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Abstract

We consider supersymmetric gauge theories coupled to hypermultiplets on five- and six-dimensional orbifolds and d
the bulk and local fixed point renormalizations of the gauge couplings. We infer from a component analysis that th
multiplet does not induce renormalization of the brane gauge couplings on the five-dimensional orbifoldS1/Z2. This is not
due to supersymmetry, since the bosonic and fermionic contributions cancel separately. We extend this investigation tT 2/ZN

orbifolds using supergraph techniques in six dimensions. On generalZN orbifolds the gauge couplings do renormalize at
fixed points, except for theZ2 fixed points of even ordered orbifolds. To cancel the bulk one-loop divergences a dimens
higher derivative operator is needed, in addition to the standard bulk gauge kinetic term.
 2005 Elsevier B.V.

1. Introduction and summary

The investigation of theories of extra dimensions has been an active field of research initiated by[1,2]. Most
of the phenomenological activity has focused on five-dimensional (5D) models, in particular models on
orbifolds likeS1/Z2 or S1/Z2 × Z

′
2 [3–5]. An important issue of such investigations was the running of the

gauge coupling in extra dimensions and possible gauge coupling unification[6,7]. A complication is that the gaug
couplings are sensitive to the ultra-violet (UV) completion of the theory[8]. In this Letter we study the gauge co
pling running by calculating the self-energy in extra dimensions. In particular, we investigate the renorma
of bulk and fixed point gauge operators in supersymmetric (SUSY) field theories on 5D and 6D orbifolds.

E-mail addresses:nibbelin@hep.umn.edu(S. Groot Nibbelink),mark@th.physik.uni-bonn.de(M. Hillenbach).

Open access under CC BY license.
0370-2693  2005 Elsevier B.V.
doi:10.1016/j.physletb.2005.04.049

Open access under CC BY license.

https://core.ac.uk/display/82728989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/physletb
mailto:nibbelin@hep.umn.edu
mailto:mark@th.physik.uni-bonn.de
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


126 S. Groot Nibbelink, M. Hillenbach / Physics Letters B 616 (2005) 125–134

the gauge
erators
n does
ter terms
cel.
r
rgy for
6D

at

y

lization
erated.
or bulk

perators
s at one

straints
o not
lication

fy. Our
l orders
ments

ions
gy on
entify
ral

dary

cedure,
o obtain
n

As a warm up, we start our analysis with a single complex scalar coupled to a gauge field in the bulk ofS1/Z2.
To cancel the divergences of the scalar loop both bulk and brane localized counter terms are needed for
field. This result is an example of the generic fact that on an orbifold both bulk and fixed point localized op
renormalize[9–11]. However, such localized counter terms are not always required: a charged bulk fermio
not require counter terms for the gauge field at the orbifold fixed points. The absence of brane gauge coun
persists in SUSY models, because the contributions of the complex scalars of the hypermultiplet also can

This raises the question, whether this is an accident of the simpleS1/Z2 orbifold or holds more generically fo
T 2/ZN orbifolds in 6D SUSY theories. We investigate this question by computing the one-loop self-ene
the vector multiplet in 6D. To this end we set up a 6D extension ofN = 1 supergraphs based on representing
SUSY theories byN = 1 4D superfields[12–14]. We find that for genericZN orbifolds the gauge couplings
almost all fixed points do renormalize due to bulk hyper multiplets. There is no contradiction with the 5DS1/Z2
result, becauseZ2 fixed points of even ordered orbifolds (and thereforeZ2 orbifolds in particular) are the onl
fixed points that do not receive any gauge coupling renormalization.

Since we compute the full one-loop gauge multiplet self-energy, we can determine the bulk renorma
of the gauge multiplet. We find that a dimension six higher derivative term for the gauge multiplet is gen
(Higher derivative counter terms are also needed in 5D orbifold models if brane localized interactions f
fields are considered[15].) Such higher derivative theories may have remarkable UV properties[16]: The higher
derivative operators act as regulators that make many loop graphs finite. Higher derivative hypermultiplet o
do not seem to be allowed by gauge and 6D Lorentz invariance combined. (All gauge coupling correction
loop would be finite if they were present.)

