
The Journal of Logic and Algebraic Programming 79 (2010) 326–333

Contents lists available at ScienceDirect

The Journal of Logic and Algebraic Programming

j ourna l homepage: www.e lsev ie r .com/ loca te / j lap

P systems with control nuclei: The concept

Camelia Chira a, Traian Florin Şerbănuţă b, Gheorghe Ştefănescu c,*

a Department of Computer Science, Babes-Bolyai University Cluj-Napoca, Romania
b Department of Computer Science, University of Illinois at Urbana-Champaign, IL, United States
c Department of Computer Science, University of Bucharest, Romania

A R T I C L E I N F O A B S T R A C T

Article history:
Available online 6 May 2010

Keywords:

P systems

Control nuclei

K rewrite-based framework

Modeling cell growth

We describe an extension of P systems where each membrane has an associated control

nucleus responsible with the generation of the rules to be applied in that membrane. The

nucleus exports a set of rules which are applied in themembrane region (only for one step,

but in the usual maximal-parallel way), then the rules are removed and a new iteration

of this process takes place. This way, powerful control mechanisms may be included in

P systems themselves, as opposed to using the level of “strategies” previously exploited

for simulating P systems. The nuclei may contain general programs for generating rules,

ranging fromthoseusing informationon the full system, tomore restrictedprogramswhere

only local information in the nuclei themselves and the associatedmembranes is used. The

latter approach, mixed with a particular mechanism for the representation of the control

programs, the rules, and the export procedure is powerful enough for modeling complex

biological applications, e.g., to develop a detailed model for cell growth and division in

normal and abnormal (tumoral) evolution of biological systems.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

A previous paper [13] exploiting the relation between P systems [8,9,15] and the K rewrite-based framework [10,11]

introduces an extension of P systemswith structural data, accompanied by an implementation using K andMaude rewriting

engine [3]. In this paper, we describe a further extension of P systems, briefly mentioned in [13], obtained by integrating

powerful mechanisms to control the activity in P systems, called “control nuclei.” With these two extensions, we foresee

the development of a high level modeling and programming language on top of P systems, for instance, powerful enough to

simulate the behavior of complex biological systems.

The introducedmodel of P systemwith control nuclei is described in this paper (and illustrated by several examples) in the

context of static membrane structures as well as for dynamic membranes. In the latter case, the behaviour of the extended

P system model dealing with operations such as membrane dissolution, membrane migration and membrane division is

discussed. Several approaches to membrane dissolution (identified as the most problematic operation for P systems with

control nuclei) are presented. In this context, P systems with control nuclei using multiple parallel programs are defined as

an extension of the introduced model able to deal with the membrane dissolution problem. Furthermore, the functionality

of P systems with nuclei is emphasized for modeling cell growth and division in biological systems.

*
Corresponding author.

E-mail addresses: cchira@cs.ubbcluj.ro (C. Chira), tserban2@cs.uiuc.edu (T.F. Şerbănuţă), gheorghe@funinf.cs.unibuc.ro (G. Ştefănescu).

1567-8326/$ - see front matter © 2010 Elsevier Inc. All rights reserved.

doi:10.1016/j.jlap.2010.03.006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82728907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/15678326
http://www.elsevier.com/locate/jlap
mailto:cchira@cs.ubbcluj.ro
mailto:tserban2@cs.uiuc.edu
mailto:gheorghe@funinf.cs.unibuc.ro

C. Chira et al. / Journal of Logic and Algebraic Programming 79 (2010) 326–333 327

2. P system with control nuclei: static membrane structure

In this section, we describe the extension of P systems with control nuclei in the restricted case of a static membrane

structure. In such a case, no membrane dissolution or division is allowed. When this restriction is in place, the proposed

extension to resulting P systems is easier as no combination of control programs from different nuclei is needed. The next

section tackles the case of dynamic membrane structures (where the above restriction is missing) discussing the difficult

decision problem of dealingwith forking programs or combining programs from different nuclei and introducing the general

concept of P systems with control nuclei.

2.1. P system with control nuclei

We present the extension for a particular class of P systems, known as classical transition P system [8]. The extension

with control nuclei of other classes of P systems is similar and it is not included in this paper.

