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1. INTRODUCTION

The mathematical literature provides several notions of “self-similar tilings,” whick
differ mainly by the group of motions that act on the prototilé [15, 21, 22, 24]. The
vague label is used to describe such strikingly different objects as the aperiodic Penr
tilings [21] and the periodic tilings obtained from the “twin-dragon fractdl0[19, 25].

In this paper we study self-affine tilings B¢ by a finite set of compact prototiles,
which tile R? by translations in a lattica. < Z¢. More precisely, a finite collection of sets
T =|{T; C Rd}f” consisting of sets that are either compact or empty, is safdite R¢

=1
if
LiNT; =0 fori # j, (1)
setting? = (M, T;
Jk+1) =R 2)
keA
and
TNkh+T)=0 forkeA, k0. (3)

For two setsX, ¥ € R? we write X = Y if their symmetric differenc& A Y = (X \ Y) U
(Y \ X) has Lebesgue measure 0, i|&,A Y| = 0. As usual, the sum of sel§, Y € R?
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is defined byX + Y ={z=x+y|x e X, ye Y} if both X andY are nonempty
and X + Y = ¢ otherwise. Allowing prototiles to be empty makes it easier to access an
important facet of the tiling problem, which is easily overlooked when all tiles are assumed
to be nonempty. A compact sEtsatisfying @) and @) is called aA-tile. It follows from (3)
that if 7 is aZ tile, thenT has measure one.

SetsT; C RY, 1 <i < M, that are either compact or empty form 4, I')-self-affine
collectionif there is an integer-valued x d-matrix A with all eigenvalues of modulus
greater than one and finite (possibly empty) $gjsc Z4,i,j=1,..., M, sothat

M
AT, = Jm;+1))  fori=1.....M. (4)
j=1
and for anyi, j, k
B+THNy+T))=0 forpely, yely andi#jorp#y. (5)

The matrixA is usually called alilation or an expanding matrix and the det={I';;} is a
digit set Note that the essential disjointnessy ieeds only hold for different sets in the
same equation of j4

IfsetsT ={T;, i =1, ..., M} form a self-affine collection for som& andI” andA-tile
R?, then we call them aelf-affineA-tiling set with M prototiles abbreviated SAT.

The stipulation that the prototiles are positioned in the tiling by translation in a lattice
is rather restrictive and excludes many self-similar (self-affine) tilings that appear in the
literature [L1, 15, 21, 22, 24].

The SATs with one prototile have been well studied. Interest in them became more
intense after the discovery of a connection to wavelet thed@ [t is known through
papers of Grochenig and Haas, Lagarias and Wang, and Conze &f 3).9, 18] in
dimensions! =1, d =2, d > 3, respectively, that if the single sBt=I"11 is a complete
set of coset representatives for the gra@idp AZ?, then there is a compact self-affine gkt
solving @) and a latticeA € Z¢, for which Q is a A-tile. In dimensiond = 1 this lattice
is explicitly A = nZ, wheren is the greatest common divisor of elementg§ifwhere we
assumed without loss of generality that@). In dimensiond > 2 it is known how to
determineA in principle [3, 18], but the problem of characterizing explicitly in terms
of A andT is still unresolved. Also, given a dilation matrix it is not yet known if there
exists a digit sef” for which A = Z¢ [17]. In short, even in the simplest cageé= 1 of a
single prototile there are still large gaps in the theory.

The focus of this paper is the class of SATs with> 1 prototiles. GivenA andT" =
{Tj, i, j=1,..., M}, we show there exist finitely mariyA, I')-self-affine collections and
we give necessary conditions for a collection to he-&ling, with special attention to the
caseA = Z. Itis then possible to establish a connection to wavelet theory, similar to the
onein [L0); that is, between SATs with several prototiles and multiwavelet bases. We show
that in general an SAT determines a multiwavelet basig4fR?) and vice versa. This
provides the first systematic construction of multiwavelet bases in higher dimensions with
arbitrary dilation matrices.

Solutions of the dilation equationd)(can be described by means of digit expansions, in
which the allowable sequence of digits in an expansion resembles the orbit of a point under
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a subshift of finite type. As in the one tile cagé,= 1, (4) has exactly one solution with
all compact prototiles. In contrast to the one tile case, when some prototiles are allowec
be empty there may exist several solutions. The familiar approach of constructing a s¢
similar set as the fixed point of an associated iterated function system will only producet
solution of equations4) with all prototiles compact, but a slight modification, for which it
is possible to have multiple attracting fixed points and also attracting periodic orbits, w
suffice to generate all solutions.

We define the notion of a standard digit det resembling the standard digit sets
introduced in 10, 16]. Elementary arguments show that for a self-affine collection to be ¢
Z4iling, T must be a standard digit set. As is shown by many examples, this conditic
is far from sufficient. The theory of Markoff chains over a finite state space is used |
analyze the self-affine collection associated to a standard digit set and results in a neces
condition forZ?-tiling in terms of a Markoff chain determined by the overall structure of
the dilation equations. Other conditions are given that take account of both the over
structure of the equations and the specific digits involved.

If the characteristic functiongr, (x) are combined in a column vectdr(x), then the
dilation equation4) can be written as

O (x) = Z Cr®(Ax — k),
kezd

where Cy is an M x M matrix with entries being either 0 or 1. Such equations are
among the main objects in wavelet theory and are called vector-valued scaling relatic
or vector-valued refinement equations. If a self-affine collectionZs iling, we show
that @ gives rise to a multiresolution analysis with multiplicify. Conversely, to any
multiresolution analysis whose basis functions are characteristic functions correspol
a self-affine Z4¢-tiling. To every self-affineZ?-tiling we then construct a particular
orthonormal basis of.2(R%), a so-called wavelet basis. These results complement th
theory of multiwavelets, 8, 13] with concrete examples and extend the workig][to
higher multiplicities.

The paper is organized as follows: The first section is an example “zoo” and by strollir
through it the reader should get a better sense of the objects under consideration. It was
confusing and mysterious variety of examples that initially sparked our interest, and v
hope that they will stimulate the reader’s curiosity. In Section 3 we construct and classi
the general solutions oflf and in Section 4 we derive a necessary condition for a solutior
of (4) to be aZ“-tiling. Section 5 establishes the relation to the theory of multiwavelets
and constructs a class of orthonormal based.fgR?) starting from a SAT.

In a sequel to this paper we will use Fourier analytic methods and the theory of
transfer operator to study SATs in a more systematic fashion.

While preparing the final version of this manuscript we became aware of an interesti
preprint 6] of Flaherty and Wang titled “Haar-type multiwavelet bases and self-affine
multi-tiles” which overlaps slightly with our Section 5 in results, but not in its approach.

2. EXAMPLES

In order to demonstrate the almost confusing wealth of different phenomena, t
examples will be presented first, with the more involved details left to the end of the sectic
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In Section 3 it will be shown that the dilation equatiegh always has a unique (maximal)
solution for which each of thé&;’s is compact. This solution is denot&l= {Q;}. The
dilation equations have the trivial solutidh=¢,i =1,..., M, and often other solutions
as well. We assume, throughout this discussion, that for soffie# @.