Let us close with a few comments on the context and possible extensions of our work. In 6D the con
of anomalies are very severe[17,18], but since we were only interested in the gauge coupling running, we d
take these constraints into account. Moreover, we restrict ourselves to Abelian theories only; in a future pub
[19] we investigate non-Abelian theories and work out the details of the threshold corrections we identi
investigation is restricted to one-loop corrections only. However, we expect that the results in fact hold to al
in perturbation theory up to infra-red (IR) effects. Both at the fixed points and in the bulk holomorphicity argu
[20–24]of N = 1 SUSY field theories in 4D apply.

The outline is as follows: in Section2 we study the running of local gauge couplings due to scalars and ferm
onS1/Z2. In Section3 we perform a manifestly SUSY one-loop computation of the gauge multiplet self-ener
genericT 2/ZN in 6D. We determine the bulk and fixed point renormalizations of the gauge coupling and id
a higher derivative operator in the bulk. InAppendix A we describe the regularization of the divergent integ
encountered in 4, 5 and 6D.

2. Bulk and fixed point localized corrections on S1/Z2

2.1. Scalar onS1/Z2

We begin our analysis with a complex scalarφ̃ coupled to a U(1) gauge fieldÃM in 5D compactified onS1/Z2.
The coordinatey of the covering circleS1 is periodicy ∼ y + 2π R. TheZ2 reflection acts on these fields as

(1)φ̃(−y) = Zφ̃(y), Ãµ(−y) = Ãµ(y), Ã5(−y) = −Ã5(y),

where we have suppressed the 4D coordinatexµ. To be able to trace the dependence on the orbifold boun
conditions, we keep the parity eigenvalueZ = ± of the scalar̃φ arbitrary. In many studies of the orbifoldS1/Z2 the
fields are expanded into even and odd mode functions. For sufficiently simple orbifolds this is a useful pro
but since we want to extend our analysis eventually to more complicated orbifolds, we choose instead t
orbifold compatible fields from fields defined on the covering space[9]. For example, letφ be a complex scalar o
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the covering circle. By employing an orbifold projector we obtain a fieldφ̃ satisfying(1) as

(2)φ̃(y) = 1

2

(
φ(y) + Zφ(−y)

)
.

Extensions to other fields are obvious. We define orbifold compatible functional differentiation as

(3)δ̃21 = δJ̃2

δJ̃1
= 1

2

(
δ5(y2 − y1) + Zδ5(y2 + y1)

)
,

whereJ̃ is the source coupled tõφ. Here and throughout the Letter we only indicate the internal coordina
explicitly where the orbifolding is non-trivial, i.e.,δ5(y2 ± y1) = δ4(x2 − x1)δ(y2 ± y1).

We used this method to obtain the gauge field self-energy at one loop due to the complex scalarφ̃ with chargeq.
There is a tadpole (seagull) diagram

(4)= q2
∫ (

d5X
)
12ÃM

1 ÃN
1 ηMN δ̃21

1

(�5 − m2)2
δ̃21,

and a genuine self-energy diagram

= q2
∫ (

d5X
)
12Ã

M
1 ÃN

2

(
1

(�5 − m2)2
δ̃21

∂1M∂2N

(�5 − m2)2
δ̃21

(5)− ∂1M

(�5 − m2)2
δ̃21

∂2N

(�5 − m2)2
δ̃21

)
.