Definition 2.1 (Restricted transition P systems). A restricted transition P system, of degreem ≥ 1, is formally defined by a tuple

� = (O,C,μ,w1, . . . ,wm,R1, . . . ,Rm, io),

where: (1) O is an alphabet of objects; (2) C ⊆ O is the set of catalysts; (3) μ is a membrane structure (with the membranes

bijectively labeled by natural numbers 1, . . . ,m); (4) w1, . . . ,wm are multisets over O associated with the regions 1, . . . ,m

of μ, represented by strings from O* unique up to permutations; (5) R1, . . . ,Rm are finite sets of rules associated with the

membranes 1, . . . ,m; the rules are of the form

u → v with u ∈ O+ and v ∈ (O × Tar)*, where Tar = {here, in, out};
(6) io is the label of the output membrane, an elementary one in μ; alternatively, io may be 0 indicating that the collecting

region is the environment.

This class of P systems explicitly excludes rules as

u → vδ.

When δ is present in such a rule, its application leads to the dissolution of the membrane and to the abolishment of the

rules associated with the membrane just dissolved. In the next section, we show how to deal with P systems using this type

of rules and how to develop a rich set of options for combining the rules of the dissolved membrane with the ones of the

parent membrane and not simply ignoring them.

Definition 2.2 (Semantics of P systems). A membrane is denoted by [h]h. By convention, [hu]h denotes a membrane with u

present in the solution (among other objects). Starting from the initial configuration, which consists of μ andw1, . . . ,wm, the

system passes from one configuration to another by applying a transition, i.e., the rules from each set Ri in a non-deterministic

andmaximally parallelway. A sequence of transitions is called a computation; a computation is successful if and only if it halts.

With a successful computation one associates a result, in the form of the number of objects present in membrane io in the

halting configuration.

Fig. 1 contains a schematic illustration of a membrane enriched with a control nucleus. The informal definition of P

system with control nuclei follows. To get a more formal definition, one has to select a particular programming language

for generating the rules, which is outside of the scope of this paper. However, it is worth mentioning here that a nucleus

program may have global knowledge on the status of the whole P system. For instance, it may use tests on the presence or

absence of specific objects in the regions of specific membranes when it decides on the rules to be exported in a next step

in its own membrane region. (For more on this topics see the comments after Example 2.7.)

Definition 2.3 (Restricted P systemwith control nuclei). A restricted P systemwith control nuclei (rPCN, for short) is an enriched

restricted P system, where each membrane has an associated nucleus with a program responsible for generating the rules

to be used within the membrane region.

R

nucleus

membrane

objects

rules

Fig. 1. A membrane enriched with a control nucleus.

328 C. Chira et al. / Journal of Logic and Algebraic Programming 79 (2010) 326–333

The semantics of a rPCN is simple: (1) start from the initial configuration; (2) in each running step, a set of rules is generated

in each membrane by its nucleus program, the usual maximal-parallel rule for P systems is applied (synchronously, in all

membranes), and finally the rules are deleted; (3) the procedure for one step, described in (2), is repeated until the halting

condition is fulfilled.

With this semantics, the nucleus programswillwait on each other until they all reach the export stage, hence these export
statements act as a barrier, as well. A consequence of the synchronous behaviour of P systems is the end of the computation

when one of the nucleus programs fails to reach a next export statement. A good programming technique is to use acyclic

components of appropriate and balanced computation complexity in between consecutive export statements in all nucleus

programs.

Below we present a sample of P systems with nucleus programs, written in a conventional imperative programming lan-

guage, but enrichedwith an export statement and a running procedure similar to that used by coroutines. Namely, a program

is executed from its current control point until it reaches an export statement. In such a point, the program is stopped and the

generated rules are exportedandapplied in the regionof its associatedmembrane.When this object transformationprocess is

finished, the rules are discarded from themembrane region and the nucleus program is reactivated, starting from its last con-

trolpoint; it runsagainuntil anewexport statement is reachedand thisprocess is repeateduntil ahaltingcondition is fulfilled.

Example 2.4 (Standard transition P systems).

Pa:: (code for membrane i)
while(true) {

export Ri;
}

In this first example, we consider a P system with m membranes 1, . . . ,m. The nucleus program Pa, described above

and used by the ith membrane in the P system, constantly produces the same set of rules Ri for its membrane i. As one

can easily see, a rPCN using such nucleus programs is actually a classical transition P system. The simplicity of the nucleus

programs used for the class of P in this example suggests that general nucleus programsmay add (very) powerful controlling

mechanisms to classical P systems, indeed.