2.1. A General Example

We begin with a construction that produces nontrivial examples in any dimedsion
is based on the existence of lattice tilings with a single tile.ILet {y1, ..., y,} be a set of
coset representatives for the graiffy AZ¢ whereA is expanding an¢ldetA| = 4. By the
theorem B, 18] there is a latticeA € Z¢ and a unique compact soluti@h to the equation
AT =T 4T, so thatA + Q is a tiling of R?.

Now choose arbitrary; € A,i =1,...,q, Sety;; = yi + Aa; —aj andl';; = {y;;}. The
dilation equations4) then have the solutio@ = {Q;} with Q; = A~10 + A1y + o;.
Since the setg + 0 = (J!_;(B + A~1y; + A~1Q) are all disjoint forg € A, so are
the setsQ;. Thus insofar as we understagd we can construct a self-affing-tiling set
Q={0:}.

In particular the choic& = {y1 = (0,0), y2=(0,1)}, o1 = (0,0), andaz = (1, 1) for

the dilation matrix
1 -1
A=
(1)

AT1=T1U ((—1, =1) + T»),

yields the equations

(6)
AT2=((0,3) + T1) U((—1,2) + T2).

They have a solution which consists of two contracted, translated copies of the well-known
twin dragon, cf. Fig. 1. Since the solution 4f7 =T + T yields aZ?-tiling [10], by the
above argumeng also yields &?2-tiling of the plane.

15
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FIGURE 1
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2.2. Exampleswitd =landM > 1

For simplicity we mainly consider examples witf =2 or M = 3 and Ax = 2x or
Ax = 3x indimensiond = 1. Although this may seem a very special case, it already show
the puzzling variety of phenomena in the tiling problem with several tiles.

ExXAMPLE 1.

2T1=a + T>,
(7)
2T, =T1U (b + T1).
Taking measure we havaZd| = |T»| and 27»| < 2|Ty|. It follows that any solution has
measure zero, and certainly these sets do naRtile

EXAMPLE 2.

1=T1UA+T1)U@2+T1)UT3,

=2+ T2)UB+T2)U 4+ T2) UTs, ©
3T3=(—2+T3) U (—=4+ T3) U (1+ Ta),

3T =2+ Ta.

These equations have a number of different sets of solutions in each of ¥gachl 7, are
sets of measure zero. The simplest solutionsBre: [0, 1], T; =@ fori £ 1; T> =[1, 2],

T, =0 fori #2;andTy =[0,1], T = [1,2], T; = @¥,i = 3, 4. The first two solutions
are Z-tilings, whereas the third one is &ailing set. There are three other solutions
for which the 7; are either compact or empty. For the “maximal” solution with &l
compactQ4 = {1}, Q3 is a Cantor set, an@1 and Q2 are fractal sets containing the
intervals[0, 1] and[1, 2], respectively. As in%), the form of the dilation equations, without
consideration of the particular digits, forces some prototiles to have measure zero. M
elaborate instances of this behavior will be considered in Section 4.

ExamMPLE 3. Forg € Z consider the equations

q
qTi=|J(@j+T) fori=1.. M, a;€eZ. (9)
j=1

The equations decouple and an area argument shows that each equation, and henc
whole set of them, determines a self-affine collection. Observe that some of the prototi
may be chosen to be empty. However, if tliés have positive measure, th@n= {T;} is

not aZ-tiling set.

The question of when a set isAatiling set for a latticeA is subtle. In the next example
we look at a special case where no suckxists.

EXAMPLE 4. Assume that, c = 1(mod2 andb = 0(mod 2)and consider
2I=ToU (a + 1),

(10)
2Ty = (b+T1) U (c + T).
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In this example there is a unique compact solution which is a self-affine collection. In
fact, multiplying the equations by 2 and substitutiag)(for 27;, we obtain the decoupled
equations

Ai=b+TH)U(c+T)U b +2a+T1) U (c+2a+Th), 1

AT> = (2b+ T2) U (2c + T2) U (a + 2b + T2) U (a + 2¢ + T>). ()
From our choice of digitsz, b, ¢ it is easily deduced that the digit sel§ = {b,c,
2a + b, 2a + c} andTy, = (2b, 2c, a + 2b, a + 2c} are both congruent té/4Z. Therefore
by the tiling theorem9, Theorem 2.3], both1 and Q2 are lattice tiles. Consequently,
0 = 01U Q> has measure 1 and is not &-tile. Then{Q;} is not a self-affineZ-tiling
set either.

The simplest choice of digitsis=1, b =0, ¢ = 1, which results inD; = Q> = [0, 1].
Whena =1,b=1,c=2, we getQ1 =[1/3,4/3] and Q2 = [2/3, 5/3]. In general, one
obtains tiling sets of infinite connectivity.

For the particular choice = 1,5 = 2, ¢ =5 we show thafQ;} is not a lattice tiling for
any latticeA, although eaclp; is aZ-tile by itself. In this casd™ = {2, 4,5, 7} andI';, =
{4,5,10,11}. Since by the digit expansion theoreftd], see also Section 3, Q; if and
only if x =332 ,47/¢;, ¢; €T}, we deduce tha; < [2/3,7/3] and Q2 < [4/3,11/3.
Again by [9, Theorem 2.3]Z + Q; =R and thusl = [4/3,7/3] € 01U (1+ Q1) and
I CQ2U(—14 Q02)U(—2+ Q). ltiseasytoseethal N(e+ Q;)| > 0fori =1,2 and
the corresponding translates

Onthe other hand, i©1 U Q2 is aA-tile, then necessarilyx = 2Z, since|Q1U Q2| < 2.
This implies thatt € QU (—2+ Q») and thugI N(—1+ Q2)| = 0 yields a contradiction.

We conjecture that in general, if; does not consist of consecutive integers, tii&n
cannot be a lattice tiling set.

EXAMPLE 5.

2T =ToU (2+ T>»),
(12)
21, =T1U(1+T1)U 2+ 1»).

The unique compact solution 181 = Q2 = [0, 2]. The first equation expresses 2@s a

disjoint union of translates af», but in the second equatio2 is a union of overlapping
intervals. Thus4) and 6) are only satisfied for the first equation, a@ds not a self-affine
collection. Nonetheless they satisB) @nd @) with A = 2Z.

EXAMPLE 6.
2I1=T1U(-1+T3),
2T, =2+ Ty U 1+ T3), (13)
2I3=(4+T1) U (4+ T2).
The unique compact solution 81 = [0, 1], Q2 =1[1,2], andQ3=[2,3]. ThusQ is a
self-affine 37%tiling set. This example will come back to haunt us.
EXAMPLE 7.

2T =T, U T>,
(14)
21, =A+T1)U @B+ Ty).



SELF-AFFINE TILINGS WITH SEVERAL TILES | 217

FIGURE 2

This is the most interesting and complicated of the one-dimensional examples we consi
We show that the compact solutighis a self-affineZ-tiling set at the end of this section.
See Fig. 2.

The more general case

2N =T1U(a+ 1),
2T =(b+ T U (c+ T2)

is already beyond the scope of this paper and will be considered in the second part. |
worth noting that whea =0, b =1, ¢ = 1, the solution isQ1 = [0, 1/2], 0> =[1/2, 1],

a self-affineZ-tiling set. On the other hand, far=1,b =1, ¢ =0, yields Q1 =[O0, 1],

02 = [0, 1], which does not satisfy jJlalthough it is a self-affine collection. While the
digit sets are very similar, the second example results in an obvious redundancy.

