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Abstract-star graphs, as discussed in [l], are considered to be attractive alternatives for hyper- 

cubes. In this paper, we discuss optimal data exchange algorithms for star graphs of small dimension 

(n 5 6). In particular we study odd-distance and total exchange algorithms, using the tabular method 
introduced in [2]. The algorithms use no intermediate buffering of messages. 
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1. DATA EXCHANGE ALGORITHMS ON CAYLEY NETWORKS 

A network of parallel processors can be treated as an abstract graph with processors as nodes 
(vertices) and duplex communication channels as links (edges). A sequence of nodes is, il, . . . , il, 

where ij and ij+r are neighbours (0 5 j < Ic) is a path of length k between nodes is and ik. The 

distance between two nodes is the length of the shortest path connecting these nodes. 

A data exchange algorithm is a set of programs (one for each processor in the network) which are 

executed in parallel and whose purpose it is to send data (in the form of messages) between several 

processors. A total exchange algorithm is a data exchange algorithm which allows every node i 

in the network to send a different message mi,j to every other processor j in the network [3,4]. 

We assume that messages are sent only at discrete time intervals, that the processing time of 

messages within a node is negligible, and that a node can send a message to all its neighbouring 

nodes simultaneously. An algorithm does not need intermediate buffering of messages if every 

message mi,j which arrives at a node k (# j) at a given time T, leaves that node again at time 

T+ 1. 

We call a network a Cayley network if a regular automorphism group G exists for the underlying 

graph [5,6]. Every Cayley network is uniquely determined by its group G and the set S = 

(91, . . . , gd} of neighbours of the identity 1 E G. Two nodes g, h E G are neighbours if and 

only if g-lh E S. For each path h 0, . . . , h, in a Cayley network there is a corresponding word 

w = 91 ...gn E S (i.e., a word with elements in S), where gidzfh;?,hi E S. We have how = h,. 
Conversely, every word w E S* determines a path joining a node ho with the node how. 

A data exchange algorithm on a Cayley network (G, S) is locally defined iff for every g E G and 
for every message mh,k (h, k E G) sent from node 1 to its neighbour gi E S at a given time T, 
a message mgh,gk is sent at the same time T from node g to its neighbour ggi. Note that the 

paths taken by the messages mh,k and mgh,gk correspond to the same word w. Hence, in order 
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to study locally defined algorithms, it is only necessary to investigate what happens at a single 

node (usually the node 1 E G). 

In [7], we have proved the following theorem: 

THEOREM 1. Consider a locally defined algorithm on a CayJey network (G, S). Let m be a 

message with associated word w = giw’ E 5” sent from a node h E G at a given time. Then in 

the same time interval, a message m’ arrives at h from the node hg;' . The path which m’ still 

has to travel to reach its destination corresponds to the word 20’. (If w’ is empty, then h is the 

destination of the message ml.) 

As a consequence, we have the following theorem [2], which can be used to investigate the 

trafhc of messages in a data exchange algorithm: 

THEOREM 2. Every JocaJJy defined data exchange algorithm without intermediate buffering on a 

Cayley network (G, S) corresponds to a rectangular table with #S rows whose entries are either 

blank or elements of S with the following properties: 

(1) Every row consists of zero or more words in S’ separated by zero or more blanks. 

(2) Every column contains each element of S at most once. 

The messages sent by this algorithm are exactly those that correspond to the words in the table. 

The total time taken by the algorithm is equal to the number of columns in the table. 

Conversely, every such table corresponds to a locally defined data exchange algorithm without 

intermediate buffering in the following way. Remove the first T - 1 columns of the table. The 

words that begin in the first column of the table thus obtained correspond to the messages which 

are transferred from a given node at time T. Each message is sent to the neighbour that is 

associated with the first element of the corresponding word. 

2. STAR GRAPHS 

Consider the group S, of permutations of the n elements 0,. . . , n - 1 and consider the subset 

S C S, of transpositions (0 a), a = 1,. . . ,n - 1. The Cayley graph (S,, S) is called the star 

graph of dimension n [1,8]. 

