
conditions. This implies that the hypermultiplet will not lead to any localized gauge coupling renormalization.

We have confirmed that no brane localized gauge counter terms are needed by performing an explicit supergraph
calculation of theV V-, §S- and SV -selfenergies that are given fig. 1 (Details will be presented in the next
section in 6D.) The 5D bulk gauge coupling renormalizes as

1 1 247

- _ = 1
glze g2 (4]_[)2 |m|’ ( O)

where the subscripr refers to the renormalized gauge coupling. This result is compatible with the results obtained
by Witten[25] and used by Seiberg et §26—-28]to analyze SUSY gauge theory in non-compact 5D.

Fig. 1. The gauge self-energy supergraphs are drawn. The wavy and straight lines indicate the supedielddS. The lines with double
arrows depict the hypermultiplet propagat(tg).
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3. Supersymmetric gauge theorieswith matter on 6D orbifolds

We investigate SUSY theories on an arbitrary 6D orbif6RyZy. The field content we consider is a charged
hypermultiplet coupled to a gauge multiplet. We empldy= 1 4D superfields to describe these multip[éi, 13,
29,30] and the superspace conventions of Wess and B48tpfThe gauge multiplet contains a vector multiplet
V and a chiral multipletS. The hypermultiplet consists of two chiral multiplets. that are charged oppositely.
The superfields are made orbifold compatible using methods simil@).tin order to keep the notation simple,
we have dropped the twiddles on them.

We employ complex coordinates= %(x5 —ixg) andz = %(X5 + ixg), SO that we find for the derivatives:
9 =d5+id6, d = 5 — ids anddd = 32 + 2. (The reduction to 5D is straightforward: set z = 3y, Rs = R and
d = 8 = d5.) The periodicity conditions of the torig?, z ~ z + 7 Ry ~ z + we'” Ry, define the “winding mode”
lattice Aw . This lattice, the KK latticeAd ¢ and the volumes of their fundamental domains are collectédlte 1
An orbifold 72/Zy is obtained by requiring that the field theory on the covering tdtfiss invariant under the
Z rotation:

7— e g, 7— %z, 9 — %9, 3 — e 1?9, (11)
where the phase is such that’V? = 1. In order for thisZy orbifold action to be compatible with the lattice,
conditions on the radiks, Rg and phase may apply. (For example for &g orbifold Rs = Rg = R and® = ¢ =
21/3.) The superfield¥, S, @, and®_ transform as

V-V, S —e?s, Dy — 0P, (12)

Only for the hypermultiplet we have an arbitrary integet @, < N — 1 sincea_ = N —1—a,. (Note that this is
compatible with theZ, case: there one chiral multiplet is even and the other is odd.) As in Se&fipwe define
the orbifold delta function as

N-1

~ 1 ‘ .

551 = N ) " e"05(z2— e 21), (13)
b=0

wheres (z2 — z1) = 8%(z2 — 21)8%(x2 — x1)8%(62 — 61), for a superfield that transforms with a pha&® . With this
formalism we can set up a supergraph formalf8tr-33]for orbifold theories.

We close this introductory section with an exposition of the relevant Lagrangians written in teris=cf
superfields. The gauge invariant bulk vector multiplet Lagrangian can be written as

1 1 - _ _
Lgauge= 5N f a0 W W, + N / d*0 VAV + 5SS —V23VS — V23V 5), (14)

whereWw? = —%DZDQV is the 4D superfield strength, andg is the mass dimension two gauge coupling. The
factor 1/N in the Lagrangiar{14) is included, because we perform all our calculations on the covering space of
the T2/Zy orbifold. In addition, for orbifolds we can have fixed point localized 4D gauge actions of the form

N-1

) 1 .
fix _ 2 o 2 ibp
Lotuge= D I /d 0 W Wy s%((1—€'*?)z), (15)
b=1 “8b
Table 1
This table summarizes our notation for the circle and the torusi Vel(27)P—4 Vol with D — d = 1, 2, respectively, and Vool g = 1
\ol Vol g Aw Ak
1 1 1
S R ® 2n RZ ®Z
2 ; 1 i i (e 1
T RsRgsind ReRys? 7(RsZ+ ¢'’ RgZ) sing (“rg L+ 75 2)
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where the gauge coupling$’gl§ are dimensionless. Note that they have a non-standard normalization and that
gn—b = g». The gauge invariant Lagrangian for the hypermultiplet with chgrgeads

1 1 _
Lhyper= 5 / d20 D_(0 +/29S)®, +h.c.+ 5 f do dret®V oy, (16)

where in the last term summation overand— is implied. The Hermitian conjugation acts on the chiral superfields
as well as on the holomorphic derivativeln 6D the hypermultiplet is masslef3#,35], while in 5D it can have
areal mass:(y) = me(y), with €(y) the step function o1, which can be thought of as the vacuum expectation
value of the real part of.