2.3. Exampleswitd =2 andM =2

=5 %)

ATi=ThU (1,00 +T1)U((1,1)+ T1) U ((1,0) + T),

EXAMPLE 8. Let

and consider

(15)
AT =ToU((0,1)+ T2) U ((1, 1) + T2) U((0, 1) + T1).

These equations yield triangles as a soluti@n;having verticeg0, 0), (1, 0), (1, 1), and
Q5 having verticeg0, 0), (0, 1), (1, 1). Q is aZ2-tiling set related to the very basic square
tiling of the plane.

Another example which is illustrated in Fig. 3 with

(1 3)

ATy =T UT>,
AT2=((1,0+T2) UTs,
AT3=((1,0)+T1) U((1,0) + T3).

SinceT = Th UT>U T3 satisfiesAT = T U ((1, 0) + T), the equation for the “twin dragon,”
Q is azZ?-tiling set.

More generally one can choose the digits so that for g’ad;bf‘il I';; =T is afixed set
congruent taZ?/AZ?. Computing gives
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-06 -04 -02 0 02 04 0.6

FIGURE 3
M M M M M
A(UE’): (UFiA,'-i-T,'):U( Fij+Tj>
i—1 i—1 \ j=1 j=1 \i=1
M M
=Jr+1)=r+ (UT,)
j=1 j=1

With T = Uf‘ilTi we haveAT =T + T and the tiling theorem in3] implies that the
solutionT is a self-affine tile fofR?. Still we do not know whetherlj or (5) are satisfied.
In fact, there are examples, cf. ExampBsnd7 witha = 1,5 =1, ¢ = 0, for which they
are not. It would be interesting to know additional conditions necessary to guarantee that

these examples work.
20
(o 2)

ATh=T1U (1,0 +T1) U ((1,1) 4+ T1) U ((0, =1) 4+ T»),

EXAMPLE 9. Again

and consider

16
AT =(2,3)+THU (L, D)+ T2)U((2,2)+ T2) U ((1,2) + T2). (16)
Q1 and Q> are triangles with verticeg0, 0), (1,0), (1,1) and (1,1), (1, 2), (2,2),
respectively, andD is a self-affineZ?-tiling set. This example can be derived frofb)
in much the same way as the examples9ndre constructed from lattice tilings with one
tile, i.e., the prototiles have been translated by elements of the lattidde leave the
formalities to the reader.

ExXAMPLE 10. Let

and
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-1 -0.75 05 025 0 025 05

FIGURE 4

ATy =T, UTo,
AT>=((0,1)+T1)U((1,0) +T2).

The compact solution is a self-affi##-tiling set, as will be discussed in the next section.
This tiling resembles the well-known twin dragon but cannot, to our knowledge, b
obtained from it by any simple maneuver. See Fig. 4.

(17)

ExampLE 11. Figure 5 shows the maximal solution of
AT1=T1U ((0,1) 4+ T71) U T>,
AT =(1,00+T)U 1,0+ T2) U0, 1)+ T2)

with respect to the dilation matrix

(1)

-08 -06 -04 -02 0 02 04

FIGURE 5
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-0.5 0 0.5 1 1.5

FIGURE 6

Note that one tileD; is connected, whereas the other tile is not. The tileQ = 01 U Q2
is a solution ofAQ = Q U ((1,0) + Q) U ((0, 1) + Q). O and its translates bg0, 1) and
(1, 0) are depicted in Fig. 6.

ExXAmMPLE 12. Figure 7 shows a bizarre solution of

AT1=T1U((3,0)+ T1) U (1, 1) + T1) U ((0, —1) + T2),
AT =23+ TV (LD +T2) V(2,2 +T2)U((1,2) + T2)

(9

It seems tha tiles, but we do not have a formal proof for this.

with

2.4. Details

In this section we prove that the self-affine collections in Exampsesi10areZ?-tiling
sets. We shall use a direct elementary method that is based on the geometric interpretatior

FIGURE 7
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of the transfer operator irlp]. We hope that in view of these calculations the reader will
appreciate the more systematic approach by means of Fourier analysis and the trar
operator which is the subject of Part Il.

Suppose thal is an(A, I')-self-affine collection|detA| = ¢, and thaZ? + Uf‘il T =
R?. Define the non-negative numbers

aijk)y=|T;N(k+Tp)| fori=1,...,M, andk € Z°. (18)

To prove that the self-affine collectidh is aZ?-tiling, it is sufficient to show that
aij(ky=0  ifi# jork#0. (19)
The following two identities which follow from the self-similaritg will prove useful,
a;j (k) = aji(—k) (20)

and

M M
qaijK)=Y_"Y" 3" > am(p— o+ Ak), (21)

=1 m=1lael’y ,BGFjW
where a sum over an empty set equals 0 by definition. Equationig2@bvious, 21)
follows by computation from

g|T; 0 (k + T))| = |AT; 0 (Ak + AT))|

M M
(UFquTz) ﬁ(UAk—i—ij—i-Tm)‘
=1

m=1

M M
ZZZZ Z TN (B —a+ Ak + T)|

=1 m=lacl’y ﬂEF_/m

M M
=Y 330 > am(B—a+ Ak).

I=1m=1aely Beljy

In Example7, 2Ty = Ty U Tp, 2T> = (1 + T1) U (3 + T»); (21) takes the form of the
following four equations:

2a11(k) = a11(2k) 4 az2(2k) + a12(2k) + az1(2k), (22)
2a25(k) = a11(2k) + az2(2k) + a12(2k + 2) 4 az1(2k — 2), (23)
2a12(k) = a11(2k + 1) + a22(2k + 3) + a12(2k + 3) + a21(2k + 1), (24)
2a21(k) = a11(2k — 1) 4+ a22(2k — 3) + a12(2k — 1) + a21(2k — 3). (25)

Referring to Theoren2, at least one, and therefore both prototi@s of the maximal
compact solution have positive measure and c@®ferin our notation that is;1(0) # 0
and az2(0) # 0. Employing 0) for k = 0, the first two equations becoma1(0) =
a22(0) + 2a12(0) and a»2(0) = a11(0) + 2a12(2). From this we conclude that;2(0) =
a21(0) = 0 anda11(0) = a22(0).
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Since all entries are nonnegative, we see fraed) (vith k = 0 thata11(1) = a22(3) =
a12(3) = a21(1) =0.

In (22) k = 1 givesa11(2) = az2(2) = a12(2) = a21(2) = 0. Also, k =1 in (25) yields
az2(1) = a12(1) = 0. So far we have;; (k) =0 fori, j =1,2 andk = +1, +-2.

To deal with|k| > 3, we check the size of the prototiles. Set=minT; U T> and
B = maxTy U T». Then from (14 we conclude thatr > 0 and 8< 3. This implies that
a;jj (k) =0for k| > 3 and by (9) Q is a self-affineZ-tiling set.

In Examplel0, where

AZG _D ATL=T1UT;,  and  AT;=(0,1)+71)U(X0)+T),

(21) takes the form of the following four equations:

2a11(k) = a11(Ak) + a22(Ak) + a12(Ak) + a21(Ak),

2a2(k) = a11(Ak) + a22(Ak) + a12(Ak + (1, —1)) + a21(Ak + (=1, 1)),

2a12(k) = a11(Ak + (0, 1)) + a22(Ak + (1, 0)) + a12(Ak + (1, 0)) + az1(Ak + (0, 1)),
2az1(k) = a11(Ak — (0, 1)) + az2(Ak — (1,0)) + a12(Ak — (1, 0)) + az1(Ak — (0, 1)).