Example 2.5 (Priorities).

Pb:: (code for membrane i)
while(true) {

export prim(Ri_1);
...
export prim(Ri_ni);
export Unprim;

}
This second example, using the code in Pb, illustrates how to deal with priority strategies when applying the rules (see

[2] for another approach). Before going into details, some explanations on the notation are necessary: by prim(R)we denote

the set of rules obtained from R by a decoration with ′ (prim) of its right-hand side terms; Unprim is the rule which strip out

the prim decoration of all terms. The program in Pb acts as follows: it first generates and applies the rules in Ri_1; when

no such rules may be applied, the rules in Ri_2 are applied, and so on; by using prim–unprim decorations we constrain the

rules Ri_1, Ri_2, . . . to be applied to the original elements in themembrane region, prohibiting the use of the newly produced

values in subsequent rules.

When all membranes have the same number of rules (i.e., all ni’s are equal), the above method works well. Otherwise,

to achieve a required global synchronization for a single step in all membranes of the original P system with priorities,

one simply has to add appropriate number of export statements with empty sets of rules in the nucleus programs of the

membranes with smaller number of rules.

Notice that this model is for rules with priorities in their weak interpretation. In this weak interpretation of the priority,

rules are applied in decreasing order of their priorities, namely a lower priority rule can only be applied after all higher

priority rules have been applied. (The case of strong interpretation, where a lower priority rule cannot be applied at all, if a

higher priority rule was applied, is not considered here.)

Example 2.6 (Synchronized P systems).

Pc:: (code of membrane i)
x = i mod n;
goto x;
while(true) {

0 : export R0;
...
n-1: export R(n-1);

}

C. Chira et al. / Journal of Logic and Algebraic Programming 79 (2010) 326–333 329

The third example, using the program Pc, illustrates a kind of pipelined synchronous execution in a P system. Let us

suppose that the P system has m membranes (denoted from 0 to m − 1) and n sets of rules R0, . . ., R(n − 1). Each membrane

infinitely repeats a cyclic execution of the rules R0, . . ., R(n − 1), but starting with a different rule. For instance, if m = 4 and

n = 3, the system uses the following rules in its membranes 0, . . ., 3 at steps 1, 2, 3, etc.:

step 1: (R0,R1,R2,R0);
step 2: (R1,R2,R0,R1);
step 3: (R2,R0,R1,R2);
etc.

Example 2.7 (Prime numbers). This last example illustrates how global knowledge on the state of a P system can be used by

the nucleus programs. We give a more informal presentation of the system and the programs here.

This P system checks in parallel whether a given number is prime or not. To this aim, p membranes 1, 2, . . . , p are

used, with membrane 1 including membranes 2, . . . , p. The master membrane 1 proposes a number n and sends copies

to all other membranes (using a rule a → (a,here)(a, in2) · · · (a, inp)). Every slave membrane i in {2, . . . , p} keeps a copy

of the number n using n copies of the object a. In parallel, each slave membrane i starts checking the divisibility with

value i; this is done by copying the number using b’s (by a rule a → ab) and then exporting the rule bi → λ. After this

step, the master membrane tests if one membrane in {2, . . . , p} has no b’s, in which case the computation stops with the

conclusion that the number is not prime. It also checks if the square of the greatest current testing number (i.e., the one

currently used in the membrane p) exceeds n, in which case the computation stops with the conclusion that the number

is prime. Otherwise, each slave membrane i deletes all b’s, increases its testing number by p − 1, and repeats the above

procedure.

It is worth noticing that the spirit of P systems is to avoid such global knowledge, i.e., to limit the access of the nucleus

programs to the local information within their membranes only and to use explicit passing of objects from a membrane

region to another membrane region to convey information.

Theseprogramsare simple examplesused to illustrate the concept of control nuclei. Actually, anykindofnucleusprograms

may be used in rPCNs. A particular benefit of the implementation of P systems in K, described in [13], is that it can be

easily adapted to use such powerful nucleus programs – just mix the P systems implementation in [13] with the known

representation of several common programming languages in K.