With every group element g E S, (i.e., with every node) we may associate a word w in the 

following way: 

- Write g as a product of disjoint cycles (e.g., g = (0 1 2)(3 4) E Ss). 
- Substitute each cycle of the form (0 a -. . z) by the word a. . . z (e.g., (0 1 2) is translated 

to 12). 

- Substitute each cycle (a b - . . z) which does not contain 0, by the word ab. . . za (e.g., (3 4) 

becomes 343). 
- Concatenate various words obtained in this way to a single word (hence, g = (0 1 2)(3 4) 

translates to w = 12343). 

It is easily seen that a word w thus obtained corresponds to a message path from the identity 

node to node g. The length of this path is given by 

M={ Im_, 
if the permutation fixes the element 0, 

otherwise, 

where c denotes the number of nontrivial cycles in g, and m the total number of elements not 
fixed by g. In [8] it was proved that this is exactly the distance between g and the identity, hence, 

these message paths are of minimal length. 
Note that the translation above is nondeterministic: a given node may correspond to different 

words of minimal length. For example, the permutation (0 1 2)(3 4) translates to all of the 
following words: 

12343, 12434, 34312, 43412. 
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2.1. Star Graphs with n = 3 and n = 4 

The star graph with n = 3 corresponds to the hexagonal network. Data exchange algorithms for 

this network have already been given in [2]. 

The star graph with n = 4 has the nodes listed in the following table, where the horizontal line 

separates even permutations from odd ones: 

cycle structure massage path words 

identity emp@ 

(a b c) 12 23 31 

13 2132 

1231 

3213 

(a b)(c d) 123223133121 

(a b) 123 

121232 313 

(abed) 123 231312 

132 213 321 

For each node, we have given a message word of minimal length. For nodes to which correspond 

several words, only one is given. Note that we have arranged the words in triplets in such a 

way that each word in the triplet is obtained from the previous one by applying the permutation 

0: 1 + 2 ---f 3 --t 1. The only exceptions are 1231 and 3213 which are ‘fixed’ by ~7. Indeed, 

1231, ~(1231) = 2312 and (~~(1231) = 3123 denote the same node (and likewise for 3213). This 

arrangement into triples has its importance in the construction of the algorithms below. 

Let us first consider a data exchange algorithm in which every node sends a message to each 

node at odd distance. The messages sent from a given node therefore correspond to all odd 

permutations. The partitioning into triplets induced by (T suggests the following algorithm table: 

This algorithm takes time T = 10 (i.e., the number of columns, cf. Theorem 2). As there are no 

empty entries, this algorithm is optimal. 

A total exchange algorithm cannot as readily be constructed, because of the ‘exceptional’ 

words 1231 and 3213. However, these two words can be combined with the triplets [1,2,3], 

[12,23,31], and [13,21,32] to yield the following table: 

This table can now easily be extended to an algorithm table for a total exchange algorithm 

by adding the remaining triplets in the same way as before. This results in a total exchange 

algorithm taking time T = 21. Again this is an optimal algorithm, as there is only one empty 

entry, and therefore, less than 21 columns do not suffice. 

2.2. Star Graphs with n > 5 

Lists of message words for star graphs with n 2 5 can easily be constructed (like we did above 
for n = 4), but quickly grow very large. However, as can be seen from the previous example, 
the design of a data exchange algorithm table hinges on the existence of a certain ‘rotational’ 
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symmetry induced by 0, which in the general case can be written 8s 

The important key to the construction of those tables is the knowledge of the ‘exceptional’ words, 

i.e., the wcrds for which repeated application of o does not yield a full (n - 1)-tuple. 

The following lemmas may help us determine these ‘exceptional’ words. 

LEMMA 1. The ‘exceptional’ words as defined above are those corresponding to permutations 

that commute with the permutation 0 = (1 2 3 . f . n - 1) or with one of its powers. 