Let §; = maxX]|x| : x € T;} be the (Euclidean) extension d@f, then (7) implies
V281 = max(81, 82) and /28, < max(§y + 1,82 + 2), from whichs; <1+ 2-1/2 and
82 < ~/2+ 1. Thereforel1 U T> is contained in a disk of radiug2 + 1 and consequently
a;j(k)y =0 for |k| = 5.

In order to show thaly U 7> Z2-tiles R?, it is sufficient to show (1pfor |k| < 4. This
is possible and an exercise in patience, but we shall take a more experimental approach
and use the evidence from Fig. 4 that the maximum extension of both tiles i toed
y-direction is 2. Using this geometric fact we have to verit@)(for k = (0, 0), (£1, 0),
(0,+1), +(1,1), £(1, -1).

As above, by recourse to Theorenboth prototilesQ; of the maximal compact
solution have positive measure, thataig (0, 0) £ 0 andaz2(0, 0) # 0. Employing 0)
for k = (0, 0), the first two equations becomg (0, 0) = a22(0, 0) + 2a12(0,0) and
a22(0, 0) = a11(0, 0) + 2a12(0, 0). From this we conclude thait;»(0, 0) = a21(0,0) =0
and|T1| = a11(0, 0) = a22(0, 0) = | T>|.

Since all entries are nonnegative, we see from the equation fe(@dhata11(0, 1) =
a22(1,0) = a12(1,0) = a21(0,1) = 0 and by symmetry20) a11(0, —1) = az2(—1,0) =
az1(—1,0) =a12(0,—-1) =0.

Usinga11(0, 1) = a11(1, 0) = 0 and @0), we obtairny;; (1, —1) = 0 anda;; (1, 1) = 0 for
i, j =1,2.Nextusingz12(1, 0) = 0 impliesai1(1, 0) = a21(1, 0) = 0, whereag1(0, 1) =
0 givesa2(0, 1) = a12(0, 1) = 0. Together with the symmetrg0) this implies (9) for all
k = (k1, k2), |ki| < 1 and thatly U T» is aZ2-tiling.

3. EXISTENCE OF SELF-AFFINE COLLECTIONS

Fix a dilation matrixA, a multiplicity A, and arbitrary finite digit sets;; 740, j=
1,...,M. Seth‘fj=1 I';; =T and write{1, ..., M} = S. In this section we determine all
solutions to the dilation equatiod); As in the one tile case, the solutions are described
by digit expansions, the digits of which are taken frbmUnlike the one tile case, not all
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sequences of digits may occur as digit expansions. The difference is somewhat like t
between the full sequence space®and a subspace determined by a subshift of finite
type [14].

To motivate the following definitions, observe that the dilation equations can be used
rewrite each prototile of a solutio|T;} in the form

M
Tl-:A_l<UFij+Tj>.

j=1

Applying this operation again to each prototilg gives

M M M M
T=JAar; + A—1< Jaru+ A—lTk> =JUA T+ AT+ AT

j=1 k=1 j=1k=1

Iterating this procedure times shows that < 7; if and only if for somek € S

n
xeY Alej+ AT, (26)
j=1

whereej € 'y, p.,, for j=1,....,n and p1 =i. Since A~ is contractive, all of the
setsA™"Ty lie in a small ball forn large, and consequently is essentially determined
by thee;. An elaboration of this argument yields

ProPOSITION 1. Set

o
0= {x eR?:x=) A, e €T, #9 for somep € andplzi}.
k=1

Q= {Qi}f‘il is the unique solution t¢4) for which all prototiles are nonempty and
compact.

As was observed in Exampl2and3, there are solutions for which some, but not all, of
the sets are empty. L&t = {7;} be any solution of (Bwith 7; empty or compact. Define
N={ie{l,...,M}:T; ##}. Removing the set§T; : i ¢ N} in (4), we obtain another
dilation equation for which the unique solution with all prototiles being nonempty an
compact is defined d90;,i € N} instead ofi € S.

This remark leads to the following.

DEFINITION. A nonempty subseV C Sis said to bg A, I')-closedif j € N andi ¢ N
imply I';; = ¢.

The definition is similar to the one from the theory of Markoff chains and will appea
less coincidental in the next section. In this context closed sets are used to catalogue
nonempty prototiles in a solution ta4)(

For this we define the following sets of sequenceSirandI'Y. GivenN C S, let

RY = {0021 €SV 1 p1=i, pr € N, Ty 9, Yk}
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and let
QY = {(e)p2, €TV |& €Ty, p,,, for somep € RN}

be the set of all “paths” iV starting ati. Then we define the sets

QlNz{x|x=ZA_jej, (ej)teN}, (27)

j=1

if i e N andQY =¢ wheni ¢ N. SetQ" = {QV}. ObviouslySis closed,0> = Q;, and
05 = Q. It follows easily from the definition that iV is (A, I')-closed thenQ # ¢ if
and only ifi e N.

Since the{ Q;} may overlap, these are not always self-affine collections. See Ex&mnple

THEOREM 1. (a)For any (A, I')-closed setv, OV satisfies the dilation equatic@).
The sethV is compact ifi € N and empty otherwise.

(b) If T = (T;} is a collection of empty or compact sets that satisf@sthen7 = QV
for some(A, I')-closed seiv.

(c) If Ny and N> are (A, T)-closed sets an@V1 = Q2 then Ny = N». Also, if
N1 C NpthenQM c QM fori=1,..., M.

In Example2 the various(A, I')-closed subsets @ are {1}, {2}, {1, 2}, {1, 3}, {1, 2, 3},
andS. They correspond to the solutions described in Section 2, in the respective orders.

We assume from now on that @A, I')- closed setvV C Sis given.

Choose a norm ofR? for which A1 is a contraction; that isjA~1x|| < A|x|| for
all x e R and for some. < 1. Definew: TN — RY by w(e) = Y22, A *¢;. With the
product topology o™ the mapw is continuous. Furthermore, fore N, @Y < ' is
closed and hence compact, and therefore thQﬁ’ei: w(Q{") is also compact.

We introduce further definitions and prove a lemma before proceeding with the proof of
Theorenil. The Euclidean metric oR¢ is writtend (-, -). Let Hy(R?) be the set containing
the compact subsets Bf and the empty set with the (modified) Hausdorff metric

DIX.7) — max{sup,cy d(X, y), SURcx d(x, Y)} for X,Y #0
XY= supy (0, y) + 10 for X = 0.

Let H)! (R?) be theM-fold Cartesian product afl;(R?) with the product metric.
Define the functiong;: H}! — Hy by

M
<Pi(Zl,---,ZM)=A_1<UFij+Zj) (28)
j=1

and lety: Hé” — H@M be the producp = (¢1, ..., om). ¢" will denote then-fold iterate
of ¢ and we writep” (Z1, ..., Zy) = (Z},.... Z}y) = Z".