Here (d5X)12 denotes the integration over the coordinatesXM
1 = (x

µ
1 , y1) andXM

2 = (x
µ
2 , y2), and partial dif-

ferentiation w.r.t.XM
2 is indicated by∂2M = ∂/∂XM

2 . The spacetime metricηMN uses the mostly plus con
vention, and the 4D and 5D kinetic operators read� = ∂µ∂µ and �5 = � + ∂2

5, respectively. Notice that a
terms in both expressions contain two orbifold delta functionsδ̃21, i.e., the orbifold projector is inserted twic
Since a projector squared is the projector again, one of them can be replaced by a conventional delta
δ̃21 → δ21 = δ4(x2 − x1)δ(y2 − y1). This can be confirmed explicitly by inserting(3) for one of the orbifold delta
functions and perform a change of coordinatesy2 → −y2. The leftoverδ̃21 consists of two parts, see(3): the first
part, 1

2δ21, gives rise to contributions in 5D compactified on a circle, with an additional normalization factor1
2.

The second part of the orbifold delta function reads1
2Zδ4(x2 − x1)δ(y2 + y1). If there were no derivatives, inte

gration overy2 would lead to the fixed point delta functionδ(2y1) and hence to localization at the orbifold fixe
points. In the presence of they derivatives in the propagators the amplitude acquires non-local contributions
are sourced by the fixed points. However, the counter terms needed to cancel the divergences are loca
4D-localized parts are proportional to the factorZ, it follows that for two complex scalars of opposite parities (a
equal or opposite charges) all localized contributions cancel identically.

2.2. Fermion onS1/Z2

Next we move to a Dirac fermionψ on the same orbifold, which satisfies the boundary conditions

(6)ψ̃(−y) = γ5ψ̃(y), ˜̄ψ(−y) = ˜̄ψ(y)(−γ5),

so that the kinetic terms are invariant. The functional derivative w.r.t. the sourceJ̃ for ˜̄ψ reads

(7)δ̃21 = δJ̃2

δJ̃1
= 1

2

(
δ5(y2 − y1) − γ5δ

5(y2 + y1)
)
,

where we again suppressed the 4D coordinate dependence in the delta function. Functional differentiation

source ˜̄J for ψ̃ defines˜̄δ in a similar fashion; it is obtained from̃δ by replacingγ → −γ . Using similar steps a
5 5
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in the scalar calculation, we can evaluate the photon self-energy due to the fermion: all orbifold projector
loop can be removed except for one

(8)= ΣF = q2

2

∫
(dX)12tr

[
/A1(/∂ + m)−1

1 δ12/A2(/∂ + m)−1
2 δ̃21

]
.

Here the trace is over the four component spinor indices and/A = AMγM . Again we see from the expression f
the delta function for the fermion(7) that the amplitude consists of 5D and 4D localized parts. In fact, the loca
part vanishes.

To see this, we expand the localized part in momentum space:

ΣF4D = −q2

4

∫
d4p d4k

(2π)8

1

(2πR)2

∑
n1,n2∈Z/R

1

[p2 + n2
3 + m2][(p + k)2 + n2

4 + m2]
×{

Aµ(k,n1)A
ν(−k,n2) tr

[
γ5γµ(/p + n3γ5 + im)γν(/p + /k + n4γ5 + im)

]
(9)+ A5(k, n1)A

5(−k,n2) tr
[
γ 2

5 (/p + n3γ5 + im)γ5(/p + /k + n4γ5 + im)
]}

.

Herep,k are 4D (loop) momenta. The loop Kaluza–Klein (KK) momenta 2n3 = n2 − n1 and 2n4 = −n2 − n1
are expressed in terms of those of the external photons. As these are localized contributions, the KK n
not preserved:n2 need not be equal to−n1. Instead,n1 andn2 are either both even or both odd, hence ther
no mixing betweenA5 andAµ. The presence ofγ5 in these expressions shows that all traces vanish identi
except for tr[γ5γµ/pγν/k]. By employing a Feynman parameterization of the propagators, the loop integral im
thatpρ ∼ kρ , and therefore also this trace vanishes.