PROOF. It is easily seen that the action of u on a word w corresponds to the conjugation of the 

corresponding permutation p by (T. Hence, applying cr i times to a word w will return a word 

corresponding to the same node, iff p”’ = p, i.e., iff p commutes with &. I 

LEMMA 2. Consider a permutation r E S,, which fixes 0 and which is a product of d disjoint 

cycles of length e, with de = n - 1, say, 

Then the permutations of S, commuting with r form a group C(T) generated by the cycles of 

the form 

together with all permutations p with the property p(ai) = oj iff p(oi+d) = oj+d. 

PROOF. It is easily verified that the given permutations commute with T. Indeed, permutations 

of the first kind simply rotate the elements of a cycle in 7, while permutations of the second kind 

simply permute the cycles of 7. The order of the group H generated by these elements is equal 

to d!ed. 

Now, the order of the centralizer C(r) is equal to n! divided by the number of conjugates of T. 

The latter is equal to n!/(d!ed). Hence, the order of C(r) is equal to the order of H, and hence, 

H = C(T). I 

As an example, we consider the star graph with n = 5, for which we have (T = (1 2 3 4). By 
Lemma 2 the permutations commuting with cr are 

(1 2 3 4), (1 3)(2 4) and (1 4 3 2), 

while the permutations commuting with o2 = (1 3)(2 4) are 

(1 3), (2 4), (1 3)(2 4), (1 2)(3 4) (1 4)(2 3), (1 2 3 4) and (1 4 3 2), 

and u3 yields the same permutations as u. 

These permutations correspond to the ‘exceptional’ words 

12341, 131242, 14321, 131, 242, 121343, 141232. 

Together with the 4-tuples [l, 2,3,4] and [13,24,31,42], these can be arranged into an algorithm 

table in the following way: 

12 14 3 4 313 2 4 2 

4 3 2 1 411 2 3 4 111 3 

3 1 313 2 3 1 4 114 2 4 
2 4 412 11 4 2 313 1 

This table can be extended to a full total exchange algorithm table by adding the remaining 
Ctuples as usual. This yields an algorithm taking minimal time T = 111. 
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If we only consider messages of odd length, i.e., the odd-distance data exchange algorithm, 

then the ‘exceptional’ words are 12341, 14321, 131 and 242. Together with the 4-tuples [l, 2,3,4], 

[124,231,342,413] and [142,213,324,431], they result in the following algorithm table: 

12 3 4 14 13112 4 

2 1 4 3 213 2 412 1 3 

3 4 212 3 113 1 31411 

4 3 1 1 4 2 4 2 41312 

Together with the other 4-tuples, this leads to an optimal algorithm with T = 56. 

A similar approach can be used to construct data exchange tables for still larger values of 

n. Because the constructions are rather ad hoc, it is not immediately clear whether an optimal 

algorithm exists for all values of n. However, in view of the large number of nodes (n!), we feel 

that data exchange algorithms for star graphs with n > 6 have little practical value. 

An optimal total exchange table for n = 6 (and then T = 689) can be constructed from the 

following table, which is built around the exceptional words 123451, 253142, 352413 and 432154 

together with all words of length I 2: 

Because all exceptional words are of even length, an odd-distance exchange algorithm is readily 

constructed. In this case, we have T = 250. In fact, for odd-distance exchange algorithms we 

have the following general theorem: 

THEOREM 3. On the n-star with n-l an odd prime, there always exists an optimal data exchange 

algorithm without buffering in which every node sends a (possibly different) message to every 

node at odd distance. 

PROOF. n - 1 is prime, and therefore, all powers of 0 = (1 2 . . . n - 1) are cycles of length 

n - 1. Applying Lemma 2 with d = n - 1, e = 1 yields C(a) = (a), which contains only even 

permutations. Therefore, the ‘exceptional’ words are all of even length and an odd-distance 

exchange algorithm may simply be built by partitioning the odd length words according to g. 1 
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