Remark 2.8 (add/remove/replace rules). The procedure of deleting the current rules and inserting new rules into amembrane

region by passing from one computation step to the next is just one of many other possibilities. The export statement in the

nucleus programs may be decorated with additional flags to specify the dynamics of the rules. For instance, one can use the

following keywords associated to the export statement:

• add R – the rules in R are added to the rules already existing into the membrane region;

• remove R – the rules in R are removed from the membrane region;

• replace R, S – the rules in R are removed from themembrane region, while the rules in S are added to the rules in the

membrane region (to avoid conflicts, R and S are supposed to be disjoint).

These options may be derived from the default case, provided the programming language for the nucleus programs is rich

enough to allow keeping track of the exported rules during the runs of the program.

Remark 2.9. The rules generated by the same nucleus programmight differ from one context to another when the nucleus

behaviour is implemented using an agent-based approach. In such a case, the nucleus program itself can act in a proactive

manner modifying the output results, influenced by changes that occur in its environment, by messages received from other

programs or by learning new information (agent-based behaviour similar to that of multi-agent systems where agents are

able to autonomously act and take intiative for reaching an objective [12,16]).

2.2. A quantitative version

The definition of P systemswith control nuclei in the previous section is further generalized to P systemswith quantitative

rules. This means that:

• Each rule exported by a nucleus in its membrane region may have a spatial multiplicity factor and it can be applied at

most that number of times in a given step. Themultiplicity factor is a natural number or infinity (∞). The former version

of themodel is the particular case of this extended versionwhen the spatial multiplicity factor of all rules is equal to ∞.

• An orthogonal temporal quantitative version may be developed where each rule persists into the membrane region for

a given number of steps (a natural number or infinity). In standard P systems this value is ∞, while in the rPCN’s

introduced in the previous subsection the value is 1.

Combinations of quantitative specifications for both the spatial and the temporal extensions of the exported rules may be

used, leading to a powerful control mechanism of the P systems behaviour, especially useful for simulation purposes.

330 C. Chira et al. / Journal of Logic and Algebraic Programming 79 (2010) 326–333

Table 1

KOOL Syntax.

Program P ::= C* E

Class C ::= class X is D* M* end | class X extends X ′ is D* M* end
Decl D ::= var {X,}+ ;
Method M ::= method X is D* S end | method X ({X ′,}+) is D* S end
Expression E ::= X | I | F | B | Ch | Str | (E) | new X | new X ({E,}+) |

self | E Xop E′ | E.X(())? | E.X({E,}+) | super() |
super.X(())? | super.X({E,}+) | super({E,}+) | primInvoke({E,}+)

Statement S ::= E <- E′; | begin D* S end | if E then S (else S′)? fi |
try S catch X S end | throw E ; | while E do S od |
for X <- E to E′ do S od | break; | continue; |
return (E)?; | S S′ | E; | assert E; | X: | spawn E ; |
acquire E ; | release E ; | typecase E of Cs+ (else S)? end

Case Cs ::= case X of S

X ∈ Name, I ∈ Integer, F ∈ Float, B ∈ Boolean,Ch ∈ Char, Str ∈ String, Xop ∈ Operator Names.

2.3. An implementation

A quick implementation comes almost for free, thanks to:

• an implementation of P systems (with structural data) in K (subsequently implemented as an extension of Maude), see

[13];

• the definitions (and the resulting automatic implementations) of various programming languages in K.

For instance, one can use the concise, but powerful concurrent, object-oriented programming language KOOL with the

syntax defined in Table 1. Its simple K-implementation may be found in [6,10].

3. P system with control nuclei: dynamic membrane structure

A particular technical issue, avoided in the presentation in the previous section by restricting the class of transition P

systems, is the impact of the application of a rule which dissolves the membrane to the nucleus programs: What happens

with the nucleus program of the dissolved membrane? The opposite event of membrane division is less complicate due to

the high level of abstraction used in our nucleus programming model: just copy the program in the daughter membranes

(for implementation, one can use a kind of Unix fork statement to copy the program, i.e., copy its code, its current control

point, and thememory variableswith their current values). Aswewill discuss in the next section, when a less abstractmodel

is to be used for nucleus programs, as for instance the one suggested by the control mechanisms engaged in the biological

cell growth and division processes, membrane division may be equally problematic.