LEMMA 1. Given anyZ = (Z1,...,Zy) € HQ’,”, suppose thatv = {i | Z; # @} is
(A, T')-closed. Then

@) ¢"(Z1...., Zy) converges t@Qy , ..., 0} in the Hausdorff metric.
(b) If Y e HQ’,” satisfiesZ; = Y; wheneverY; # ¢, then for eachn € N andi =
1,....M, go?(Z) ng?(Y).
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Proof. (a) By (27) the setsQlN can be written in a concise form as follows:

01 = U (347 @9

N =
peR! k=1

If i ¢ N thenRY = ¢ and therefore = ¢ as required. Furthermore,iif¢ N then it is
clear from the definitions tha = ¢ for all » € N and the convergence is assured in those
components. We argue by induction that forraét N andi € N,

Zln = U <A_nzpn+l + Z A_k Fpkpk+1> . (30)

N =
pER! k=1

Before proceeding with the induction observe that the characterizaticff afiven
by (30) can be applied to prove convergence. Given- 0 chooseng > 0 so that for
i=1...,M,andn >ng, A7"Z; € B(0,«/2) andA*|w(e)| < a/2 foralle € SZZN Then
fori € N andn > ng

n o0
D(Z?’ QzN) = D( U (A_ann+1 + ZA_kFPkPk+1)’ ZA_kFPkPk+1>

peRN k=1 k=1
o0
= Ssup D(A_"prl, Z A_kakal) <da. (31)
peRY k=n+1
Therefore{Z"} converges tgQ?Y . ..., Q1)) as claimed.

We now turn to the proof of30). It is obvious foer.O. If it holds for eachZ”, then by
definition

M
ztt=pt ( i+ Z?)
j=1

M n
= U ( U A_(n+1)an+1 + ZA_(k+1)FPkPk+1 + A_lrij> : (32)
j=1

pERy k=1

Givenp e Rj." with T # 0 define = {B}32, by Bry1= px for k e Nandpy =i. Then
by definitioni € N andg € R{V. Conversely, ifg € R{V andp is defined as above, then
peE Rj.V with j = 2. Thus (32 can be continued

n
1 —(n+1 —(k+1 -1
Z;H_ = U ( U (A (ot )an+1+ZA (e )FPkPk+1+A Fij)

{jITij#0} peR;v k=1
n+1
—(n+1 —k
= U (A o )Zﬁn+2 + ZA Fﬁkﬂk+1>
peRN k=1

which completes the induction.
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(b) follows easily from the definition:

M M
@i(Y1,....Yu) =A‘1<U Iij + Y,~> c A—1<U Iy + Z,~>
j=1 j=1

=¢i(Z1,.... Zy).
]

Proof of Theoreml. We have already seen that the s@ﬁ’ are either compact or
empty. Since

00 o
N —k+1 —k+1
AQ; = U (2 :A " FPkPk+1> = U (FP1P2 + E :A * Fpk+1pk+2>

N = N =
peRN \k=1 peR! k=1

o (o (£

1<j=M peRY \k=1
jeEN J
M
= U @m+of)=U[m;+0f)
l<j=Mm j=1
JEN

they satisfy the dilation equations.
Let 7 be a collection of compact sets that satis#y. DefineN = {i | T; # ¢} and
suppose thate N andTl’,,; # @. SinceT; # ¥

M
T, =A_1<U(Fnj +T,->> #9 (33)
j=1
and thereforeV is (A, I')-closed. From the previous lemmé(Ty, ..., T);) converges to
(Qllv, . Q%) in the Hausdorff metric, but sincd, ..., Ty ) is a fixed point ofy we
haveZ = QV.

If N1 and N2 are distinct(A, I')-closed sets then without loss of generality there is
ann € N1\ Na. It is immediate from the definition tha@ﬁ’l # () while Q,ﬁvz ={. The
inclusion val - QINZ for N1 € N> follows directly from the definitionZ7). m

Remark 1 Theoreml can be seen as giving a classification of the fixed points of the
operatorg defined in 28). In contrast to the single tile case, in whighis an iterated
function system with a unique attracting fixed poitl, we may have a finite number of
fixed points and periodic cycles, each having an associated basin of attraction.

In Exampled from Section 2 the s€i(Q1, ¥), (4, Q2)} is a period two cycle and any
of the form (Z41, %) or (4, Z2) will accumulate at the cycle. The system also has the
fixed point(Q1, Q2) which is the limit of anyZ with both components nonempty. Along
with the trivial fixed point(¢, ¥) the above completely describes the limiting behavior of
iteratingg in this example. We will be better equipped to describe this phenomenon later
in the section.

Following [16] we call {T;;, i,j =1,...,M} =T a standard digit seif for each
j=1L....M, T; = Uf-‘il I';; is a complete set of coset representatives for the group
7/ AZ?. As we will see, it is precisely the standard digit sets that have relevance to wavelet
theory.
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THEOREM 2. Suppose thal is a standard digit set and is an (A, I')-closed set.
ThenQ" is a self-affine collection and? + (¥, o) =R.

Observe that these conditions are not necessary. In Exahipis not a standard digit
set, butQ is nevertheless a self-affine collection. It will follow from Theorem 3, that for
such example® is not aZ4-tiling set.

If N1 and N2 are two nonempty, disjointA, I')-closed sets, then we infer from the
theorem that foi = 1, 2, theZ“-translates of the s@?”zl Q?’" coverR?. Consequently
we have:

COROLLARY 1. Suppose thal is a standard digit set and/; and N, are disjoint
(A, T')-closed sets. The@ is not aZ“-tiling set.

However, as is shown in Exampe © might tile with a coarser lattice.

It is necessary to introduce some new ideas in the proof of The@rdrat C be the
M x M matrix, called theeounting matrixwith entriesc;; = #I";; and let| detA| = ¢. The
importance ofC lies in the following lemma.

LEmMmMA 2. (a)For any dilationA, digit setI’, and solutionZ to (4)
M
qIT;| <Y cijlTj|  fori=1,.... M. (34)
j=1

Equality holds for alli, if and only if the disjointness proper{) is also satisfied and”
is a self-affine collection. In particular for any self-affine collectibrthe column vector
(IT4l,...,|Tm])" is an eigenvector of to the eigenvalue.

(b) If T is a standard digit set, then for eagh=1, ..., M,

M
Y =g (35)
i=1

in other words,(1/¢)C" is a stochastic matrix.

Moreover, any solutiof” to (4) is automatically a self-affine collection.

Proof. (a)Foreachi=1,..., M,

q|Ti| = |AT| =

M M
Jriy + 75| <D cijITyl. (36)
j=1 j=1
Equality holds in theth equation if and only if the setg + T; are essentially disjoint for
y € Uﬁil I';;. Thus, equality holds for ailif and only if 7 is a self-affine collection.

(b) The sumy_" | ¢;; represents the number of elements in the digitset (), T
and thus it equals #I'=#Z¢/AZ? = | detA].

This gives

M M M
SN eIt =>"qlTjl. (37)
j=1

i=1j=1
This means that in3g) equality must hold for ali and thus7 is a self-affine collection
by (a). B
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Proof of Theoren2. It remains to be proven that

M
Zd+<UQlN>=R‘1. (38)
i=1

We may choose compactsets i =1, ..., M, in R? with the following propertiesZ; = ¢
ifandonlyifi ¢ N, Z; N Z; =@ fori # j, andJ™, Z; = [0, 1.