3.1. Bulk and fixed point localized gauge selfenergie$ &y

We investigate the renormalization of (localized) gauge couplings on 6D orbifolds. As we consider an Abelian
theory, only the hypermultiplet loops lead to gauge coupling renormalization. The propagators of chiral components
of the hypermultiplet read

_ 1 d D?
Qp—>——P = —, o —<——>—P_ = ——— a7
Oe Og —40
wheredg = 0+ 99. (In 5D these propagators may contain the massf the hypermultiplet.) We computed the
one-loop self energy diagrams for external superfi#lds VS andSS, given inFig. 1, on theT?/Zy orbifold.
The tadpole graph cancels gauge non-invariant contributions from the other two graphs 0By including the
superfields/, S andS in the amplitudes, the sum of the supergraghs: vy + Sys + Xys+ X5g becomes

N-1 ~2
2¢° 5 4 1 1 (D*D?%Dy)1
Y = 5 bE_O /(d X)lzd 0 Pyp(X2, X1)cOq at + > bgico quﬁ szVl
+ 02Vo01 V1 + 8281 — \/EészSl — «/EgzalVl}. (18)

We have replaced the two orbifolded delta functi¢h3) that appear in these graphs by one, and written that one

out explicitly. In addition, we have performed a change of coordinates ¢~ 2”?z; and symmetrized the result
explicitly underb — —b, by defining

1

_§6(zy — 2%, , 19
(06 —m?)2 (2 = e2z1) (19)

Pp(X2, X1) = 88(z2 — e~ 3P%24)

(O —m?)2
which satisfiesP_;, = P;,. Here we have introduced an IR regulator mas® identify the quadratic divergences
in the dimensional reduction (DR) scheme. (In mRienotes the mass of the hypermultiplet.) In the delta functions
we have only indicated the compact coordinates explicitly, as only there one encounters the p(tag'é@)(pNe

can read off fron{18) whether the combination of self-energy diagram&igf 1 has localized contributions. The
contributionb = 0 gives the bulk amplitude. The contributiohsz 0, sourced by the fixed points, depend on the
orbifold:

e For theZ; orbifold and theZ, sector p = N/2) of even ordered y orbifolds we find no localized contribu-
tions, independently of the hypermultiplet twist eigenvatye since coéz + %)n =0.

e However, for a generig y orbifold with N > 2 we find contributions sourced by the fixed points for the sectors
b=+1, ..., £[(N —1)/2].

This confirms and extends the results of Secfidrased on a component analysisSIiZ,.
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3.2. Higher derivative counter terms and renormalized gauge couplings

After having distinguished bulk and localized fixed point contributions, we determine the counter terms required
by this theory. The bulk contributiom,= 0, is proportional to the 6D momentum integral

(20)

d?p dp 1 Z 1 1

_Am — .
(2m)p ~ Pk (2)d Voly, P2+ n2+m2(p—k)2+|n—112+m?

neAg
The sum is over the 2D KK latticd g, seeTable 1 The dimensionally regularize) = 2 + d = 6 — 2¢ integral

is defined to include the factor/&?—* so as to keep the mass dimension canonical throughout the regularization
process. IMppendix Asome steps are given to show t(i20) can be represented as

dp F T 0 (in’
ds | 2ot @R +m?Y g Y 21
[ G = (4ﬂ)%0/ So/f% 0 @y
0

The Jacobi theta functloﬁw[ ] associated with the winding mode lattiegy (defined in(A.2)) is obtained
after a Poisson resummation.