3.1. Membrane dissolution

A few options to deal with membrane dissolution are sketched in this section, grouped in two classes:

1. a further extension of PCNs to have more nuclei (and nucleus programs) associated to a membrane;

2. the application of certain rules to combine the nucleus program of the dissolved membrane with the nucleus program

of the parent membrane.

Another option is to ignore the nucleus program of the dissolved membrane, as in traditional P systems.

Classical transition P systems also use membrane dissolution rules

u → vδ with u ∈ O+ and v ∈ (O × Tar)*, where Tar = {here, in, out}.
Traditionally [8], the presence of δ in these rules indicates that the application of such a rule leads to the dissolution of the

membrane and to the abolishment of the rules associated with the membrane just dissolved. We can better handle this case

using our model with control nuclei and provide a rich set of options for the semantics of the dissolution rule.

One solution to this problem is to further extend the previously introduced rPCNs by allowing multiple programs in a

nucleus, working in parallel to generate the rules for its membrane region.

Definition 3.1 (P system with control nuclei using multiple parallel programs). P systems with control nuclei using parallel

programs (PCN-Par’s, for short) is the extensionof restrictedP systemswith control nuclei (rPCN’s),where eachmembranehas

an associated nucleuswith a set of programs acting in parallel for generating the rules to be usedwithin itsmembrane region.

The semantics of a PCN-Par is similar with that of PCN’s, but now the set of rules to be generated for a membrane region

by its nucleus is obtained using the programs working in parallel in the nucleus.

When sets of programs working in parallel are used in the nuclei, the default meaning is the synchronous behavior: all

programs have to reach the export stage and the collected rules are exported. (Interleaving semantics may be considered, as

C. Chira et al. / Journal of Logic and Algebraic Programming 79 (2010) 326–333 331

well, where one program is activate at each round and only its export statement contributes to the rules to be exported in

the membrane region in that round.)

Another approach to the membrane dissolution problem is sketched below. Instead of using multiple programs obtained

by adding the nucleus program(s) of the dissolved membrane to the nucleus program(s) of the parent membrane, one can

combine the programs to get a unique program. This way, the model with a single nucleus program in the previous section

is preserved, provided the language for nucleus programs is rich enough to accommodate for the new combinations of

programs required.

This option opens a full range of possibilities to combine nucleus programs. The composition of the parent and daughter

programs may be done using various operators, including the following:

• sequential composition – the program of the dissolved membrane is added to the top or the bottom of the parent

membrane program;

• interleaving composition – the programs are composed by interleaving, i.e., at each step nondeterministically one of

the programs is activated to generate the rules;

• a unique composite program is created, but having multiple control points acting in parallel.

3.2. Other active membrane operations

Other classes of interesting P systems bring an important additional feature: the possibility to dynamically change the

membrane structure. The membranes can evolve themselves, either changing their characteristics or getting divided. In this

subsection, we briefly discuss the impact of two such features when combined with control nuclei: membrane division and

membrane migration.

In a PCN, membrane division mainly reduces to the duplication of the membrane contents [or, depending on the rule,

the partition of its contents] and a replication of the nucleus program (a fork-like replication: each child membrane has an

identical copy of the parent membrane nucleus program, with the same code, the same position of the control point, and

the same variables and with the same values as in the parent membrane).

The migration operator (endocytosis/exocytosis or gemmation, see [8]) is also unproblematic for PCNs, as during such a

transformation a nucleus program remains attached to the same membrane. While the membrane can be moved from one

place to another (with possible changes of the contents), the impact on the system is reflected in the nucleus programs –

these programs become aware on the new membrane structure when generating rules.

4. Modeling cell normal and abnormal development

In this section, we briefly describe how PCNs can be used to model cell growth and division in biological systems, both in

normal and abnormal (tumoral) developments. The reader is directed to [1,7] for further explanation and details about the

terms, concepts, and phenomena used in this section.

The abstract development of PCNs in the previous sections, based on programs written in conventional programming

languages, is better suited for “in silico” models. To tackle “in vivo” systems, we present a particular low-level DNA-based

biological representation of the nucleus programs and of the transformation rules. The resulting systems are named biological

P systems with control nuclei (BPCNs for short) — see [4] for another P systems based model aiming to model biological

phenomena.

The transformation rules associated to membranes in BPCNs include rules with the following format

a → p(c) if c.