Recall that we writep"(Z1, ..., Zy) = (Z1, ..., Z};), wherep was defined follow-
ing (28). We will show by induction that the following statements are truesfor 0:

Z'=0 if and only if i ¢ N, (39)
Z}NZh=g fori# j; (40)

M
Uz isaz-ile. (41)

i=1

Since by Lemm4d Z7 ConvergesthlN in the Hausdorff metric, 38) follows from (41)
asin [L0].

The claim is argued by induction. It is certainly true ot = Z. Suppose39)—(41) hold
for Z". Combining @0) and @1) we infer that fori # j orl #k, (k+Z") N+ Z’]?) =.
Since eaclT'; is a set of coset representatives, it follows thatife j orl #k, y; € T;
andy; eT;

Vi + AR+ Z) N (y; + AL+ Z5) =0
and

UUo+zp=U (

j=lyer; i,j=1

U o+ Z?))

yeli;

is anAZ?-tile. Consequently, the sets (y + z7) are essentially disjoint for € I';; and
1<i, j <M, and their union is &“-tile. Finally, since

( U (y+zy))>

Jj=1 “yely;

M

we conclude thag]** 0zt = g for i # j and U}, Z] ™ is aZ-tile. m

A different proof of Theoren? based on Fourier analytic methods will be given in
Part I1.

4. NECESSARY CONDITIONS AND MARKOFF CHAINS

We shall now discuss a number of necessary conditions for a dilateomd a digit sel”
to determine a self-affine tiling@. Where not stated otherwise we taReo be a self-affine
74 +iling set. The setting will usually be further simplified by the assumption that for each
i=1,...,M,the setQ; has nonzero Lebesgue measure.
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The importance of standard digit sets becomes apparent in the following theorem, wh
generalizes a similar result in the one-tile cab@.[

THEOREM 3. If Qis aZ?-tiling set and ifQ; has positive Lebesgue measure for each
i=1,..., M, thenl is a standard digit set.

Proof. If T is not a standard digit set then, for sorhd"; is not a set of distinct coset
representatives foZ¢/AZ?. Then either there arky € T';,; andky = k1 — AL € Ty,
¢ e 7¢, representing the same coset, or some coset is not represeiiteetip))”; T';;. In
the former case by the self-similarityy + T; € AT;; andkz 4 T; € AT;,, which implies
k1 +T; € A(T;, + £). Since by assumption &ll; have positive measure, the inequality

|T;, N (L +T,)| > [A" (ke +T5)| > 0

furnishes a contradiction to the tiling propert}) @nd @). ThusT'; consists of distinct
representatives &4 /AZ?. In particular,}"™, ¢;; < g.

Since the disjoint uniof = J!”; 7; yields aZ¢-tiling, T has measure 1 and Lemi2a
implies

M
DY ailTil=q ) ITii=q.
=1

i=1j=1 i

If Zf‘il cij <q.thend ;13 ¢ijlTj| < g |Tj| =q provides a contradiction. This
means that J7 | T';; is a complete set of representativedf AZ.

At this point, it is necessary to introduce concepts from the theory of Markoff chain
which can be found in the standard texts, e ., The results to which we make explicit
reference appear as Propositriet P denote the stochastic matri/q)C?. ThenP is
the matrix of transition probabilities for a Markoff chain with state sp&can invariant
probability v on S is a right eigenvectotv(1), ..., v(M))T of P of eigenvalue 1 with
M v =1.

AsetN C Sisclosed, ifpjx = 0, whenevey € N andk ¢ N (see b, remark on p. 384]).
Sincepji # 0, if and only ifIy; # @, closed sets in the sense of Markoff chains coincide
with the (A, I')-closed sets defined in Section 3.

An irreducible set is a closed sa¥ C S that contains no proper closed subsets. Let
R denote the union of all irreducible subsets $fand call a stater € R recurrent

(or persistent). The complement & is the set/ of transientstates. Leipff) denote the
ijth entry of the matrixP”. A state; is periodicof periodr if p;’;) =0 unless: = mt for
m € N, andr is the smallest such integer. A Markoff chain is caligzbriodicif S contains

no periodic states arideducibleif Sis irreducible.

PROPOSITION 2. (a) There exist disjoint irreducible set®;, ..., Ry, with £ > 0 so
that S can be partitioned as

S=R1U---URyUI. (42)

(b) For eachi, 1 <i <k, there is a unigue invariant probability; with the property
thatv; (x) =0for x ¢ R;, andv; (x) > O for x € R;. Every invariant probability is a linear
combination of the;’s.
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(c) Suppose the Markoff chain is irreducible and some stai® periodic of periodr.
Then every state is periodic of periadand for the Markoff chain with the matrix of
transition probabilitiesP?, Sis partitioned intor nonempty irreducible subsets.

(d) If a Markoff chain is irreducible and aperiodic then for @ll; € S

Jim pi =v((j) > 0. (43)

wherev is the unique invariant probability o§ = R;.
The proposition has the following consequence.

THEOREM 4. If T is a standard digit set an@ is a Z¢-tiling set with |Q;| > 0 for
1<i < M, then the associated Markoff chain is irreducible and aperiodic.

Proof. By Corollary1 only one irreducible set can appear in the decomposidéh (
Setp = Zf‘il |Q;]. It follows from Lemma2 that the column vectar with v(i) = p~1| Q;|
is a probability. As a result of the hypothesis that all prototiles have positive measure,
v(i) > O for alli € S. In light of Propositior2(b) the set of transient statéss empty and
therefore in (42 S consists of a single recurrent set.

Suppose that the chain is periodic. As in Examplie is possible to define the set of
dilation equations

AZQz—UAFzJ +AQ] UAF11+<UFk]+Qk> UF + Ok (44)

Jj=1 Jj=1

for some digit setl‘l?k. It is then possible to recursively define the dilation equations
A"Q; = U,i‘”zl ' + Ok, which we call eqnf). For alln € N the maximal solutiorQ’
of eqnsf) is then equal to the original solutiad of (4).

Let C™ denote the counting matrix of the dilation equations eyrising the fact that
I' is a standard digit set, a computation shows @4t = C”. Consequently, the equations
determine a Markoff chain with transition matgx™(C ™) = P, whereP is the original
transition matrix. By assumption there is a numbet N so that for the Markoff chain
with transition matrixP®, S containst nonempty irreducible subsets (PropositR{ia)).
Corollary1implies thatQS = Q is not aZ?-tiling set. B

A nonnegative matrixB is calledprimitiveif, for somer € N, B* has all positive entries.
It follows from Propositior2(d) that, under the hypothesis of the previous theoremust
be primitive. Then certainly the original counting matiixis also primitive. We have
proved:

COROLLARY 2. If ' is a standard digit set an@ is a Z?-tiling set with |Q;| > 0,
1<i < M, thenC is primitive.

Using arguments from Markoff chains we can now further clarify the nature of the
solutions of (4. The next theorem shows that for standard digit sets the tilés'irare —
up to null sets — either equal to the corresponding tiles in the maximal sol@tmrequal
to sets of measure zero.

THEOREM 5. If ' is a standard digit set then for aniy, I')-closedN C S, Qf" =0,
ifieN,andQN =0,ifi ¢ N.
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Proof. If i € N is recurrent, it belongs to a unique irreducible get= R, C N
appearing in the decompositiofd). Since, by Theorem QiL - QlN C Q;, it will suffice
to show that Q%[ = | 0;|.