2.3. Hypermultiplet gauge coupling renormalization onS1/Z2

We use the previous results to get some feeling for the localization of gauge couplings in SUSY theories:
chiral multiplets inside a hypermultiplet have oppositeZ2 boundary conditions. From Section2.1we know that two
scalars with opposite boundary conditions do not give localized gauge coupling contributions. And in Sec2.2
we reached the same conclusion for a Dirac fermion, i.e., two chiral fermions with opposite charges and b
conditions. This implies that the hypermultiplet will not lead to any localized gauge coupling renormalizatio

We have confirmed that no brane localized gauge counter terms are needed by performing an explicit su
calculation of theV V -, S̄S- andSV -selfenergies that are given inFig. 1. (Details will be presented in the ne
section in 6D.) The 5D bulk gauge coupling renormalizes as

(10)
1

g2
R

= 1

g2
− 2q2

(4π)2
|m|,

where the subscriptR refers to the renormalized gauge coupling. This result is compatible with the results ob
by Witten[25] and used by Seiberg et al.[26–28]to analyze SUSY gauge theory in non-compact 5D.

Fig. 1. The gauge self-energy supergraphs are drawn. The wavy and straight lines indicate the superfieldsV , S andS̄. The lines with double
arrows depict the hypermultiplet propagators(17).
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3. Supersymmetric gauge theories with matter on 6D orbifolds

We investigate SUSY theories on an arbitrary 6D orbifoldT 2/ZN . The field content we consider is a charg
hypermultiplet coupled to a gauge multiplet. We employN = 1 4D superfields to describe these multiplets[12,13,
29,30], and the superspace conventions of Wess and Bagger[31]. The gauge multiplet contains a vector multip
V and a chiral multipletS. The hypermultiplet consists of two chiral multipletsΦ± that are charged oppositel
The superfields are made orbifold compatible using methods similar to(2). In order to keep the notation simpl
we have dropped the twiddles on them.

We employ complex coordinatesz = 1
2(x5 − ix6) and z̄ = 1

2(x5 + ix6), so that we find for the derivatives
∂ = ∂5 + i∂6, ∂̄ = ∂5 − i∂6 and∂∂̄ = ∂2

5 + ∂2
6. (The reduction to 5D is straightforward: setz = z̄ = 1

2y, R5 = R and
∂ = ∂̄ = ∂5.) The periodicity conditions of the torusT 2, z ∼ z + πR1 ∼ z + πeiϑR2, define the “winding mode”
latticeΛW . This lattice, the KK latticeΛK and the volumes of their fundamental domains are collected inTable 1.
An orbifold T 2/ZN is obtained by requiring that the field theory on the covering torusT 2 is invariant under the
ZN rotation:

(11)z → e−iφz, z̄ → eiφz̄, ∂ → eiφ∂, ∂̄ → e−iφ ∂̄,

where the phaseφ is such thateiNφ = 1. In order for thisZN orbifold action to be compatible with the lattic
conditions on the radiiR5, R6 and phaseϑ may apply. (For example for aZ3 orbifold R5 = R6 = R andϑ = φ =
2π/3.) The superfieldsV,S,Φ+ andΦ− transform as

(12)V → V, S → eiφS, Φ± → eia±φΦ±.

Only for the hypermultiplet we have an arbitrary integer 0� a+ � N − 1 sincea− = N − 1− a+. (Note that this is
compatible with theZ2 case: there one chiral multiplet is even and the other is odd.) As in Section2.1, we define
the orbifold delta function as

(13)δ̃
(a)
21 = 1

N

N−1∑
b=0

eibaφδ
(
z2 − eibφz1

)
,

whereδ(z2 − z1) = δ2(z2 − z1)δ
4(x2 − x1)δ

4(θ2 − θ1), for a superfield that transforms with a phaseeiaφ . With this
formalism we can set up a supergraph formalism[31–33]for orbifold theories.