Such a rule represents an abstract formulation of a part of the transcription process where the DNA/RNA code c is used to

transform the aminoacids in a into p(c), the protein represented by c. It should be noted that depending on whether the

quantitative or qualitative PCN model is used, a single c can be used for only one or for several transformations of a’s in

p(c)’s, respectively. To be consistent with the PCN semantics previously developed, the code c has to become inactive at the

end of the transformation step, either being degraded or moved in a trash/inactive area (for instance in the nucleus). From a

biological perspective, it is not clear why a code c is to be lost at the end of a transformation step, and perhaps a variation of

the model where a code c is allowed to be active during several transformation steps is more appropriate.

Like in standard P systems, the result p(c) of a rule can migrate into another membrane. Unlike standard P systems, in

BPCNs a protein p(c) can also migrate into control nuclei and can be attached to specific spots of the DNA, with an activation

or inhibition result of the related gene. From the nucleus program point of view, this situation is nothing more than the

ability of the program to use tests: depending on the value of a particular variable (e.g., a protein sitting in the cell or in the

nucleus) its behavior follows a specific path from a set of possible continuations.

The nucleus consists of a strand of DNA, a sequence of basic nucleotides separated in “genes,” each gene codifying a

protein. On the DNA strand, several proteins are attached at specific spots. In a current configuration, the DNA strand has one

or more control points where active genes are copied and exported into the membrane region for transcription. The specific

program (or mechanism) used to get the position of the control points for the active genes used in a next transcription step

is left unspecified at this moment. (A simple option could be that each control point travels along the DNA strand and stops

at the first active gene. However, this is an oversimplification, as it does not take into account the dynamics and the timing

of the attachment of the proteins to the DNA strand, or the insertion or deletion of new control points.)

332 C. Chira et al. / Journal of Logic and Algebraic Programming 79 (2010) 326–333

Fig. 2. The cell cycle.

While in P systems one could use an expensive abstract rule to duplicate a membrane and its contents, in BPCNs one

could develop amore detailedmechanism for cell growth and division, closer to the real processes seen in biological systems.

The payoff for this effort of having a detailed representation of the division process is that one could also model and study

abnormal (tumoral) development of the cells.

According to [7], the cell cycle consists of the following phases (see Fig. 2):

• (G0) – a commitment is taken towards a division process;

• (G1) – this is a growth stage where RNA and proteins are synthesized;

• (S) – this phase contains DNA replication;

• (G2) – during this period, the cell gets two complete diploid sets of chromosomes;

• (M-mitosis) – here the nucleus is dissolved and the daughter cells are created.

Abstract versions of most of these processes can be modeled in BPCNs as follows:

• (G0) – a starting control point is inserted in a code at a point where the division is codified;

• (G1) – a duplication rule x → x x, where each membrane component gets a copy, may be used for this growth stage;

• (S) – as transformation rules take place in membrane regions only, the DNA duplication is slightly complicated: the full

DNA code is exported into the membrane region, duplicated there, and finally moved back into the nucleus;

• (G2) – the abstract version of this stage is not completely clear at this moment – it may have to deal with the need to

have the same “control points” in both copies of the DNA strands (as in Unix processes obtained by the fork command);

• (M) – in this stage the nucleus is divided into two (this is opposite to the previously mentioned process of joining two

nuclei); finally, use a rule to divide a membrane in two membranes, with an even separation of its contents into the

daughter membranes.

The described BPCNs for development of the cells and their division could be easily adapted to take into account tumor

attacks. The result of a DNA tumor viral infection, roughly falls into two categories:

• (1) permissive cells allow for multiplication of the DNA virus, then the cell dies and the viral DNA is spread into the

neighboring cells;

• (2) nonpermissive cells may sometimes be infected by the insertion of the viral DNA into the nucleus DNA, changing

the cell phenotype (in particular, after cell division, the daughter cells inherit an infected nucleus).

To conclude, P systems with control nuclei, in both their abstract and more biologically motivated forms, promise to be a

good candidate for modeling, simulating, and understanding the evolution of complex (including biological) systems.