According to Lemma2, the vector with entrie$QlN| is an eigenvector ofP. Then
Proposition2(b) implies that QlN | = 0 for all transient statese S.

LetU D L be the smallest set with the property that i€ U andk ¢ U thenI j; = . If
j €U\ L, thenj is transient. This follows sincg,e U \ L if and only if thereisd € L
and a sequencg=p1,...,pn =1 sothatforeactk =1,...,m —1,T ., #¥. Then,
by the definition of irreduciblep,, 1 is a transient state. Furthermore, by the definition of
recurrent,p,,_2 is transient and then, by inductiop,is also transient. We conclude that
forjeU\L,|Q;|=0.

Note that the equations off{ expressAQ; for i € U as a union of translates @ ;
where thej also belong td/. Then the maximal solutio® = {Qi}iey of the equations

M
AT =@+ 1) =@ +1)
jeu j=1

satisfiesQ; = 0;.

In terms of the representatio@), for eachi € U, Q; = Q; can be split into a disjoint
union of sets, where the first contains all expansions witk L. ThenQ; can be written
as

o0
Qi =Qf U J Ein, (45)
n=2
where
n—1
Eip= { U (ZA—"Fpk,pHﬁA—"Q,-) | pr=1i, pn=Jj. px €L, V1 <k Sn—l}-
jeU\L \ k=1

Since |Q;| = 0, eachE;, and thereforel J, E;, is a countable union of sets of
measure 0. It follows thaQ’| = [Q;|. W

The next elementary theorem explains the problem that arises in cases like Exampl
witha =1, b =1, andc = 0. Note that no assumptions are made about the structure of t
digit set.

THEOREM 6. LetA andT be arbitrary and assume that for eatlke S, Q; has positive
measure. Suppose also that there is a nontrivial permutatiai S for which the set of
dilation equations

M
ATs i) = U Lij + T5(j) (46)
j=1
with indices permuted is identical to the unpermuted set of dilation equations. Then t
solution@ is not a lattice tiling set for any lattice\.

Proof. Choose € Sfor whicho (i) #i. Then since they are defined by the same digit
expansionsQ; = Q. ). By hypothesisQ; has positive Lebesgue measure and therefore
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|Qi N Qo] > 0. ThusQ fails to satisfy the intersection property) @nd can never be a
tiling set. B

It is possible to use the above information to give a complete analysis of the limiting
behavior of points under iteration of the maplefined in 28). Basically, looking at the
decomposition ofS in Proposition2(a), aperiodic irreducible sets in the decomposition
determine unique attracting fixed points, each with a well-defined basin of attraction. The
irreducible sets that are not aperiodic fall under Proposig@) and determine various
attracting cycles, one corresponding to each of the the subgroups of the cyclic group of
order . Each cycle has its own basin of attraction. We saw an example of this in the
previous remark. Entries corresponding to transitive states will always converge to the
empty set. The various behaviors combine to describe the general case.

5. WAVELET THEORY AND LATTICE TILINGS

There exists an interesting and at first glance surprising connection between wavelet
theory and certain SATs of multiplicity 1L0]. It is not surprising that similar results can
be established for SATs with several tiles. This link between the geometric object of SATs
and the analytic object of wavelet theory is important for several reasons:

(a) It singles out — among all SATs which seem too complicated to be classified
completely — a special class of SATs which are more accessible to a detailed analysis;

(b) we will be able to apply methods from Fourier analysis and the theory of
multiwavelets ¥, 8, 13] to study SATSs;

(c) SATs will furnish a new class of examples of multiwavelet bases, of which only
few concrete examples and constructions are known so far.

We first recall that in wavelet theory one studies general approximation schemes, so-
called MRAs. Amultiresolution analysig’ with respect to a dilation matrid is a bi-
infinite sequence of closed subspad®s j € Z, of L2(R%) with the following properties:

Vi C Vi forall j e Z.

f(x) e Vpifandonlyif f(x —k) € Vo forall k € Z4.

f(x) e Vpifandonly if f(A/x) e V; for j € Z.

Vo possesses an orthonormal basis of the fagpax — k), k€ Z4, i =1,..., M}.

We refer to 4, 20] for background and construction procedures for MRAs. The number

of basis functions is called theaultiplicity of the MRA. The¢;’s uniquely determine

the MRA V and are said to generate the MRA. MRAs with multiplicityl recently

have become the object of intensive studi&s §, 13]. While most general results
carry over from dimension 1 and multiplicity 1 &8¢ and M > 1 without significant
modifications, concrete examples are sparse. No generic example of an MRA with arbitrary
multiplicity M is known for general dilation matrices. In this sense SATs contribute an
interesting facet to wavelet theory. The following theorem is the counterpart of Theorem 1

in [10].

THEOREM 7. (A) Suppose thal” = {T;, i =1,..., M} is a self-affineZ-tiling set
with all prototiles of positive measure. Then the characteristic functigns =1,..., M,
generate a multiresolution analysis faf(R?).
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(B) Conversely, if a multiresolution analysis is generated by characteristic functigns
i=1,...,M,then theT is a self-affineZ tiling set. Moreover, the corresponding digits
are a standard digit set.

For the proof of the theorem we need a simple geometrical lemma first.
LEMMA 3. LetT be a compact set iR? whoseZ?-translates are essentially disjoint.
Then for any parallelepipe@ = ]_[f:l[ai, b;]1 € R? we have

lim ¢~/ Y " |(k+T)NA/B>=|T?B|. (47)
I kezd

Proof. LetC,(B)={x¢€ R : |lx —u| < p for u € 3B} be the “collar” of thickness 2
around the boundary d. Using||A~2x|| < A|lx|| with A < 1, we see that

ATIC,(ATB) S C;;,(B)
and thus for any > 0

lim ¢7/|C,(A’B)| = lim |A=/C,(A'B)|=0. (48)
j—o0 j—0o0

Equipped with this observation we partition the index&&in (47) into three subsets
A;=7%N(A/B\ C,(A'B)),
B;=ZNC,(A'B),
C; =2\ (A; UB)).

If we choosep = max|x|| : x € T U[0, 1]}, thenk € A; implies thatk + T < A/B
and thus

g7 Y Ik +T)NATBI>=T1% 44,
keA;
Similarly, g =/ Yken, Ik +T)N AJB|? <|T|?q~/#B;. Finally,k € C; meang(k + T) N
AJB| =0 and the sum ovef; equals 0.
To estimate # ;, we observe that, by the choice of

A/B\ C2,(A’B)C Aj +[0,1]“ C A/ B.
We combine the estimate
a7 (IA7B| = C20(A/B)|) <q™/#A; <q7/|A/B| = |B|
with (48) and obtain Iimﬁ@q‘/#f.&j =|B)|.
Similarly, g ~/#B; < ¢~/|C2,(A’ B)| = 0.