We close this introductory section with an exposition of the relevant Lagrangians written in terms ofN = 1
superfields. The gauge invariant bulk vector multiplet Lagrangian can be written as

(14)Lgauge= 1

2g2N

∫
d2θ WαWα + 1

g2N

∫
d4θ (∂V ∂̄V + S̄S − √

2∂̄V S − √
2∂V S̄),

whereWα = −1
4D̄2DαV is the 4D superfield strength, and 1/g2 is the mass dimension two gauge coupling. T

factor 1/N in the Lagrangian(14) is included, because we perform all our calculations on the covering spa
theT 2/ZN orbifold. In addition, for orbifolds we can have fixed point localized 4D gauge actions of the form

(15)Lfix
gauge=

N−1∑
b=1

1

2g2
bN

∫
d2θ WαWαδ2((1− eibφ

)
z
)
,

Table 1
This table summarizes our notation for the circle and the torus: VolW = (2π)D−d Vol with D − d = 1,2, respectively, and Vol· VolK = 1

Vol VolK ΛW ΛK

S1 R 1
R

2πRZ
1
R

Z

T 2 R5R6 sinϑ 1
R5R6 sinϑ

π(R5Z + eiϑR6Z) i
sinϑ

(
e−iϑ

R5
Z + 1

R6
Z

)
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where the gauge couplings 1/g2
b are dimensionless. Note that they have a non-standard normalization an

gN−b = gb. The gauge invariant Lagrangian for the hypermultiplet with chargeq reads

(16)Lhyper= 1

N

∫
d2θ Φ−(∂ + √

2qS)Φ+ + h.c.+ 1

N

∫
d4θ Φ̄±e±2qV Φ±,

where in the last term summation over+ and− is implied. The Hermitian conjugation acts on the chiral superfie
as well as on the holomorphic derivative∂ . In 6D the hypermultiplet is massless[34,35], while in 5D it can have
a real massm(y) = mε(y), with ε(y) the step function onS1, which can be thought of as the vacuum expecta
value of the real part ofS.

3.1. Bulk and fixed point localized gauge selfenergies onT 2/ZN

We investigate the renormalization of (localized) gauge couplings on 6D orbifolds. As we consider an A
theory, only the hypermultiplet loops lead to gauge coupling renormalization. The propagators of chiral com
of the hypermultiplet read

(17)Φ̄± Φ± = 1

�6
, Φ+ Φ− = ∂̄

�6

D2

−4� ,

where�6 = � + ∂∂̄ . (In 5D these propagators may contain the massm of the hypermultiplet.) We computed th
one-loop self energy diagrams for external superfieldsV V , V S and S̄S, given inFig. 1, on theT 2/ZN orbifold.
The tadpole graph cancels gauge non-invariant contributions from the other two graphs ofΣV V . By including the
superfieldsV , S andS̄ in the amplitudes, the sum of the supergraphsΣ = ΣV V + ΣV S + ΣV S̄ + ΣS̄S becomes

Σ = 2q2

N

N−1∑
b=0

∫ (
d6X

)
12d4θ Pb(X2,X1)cos

(
a+ + 1

2

)
bφ

{
cos

(
1

2
bφ

)
V2

(DαD̄2Dα)1

8
V1

(18)+ ∂̄2V2∂1V1 + S̄2S1 − √
2∂̄2V2S1 − √

2S̄2∂1V1

}
.

We have replaced the two orbifolded delta functions(13) that appear in these graphs by one, and written that

out explicitly. In addition, we have performed a change of coordinatesz1 → e− i
2bφz1 and symmetrized the resu

explicitly underb → −b, by defining

(19)Pb(X2,X1) = 1

(�6 − m2)2
δ6(z2 − e− i

2bφz1
) 1

(�6 − m2)2
δ6(z2 − e

i
2bφz1

)
,

which satisfies:P−b = Pb. Here we have introduced an IR regulator massm to identify the quadratic divergence
in the dimensional reduction (DR) scheme. (In 5Dm denotes the mass of the hypermultiplet.) In the delta funct
we have only indicated the compact coordinates explicitly, as only there one encounters the phase exp(± i

2bφ). We
can read off from(18) whether the combination of self-energy diagrams ofFig. 1has localized contributions. Th
contributionb = 0 gives the bulk amplitude. The contributionsb �= 0, sourced by the fixed points, depend on
orbifold:

• For theZ2 orbifold and theZ2 sector (b = N/2) of even orderedZN orbifolds we find no localized contribu
tions, independently of the hypermultiplet twist eigenvaluea+, since cos(a+ + 1

2)π = 0.
• However, for a genericZN orbifold with N > 2 we find contributions sourced by the fixed points for the sec

b = ±1, . . ., ±[(N − 1)/2].