5. Concluding remarks

Atafirstglance it looks like thispaper risesmorequestions than it solves. Inourview, themaincontributionofourapproach

is the introductionof apowerful high levelmodelingandprogrammingenvironmentwhereexperimentswithvariousoptions

with inspiration from biology can be easily done. A series of experiments and computer simulations are further needed to

thoroughly test and validate the introduced model of P systems with control nuclei. Together with interested researchers

from biology and related area we hope to find and study a more detailed version of the model, mixed with interactive

computing techniques [4,14], able to cope with the complexity of real biological phenomena.

Acknowledgments

The authors thank Grigore Rosu and the anonymous referees for many useful comments on a previous draft of the paper.

C. Chira thanks CNCSISUEFISCSU for the support throughproject number PNII IDEI 508/2007 “NewComputational Paradigms

for Dynamic Complex Problems.” Traian Florin Serbănută was supported in part by NSF grants CCF-0916893, CNS-0720512,

and CCF-0448501, by NASA contract NNL08AA23C, by a SamSung SAIT grant, and by several Mircosoft gifts. The work of

G. Stefanescu was partially supported by the “GlobalComp” project (PNII Parteneriate 01052/2007).

C. Chira et al. / Journal of Logic and Algebraic Programming 79 (2010) 326–333 333

References

[1] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J.D. Watson, Molecular Biology of the Cell, third ed., Garland Publishing, New York, 1994.
[2] O. Andrei, G. Ciobanu, D. Lucanu, Expressing control mechanisms of membranes by rewriting strategies, Proceedings of the Workshop on Membrane

Computing 2006, LNCS, vol. 4361, Springer, 2006, pp. 154–169.
[3] M. Clavel, F. Durn, S. Eker, P. Lincoln, N. Mart-Oliet, J. Meseguer, C. Talcott, All about Maude – a high-performance logical framework, LNCS, Springer,

2007.
[4] C. Dragoi, G. Stefanescu, AGAPIA v0.1: a programming language for interactive systems and its typing systems, in: Proceedings of the Foundation of

Interactive Computation, ETAPS 2007, Electronic Notes in Theoretical Computer Science 203 (2008) 69–94.
[5] P. Frisco, The Conformon-P system: a molecular and cell biology-inspired computability model, Theor. Comput. Sci. 312 (2004) 295–319.
[6] M. Hills, G. Rosu, KOOL: an application of rewriting logic to language prototyping and analysis, Proceedings of the RTA 2007, LNCS, vol. 4533, Springer,

2007, pp. 246–256.
[7] B. Lewin, Genes VIII, Oxford University Press, 2004.
[8] G. Paun, Computing with membranes, J. Comput. Syst. Sci. 61 (2000) 108–143.
[9] G. Paun, Introduction to membrane computing, in: Proceedings of the 12th Estonian Winter School in Computer Science, 2007.

<http://www.psystems.disco.unimib.it/download/MembIntro2004.pdf>.
[10] G. Rosu, K: a rewriting-based framework for computations – preliminary version, Technical Report UIUCDCS-R-2007-2926, Department of Computer

Science, University of Illinois (2007). <http://www.fsl.cs.uiuc.edu/k>.
[11] G. Rosu, T.F. Serbănută, An overview of the K semantic framework, J. Logic Algebraic Program., this issue (Special Issue on P-Systems).
[12] S. Russel, P. Norvig, Artificial Intelligence: A Modern Approach, second ed., Prentice Hall, 2002.
[13] T. Serbănută, G. Stefanescu, G. Rosu, Defining and executing P systemswith structureddata inK, Proceedings of theWorkshoponMembraneComputing

2008, LNCS, vol. 5391, Springer, Berlin, 2009, pp. 374–393.
[14] G. Stefanescu, Interactive systems with registers and voices, Fund. Inform. 73 (2006) 285–306.
[15] The Web Page of Membrane Computing. <http://www.ppage.psystems.eu/>.
[16] M. Wooldrige, An Introduction to Multiagent Systems, Wiley & Sons, 2002.

http://www.psystems.disco.unimib.it/download/MembIntro2004.pdf
http://www.fsl.cs.uiuc.edu/k
http://www.ppage.psystems.eu/

	P systems with control nuclei: The concept
	Introduction
	P system with control nuclei: static membrane structure
	P system with control nuclei
	A quantitative version
	An implementation

	P system with control nuclei: dynamic membrane structure
	Membrane dissolution
	Other active membrane operations

	Modeling cell normal and abnormal development
	Concluding remarks
	References