We conclude that

lim ¢~/ Y " |(k+T)NATB>= lim |T|%q~/#A; =|T|? B
Jj—o00 rezd Jj—00

as claimed.m
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Proof of Theorem 7. (A) Suppose thaf is a self-affineZ?-tiling set. Then we define
Vijk (¥) = 72| T;| 721, (AT x — k) and

M
V; = {f e L2RY) | f(0) =D Y a Yiji(x) witha® e eZ(Zd)}. (49)

i=1rezd

It is now easy to verify thal = (V;) jez is an MRA of multiplicity . The inclusions
V; C V;41 are an immediate consequence of the self-similaflywhich amounts to the
scaling relations

M
Xn ()= > xr;(Ax —k). (50)
j=1lkel;

The existence of the orthonormal bafig |~Y/2 7. (x —k), ke Z¢, i =1,..., M} for Vo
and the translation invariance &§ are guaranteed by the definition.

We only have to show thdt);., V; is dense inL2(R%). For this we first compute
the orthogonal projectio®; f = Zf‘il Y kezd { S Wiji)Vijx from L2(R%) onto V; for the
characteristic functiorf = xp of a parallelepiped. In this case

(X8, Yijk) = q /2| T; 1721 (k + T;) N AV B
and thus

M
1Pixsl3=> q /IT;I7 Y 1+ TN A B, (51)
i=1 kezZd

SinceT is aZ4-tiling, Zf‘il |T;| = 1. Therefore, by Lemm3,

M

i 2 2
lim [|Pjxsl5=>_IT:||Bl=llxsll3.
J—00 i1

But since characteristic functions of parallelepipeds span a dense subspa¢&oF and
sincell f — P; fII3 = Il f1I3 — | P; £1I3, this suffices to show tht) V; is dense inL2(R?).
We have verified thatV;) ;<7 is a multiresolution analysis.
(B) Now assume that the functiong; generate a MRA. Then the orthogonality of
the basis functions gives immediately

|7:18i 0kt Z/dXY}(x —k)xr;(x =Ddx=[(k+T) N+ T))l,
R

in other words, the disjointness of the tiles.
Next, sinceXTi(A‘lx) € V_1 C Vp, it can be expressed in terms of the orthonormal
basis ofVj in the form of a so-calledcaling relation

M
XM =xr (AT =) > epxr, e~k fori=1... M, (52)
J=1lkezd
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where the coefficientsjx = [ xar, (xX) Xk+T; (x) dx can only take the values 0 or 1, because
the integer translates of the prototiles are disjoint. If for eacke denote the set of
translatesk e Z¢ for which cjk =1 by T;;, then 62) can be rewritten as the following
self-similarity of sets

M
ATi;U(F,-J»+Tj) fori=1,..., M.
j=1

Next we deduce that thE tile with lattice Z¢.
Since |JV; is dense inL2(R?), we know that||P;xzl5 — llxzll3 = |B| for any
parallelepiped. On the other hand, fronb{) we know that

M

lim [|Pjxsl5=1B|Y_ T

It follows that} 2 | |T;| = 1.
Now consider the function

M
Q)= "> xz(x —k).

i=1kezd

Since the prototiles are pairwise disjoint<0b(x) < 1. Then

M M
/[0,1]d (x)dx /Rd (;XT, (X)> X ;| |

We see thatb (x) = 1, which is equivalent to thg“-tiling property of 7.
It follows now from Theoren8 thatI" is a standard digit set, and the theorem is proved
completely.®

As a consequence we can construct orthonormal wavelet bases with compact supy
but without smoothness, starting from SATSs.

THEOREM 8. Suppose thaf is a self-affineZ¢-tiling set. Then there exisy — 1)M
functionsy; with compact support iU?”zl T;, such that

{¢/?0(Aix k), jeZ, keZ' I1=1,... (q— M)} (53)

is an orthonormal basis forL?(R?). The y; can be written explicitly as linear
combinations of the functiong, (Ax — k), k€ |JT;.

Proof. Following the standard line of arguments we have to find an orthonormal bas
of the form{y;(x — k), ke Z?, 1 =1,...,(q¢ — )M} in Wo := V1 & Vp, the orthogonal
complement ofVg in V1. Since@® ., Wi = U,z Vi = L?(RY), the collection §3) is
then an orthonormal basis far? (R?). We refer to B, 20] for the general construction of
wavelet bases.
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By definition @9) f € V1 if

M

e =YY awg AT xr,(Ax = k)

i=1kezd

With (aix) ez € 0274, andf € Wo, if and only if f L xr; (x —1). Rewriting 62) as

V2, 4\ 12
XT(X_”_ZZ<|T|) (W) prAGe=h=m,

r=1mel;,

we calculate forf € Wy

M M |T| 1/2
=(foxn,(=D)=)_> > Z ( ) 8irSk, Al+maik

i=1lr=1melj, kezd

S

171\ 2
ZZ Z <7) ar, Al+m- (54)

r=1merl ',

Now consider theM linear equations

M
> 1T 1M%am =0 (55)

r=1mel,

in the Zﬁil S M #T;, = qM variablesa,,. It is not hard to check that these equations
are linearly independent. Consequently the null space has dimengicn M.

Choose an orthonormal basi (“)) s=1,...,qM — M, for the null space and define
the functions

1/2
Wx)—ZZZ <”(|T|> X1 (Ax —m). (56)

i=1 j=1mel;

Then suppy; < Uj”:l T;. From these support properties the orthogonality relations

(W5 x1,(. = D) = 0= (s, Yy (. = D))

fori£0ors # s’ are clear.
Since by b4)

(Vs xr;) ZZ i (171 /)2 =0,

r=1mel;,

we see thaty; € Wp. Since

(Ys, Yrgr) Z Z uf«;zuﬁém = Ogs/s

r=1mel;,

the functiong vy, (x —k), k€ Z¢, s=1,...,gM — M} form an orthonormal system .
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We finally show that this orthonormal system is complet&in Suppose thaf € Wo
is orthogonal to this basis. Then the coefficienty'cfatisfy 64) and for alll ands

M

s =Dy =33 ararsmusy=0.

r=1mel,

The vectors:®) are by definition an ONB for the null space B¢ and thus for all € Z¢
we haveag ai+m = 0. In other words,f = 0 and the orthonormal system is complete
in Wo. B

A more explicit solution can be obtained as follows: First find an orthonormal basis «
vectorsu = (u,,), satisfyingy "™ | Zmer,, u,m = 0 for a fixed; and define for each such
u the function '

M
Vu@) =Y Y urm(@/IT-DYx7, (Ax —m).

r=1 mel"_/-,

Then suppy, € T;. Counting dimensions, for eaghthere are exactly"*  ¢;, — 1 such
functions. Doing this for eacli, we get a collection oﬁyzl Zﬁ”:l crm—M=qM —M
functionsyr, . As above they form an orthonormal basis 4.

In the context of multiwavelet theory it is therefore of interest to know when the
construction of an SAT, starting from a standard digit set yield diling of R¢. The
examples indicate that two phenomena may contribute to a failure.

(a) The prototiled; tile with a coarser lattice thafi?. See Exampl@ with a = b =
¢ = 2. If the multiplicity is one, this is the only obstructio8,[1§].

(b) The redundant cas®¢ can already be tiled bg“ with a smaller numbeN < M
of tiles. See Example3and7 witha = b = 1,¢ = 0. This is a genuinely new phenomenon
in the case of higher multiplicity.

We conjecture that a combination of these two cases is all that can go wrong. T
fundamental question in this context is to decide which choices of standard digit s
generateZ-tilings. This is a difficult and subtle question even in the case of only one
tile; see R, 3,9, 16, 17, 18]. We shall return to this question in Part II.
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