This confirms and extends the results of Section2 based on a component analysis onS1/Z .
2
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3.2. Higher derivative counter terms and renormalized gauge couplings

After having distinguished bulk and localized fixed point contributions, we determine the counter terms re
by this theory. The bulk contribution,b = 0, is proportional to the 6D momentum integral

(20)
∫

dDP

(2π)D
∆m

PK =
∫

ddp

(2π)d

1

VolW

∑
n∈ΛK

1

p2 + |n|2 + m2

1

(p − k)2 + |n − l|2 + m2
.

The sum is over the 2D KK latticeΛK , seeTable 1. The dimensionally regularizedD = 2 + d = 6 − 2ε integral
is defined to include the factor 1/µd−4 so as to keep the mass dimension canonical throughout the regulari
process. InAppendix Asome steps are given to show that(20)can be represented as

(21)
∫

dDP

(2π)D
∆m

PK = µ2

(4π)
D
2

1∫
0

ds

∞∫
0

dt

t
d
2

e−t{s(1−s)(k2+|l|2)+m2}/µ2
θW

[
0

−sl

](
iµ2

2t

)
.

The Jacobi theta functionθW

[ 0
−sl

]
associated with the winding mode latticeΛW (defined in(A.2)) is obtained

after a Poisson resummation.
This expression contains a lot of information: from the expression ofθW

[ 0
−sl

]
given in (A.2), it follows that

θW

[ 0
−sl

] → 1 in the UV (t → 0), since all terms in the winding mode sum are exponentially suppressed. T
fore, to determine the counter terms we can putθW

[ 0
−sl

]
equal to 1. This shows that the bulk counter terms res

the 6D Lorentz invariance, since the external momenta appear in the combinationK2 = k2 + |l|2 only. The dif-
ferenceθW

[ 0
−sl

] − 1 encodes the threshold corrections due to the (Poisson resummed) KK modes. Such th
corrections have been studied for external zero modes (l = 0) in the effective field theory limit of string theory[36,
37] and extra dimension models[38]. Our result shows that for non-zero mode KK states the threshold correc
will be different from those for the zero modes. (This is related to non-local corrections to KK masses stu
Ref. [39].) The counter terms are determined byIdiv

2 given in (A.6) of Appendix A. The divergence proportiona
to K2 in (A.6) requires the higher derivative counter term with a dimensionless coupling 1/h2:

(22)Lhd
gauge= − 1

2h2N

∫
d2θ Wα�6Wα − 1

h2N

∫
d4θ (∂V �6∂̄V + S̄�6S − √

2∂̄V �6S − √
2∂V �6S̄).

To conclude the Letter we compute the renormalized gauge couplings. Here we only give the part
couplings which do not depend on the external KK momenta. In addition we neglect the finite threshold co
due to the resummed KK states. In a complete treatment the brane localized kinetic terms should be ta
account[40]. For the sake of brevity we ignore all these complications; in a future publication we return to th
detail [19]. The renormalizations of bulk gauge couplingsg andh, defined in(14) and(22) respectively, are given
by

(23)
1

g2
R

= 1

g2
+ 2q2

(4π)3
m2

[
1+ ln

(
µ2

m2

)]
,

1

h2
R

= 1

h2
− 1

6

2q2

(4π)3
ln

(
µ2

m2

)
,

in theDR scheme. (The 5D result is discussed in Section2.3.) The couplingh renormalizes as anticipated by[16].
The localized contributions withb �= 0 can be analyzed in a similar fashion. Neither of the KK loop mom

n1, n2 are free since they are fixed by the external KK momental1, l2 as

(24)

(
n1
n2

)
= −i

2 sin1
2bφ

(
1 −e− i

2bφ

−1 e
i
2bφ

)(
l1

−l2

)
.
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(This generalizes the violation of the KK-momenta that we encountered in Section2.2.) Therefore the divergence
can only come from the 4D momentump in the loop

(25)
∫

ddp

(2π)d

1

p2 + m2 + |n1|2
1

(p − k)2 + m2 + |n2|2 .