ThIS expression contains a lot of information: from the expressm@wc[f ] given in (A.2), it follows that
OW[ ] — 1inthe UV ¢ — 0), since all terms |n the winding mode sum are exponentially suppressed. There-
fore, to determine the counter terms we can@wE ] equal to 1. This shows that the bulk counter terms respect

the 6D Lorentz invariance, since the external momenta appear in the combifatierk? + |I|2 only. The dif-
ferenceew[fil] — 1 encodes the threshold corrections due to the (Poisson resummed) KK modes. Such threshold
corrections have been studied for external zero maddegj in the effective field theory limit of string theofg6,

37]and extra dimension mod€]I38]. Our result shows that for non-zero mode KK states the threshold corrections
will be different from those for the zero modes. (This is related to non-local corrections to KK masses studied in
Ref.[39].) The counter terms are determmed@)’ given in (A.6) of Appendix A The divergence proportional

to K2 in (A.6) requires the higher derivative counter term with a dimensionless couplitg 1

1 1 - _ _
Lo ge= T f d20 W ogW, — e / d*0 (0VOsdV + STeS — v/20V0eS — V20VeS).  (22)

To conclude the Letter we compute the renormalized gauge couplings. Here we only give the parts of the
couplings which do not depend on the external KK momenta. In addition we neglect the finite threshold correction
due to the resummed KK states. In a complete treatment the brane localized kinetic terms should be taken into
accounf40]. For the sake of brevity we ignore all these complications; in a future publication we return to them in
detail[19]. The renormalizations of bulk gauge couplingand#, defined in(14) and(22) respectively, are given

by
1 1 24 2[ <M2>} 1 1 1 24° <u2)
S =S+ ——=m|1+Inl = ||, === In( = ), 23
g2 g% (4n )3 m? h2  h?  6(4m)3 \m2 (23)

in the DR scheme. (The 5D result is discussed in Seci&) The coupling: renormalizes as anticipated f6].
The localized contributions with = 0 can be analyzed in a similar fashion. Neither of the KK loop momenta
ni, np are free since they are fixed by the external KK moménta as

(m)_ —i <1 _e_—éb¢><zl) (24)
n2)  2sinibp \ -1  e2b¢ )"
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(This generalizes the violation of the KK-momenta that we encountered in S@cidiTherefore the divergences
can only come from the 4D momentumin the loop

dp 1 1

. 25
(2m)4 p2+m2+ [n1)2 (p — k)2 + m2 + |ny|? (23)

The divergent parlgi" (given in(A.6)) of this integral is independent of the external KK numbgrand/, up to
finite renormalizations which are ignored here. The running of the fixed point gauge couglingjgen in(15),
reads

1 1 242 1 1 2
—— == el os<a++§)b¢cos§b¢ln<ﬂ ) (26)

—_— J— C R
(gHr g2 (4m)? m2

Finally, we note that in the limit where we take the IR regulatdo zero,k g and(gp) g suffer from logarithmic
IR singularities, and the couplingg becomes equal to its tree level value. All these statements of course ignore
important finite volume effects that lead to finite KK number dependent renormalizations and will have to be
discussed if19].
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Appendix A. Regularization of the common scalar integrals

We extract the divergent parts of the integi20) in 4, 5, and 6D. Using a Schwinger proper time reparameteri-
zationr and a Feynman parametethis integral can be expressed as

1 00
dPp 1 dt 2it
DAﬁK — . /ds/ d_e—t{s(l—s)(k2+l|2)+m2}/u20K[Sé](LZ) (A.1)
(2r) (4m)2Voly J 127 1

Here we have introduced the Jacobi theta functions for the KK and winding mode lattices

9,{“](1): S i -op-io-op, 9w[ﬂ](f)= 3 Rrhu-ploi-pa-iw-pa (A 2)

o
ﬂ weAw

neAg

seeTable 1 They are related to each other via a Poisson resummation

9,([2](1) = (_Z—Z)Dzdvmew[_ﬂa} (%) (A.3)
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Applying this relation to(A.1) we obtain the formula given i(21) in the main text. To determine the divergent
parts of(21), we define the integral expression

Ip_ d(K m2 / / o1 5A=)KZ+m?}/u? (A.4)
(471) 2

Provided that/ € C is suitably chosen, this expression is convergent and can be cast into the form

1 (m?\'F 25 Tm+2- Dl (K2
'D‘d:<4n>2(5) ( ) Z_ 2n+1)! <W> (A.5)

The terms with 0< n < % — 2 correspond to the terms in the Taylor expansiorff#) in K2 with divergent

coefficients, if we had not analytically continuétle C. We refer to these terms by the notatibg'ﬁd(Kz, m?).
Explicitly, we have inD — d =0, 1, 2 extra dimensions and with= 4 — 2e¢:

dlv 1 } _ _2 div _ 1
: 1 1 12 1
Ié’” = an)? |:m2 + (E —v+ |n(4ﬂﬁ)) (mz + EKZ):|, (A.6)

wherey is the Euler constant. The cafe— d = 0 gives the familiar 4D expression.
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