The divergent partIdiv
0 (given in(A.6)) of this integral is independent of the external KK numbersl1 andl2 up to

finite renormalizations which are ignored here. The running of the fixed point gauge couplingsgb, given in(15),
reads

(26)
1

(g2
b)R

= 1

g2
b

− 2q2

(4π)2
cos

(
a+ + 1

2

)
bφ cos

1

2
bφ ln

(
µ2

m2

)
.

Finally, we note that in the limit where we take the IR regulatorm to zero,hR and(gb)R suffer from logarithmic
IR singularities, and the couplinggR becomes equal to its tree level value. All these statements of course i
important finite volume effects that lead to finite KK number dependent renormalizations and will have
discussed in[19].
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Appendix A. Regularization of the common scalar integrals

We extract the divergent parts of the integral(20) in 4, 5, and 6D. Using a Schwinger proper time reparame
zationt and a Feynman parameters this integral can be expressed as

(A.1)
∫

dDP

(2π)D
∆m

PK = 1

(4π)
d
2 VolW

1∫
0

ds

∞∫
0

dt

t
d
2 −1

e−t{s(1−s)(k2+|l|2)+m2}/µ2
θK

[
sl

0

](
2it

µ2

)
.

Here we have introduced the Jacobi theta functions for the KK and winding mode lattices

(A.2)θK

[
α

β

]
(τ ) =

∑
n∈ΛK

ei τ
2 |n−α|2−i(n̄−ᾱ)β̄−i(n−α)β, θW

[
β

α

]
(τ ) =

∑
w∈ΛW

e2iτ |w−β|2−i(w̄−β̄)ᾱ−i(w−β)α,

seeTable 1. They are related to each other via a Poisson resummation

(A.3)θK

[
α

β

]
(τ ) =

(
2π

−iτ

)D−d
2

Vol θW

[
β

−α

](−1

τ

)
.
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Applying this relation to(A.1) we obtain the formula given in(21) in the main text. To determine the diverge
parts of(21), we define the integral expression

(A.4)ID−d

(
K2,m2) = µD−d

(4π)
D
2

1∫
0

ds

∞∫
0

dt

t
D
2 −1

e−t{s(1−s)K2+m2}/µ2
.

Provided thatd ∈ C is suitably chosen, this expression is convergent and can be cast into the form

(A.5)ID−d = 1

(4π)2

(
m2

4π

)D−d
2

(
4π

µ2

m2

)2− d
2 ∑

n�0

(−)n
�(n + 2− D

2 )n!
(2n + 1)!

(
K2

m2

)n

.

The terms with 0� n � D
2 − 2 correspond to the terms in the Taylor expansion of(A.4) in K2 with divergent

coefficients, if we had not analytically continuedD ∈ C. We refer to these terms by the notationIdiv
D−d(K2,m2).

Explicitly, we have inD − d = 0,1,2 extra dimensions and withd = 4− 2ε:

Idiv
0 = 1

(4π)2

(
1

ε
− γ + ln

(
4π

µ2

m2

))
, Idiv

1 = − 1

(4π)2
|m|,

(A.6)Idiv
2 = − 1

(4π)3

[
m2 +

(
1

ε
− γ + ln

(
4π

µ2

m2

))(
m2 + 1

6
K2

)]
,

whereγ is the Euler constant. The caseD − d = 0 gives the familiar 4D expression.
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