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Recovering 3D information from a 2D time-varying image is a vital task which human observers face 
daily. Numerous models exist which compute global 3D structure and motion on the basis of 2D local 
motion measurements of point-like elements. On the other hand, both experimental and computational 
research of early visual motion mechanisms emphasize the role of oriented (1D) detectors. Therefore, 
it is important to find out whether indeed 1D motion signals can serve as primary cues for 3D global 
motion computation. We have addressed this question by combining mathematical results and perceptual 
observations. We show that given the 2D-projected 1D instantaneous velocity field, it is mathematically 
impossible to discriminate rigid rotations from non-rigid transformations and/or to recover the rotation 
parameters. We relate this fact to existing results in cases where localized (point-like) cues are present, 
and to our own experiments on human performance in global motion perception when only 1D cues are 
given. Taken together, the data suggest a necessary role for localized information in early motion 
mechanisms and call for further physiological and psychophysical research in that direction. 

One-dimensional motion Two-dimensional motion Structure-from-motion 

1. INTRODUCTION 

When a large object passes through our visual field, the 
visual system faces a computat ional  problem at more than 
one level. This is because, the receptive fields of  primary 
visual cortical cells are too small to capture the motion of 
large objects. At one level, therefore, there is the problem 
of  constructing local motion detectors: units that will 
reliably signal the motion measured in localized regions 
of  the image. At another level, there is the problem of  
combining these local motion signals into the (correct) 
global motion percept. 

Here, we analyze the computat ional  constraints on 
models of  integration of  local motion signals for 3D 
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§ 1D detectors respond also to the motion of non-elongated stimuli such 

as points or line endpoints (although usually to a lesser extent). 
However, these are spurious responses, in that they do not convey 
the veridical (and observable!) 2D stimulus velocity, but rather its 
component along the preferred direction of the 1D unit. 

global motion perception. We show that computational  
considerations have implications for the plausibility of  
different types of  local motion detectors and of algorithms 
performing local-to-global motion computat ion (Marr, 
1982). 

Two approaches to global motion detection 

One family of  local motion detectors that has been 
studied extensively, both experimentally in psychophysics 
and electrophysiology, and theoretically in modeling 
studies, is that of  "oriented" units. These detectors are 
especially suited to signal the motion of  straight (or 
approximately so) contours of  a specific ("preferred") 
orientation within their receptive field. We therefore term 
them "(1 D) detectors", and correspondingly use the term 
" I D  velocity" (or 1D signals) to refer to the velocity 
component  perpendicular to the contours '  orientation (or 
to their neural representation). However, the motion of a 
straight contour is ambiguous because its motion along 
the direction of  its elongation is unobservable (Wallach, 
1935, 1976). Thus the motion information carried by 1D 
detectors is inherently ambiguous, a phenomenon 
commonly known as "the aperture problem".§ 

Previously it has been shown that in some cases, the 
aperture problem can be overcome by combining the 
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outputs of at least two oriented units. For the case of 
frontoparallel translatory motion, algorithms have been 
suggested which compute the global direction of motion 
exactly, such as the intersection of constraints (IOC) 
algorithm (Fennema & Thompson, 1979; Adelson & 
Movshon, 1982) or algorithms using a smoothing 
approach (Hildreth, 1984). For the case of frontoparallel 
rotation as well as translation, a procedure akin to the 
IOC can be used which produces an exact solution 
(Rubin, 1993). Moreover, it has been shown that resol- 
ving the aperture problem in the frontoparallel case can 
be realized by a simple neural network of only two layers 
of linear neurons (M. I. Sereno, 1989; M. F. Sereno, 1993). 

Another possible approach to motion computation is 
to avoidthe aperture problem in the first place, rather than 
overcome it in the local-to-global stage of the process. To 
do so, one must construct local motion detectors that 
would not suffer from the aperture problem, i.e. 
mechanisms which signal unambiguously the 2D velocity 
within their receptive fields, by detecting the motion of 
cues in the image such as points (localized regions of 
contrast gradients) and line endpoints. We shall term such 
mechanisms "2D motion detectors". 

Until recently, this class of detectors received relatively 
little attention, both experimentally and theoretically. 
Electrophysiological research has concentrated on 
studying ID, or oriented, motion sensitive cells (Orban, 
1984), and the existence of local 2D motion detectors has 
not been directly demonstrated in electrophysiological 
experiments. In psychophysics too, research has been 
concentrated on orientationally tuned (ID) motion 
mechanisms (e.g. Anderson & Burr, 1985). Nevertheless, 
recently direct psychophysical evidence that 2D motion 
sensitive mechanisms exist in humans was provided 
(Anderson & Burr, 1991; Anderson, Burr & Morrone, 
1991; Castet, Lorenceau, Shiffrar & Bonnet, 1993; 
Lorenceau, Shiffrar, Wells & Castet, 1993). A specific type 
of 2D units, namely line-terminator motion detectors, 
have been invoked to account for the so-called 
"barber-pole illusion" (Wallach, 1935;  Shimojo, 
Silverman & Nakayama, 1989), and these authors have 
further hypothesized that the 2D motion-sensitive units 
should interact with mechanisms which signal occlusion 
and depth-relations between objects. 

From a theoretical point of view, it has been 
demonstrated that the construction of 2D motion 
detectors necessarily involves non-linear stages of the 
"and"  type, to avoid "false-positives" spurious re- 
sponses to stimuli that the unit is not designed to detect 
[for a comprehensive discussion of the issue see Zetzsche 
and Barth (1990)]. In contrast, the construction of 
oriented motion detectors generally involves non-linear 
operations of the rectifying or thresholding type (if any; 
see, e.g. Heeger, 1988 and references therein), and thus 
they lend themselves more easily to theoretical analysis. 
In addition, 1D detectors can rely on length summation 
and thus will tend to be more robust to noise in the image 
[note that in accord with the latter point, Lorenceau et al. 
(1993) and Castet et al. (1993) find that the 2D motion 
mechanisms are recruited only at higher contrasts]. 

The two different types of local motion detectors lead, 
in turn, to two different approaches to global motion 
computation, differing in which type of local motion cues 
is assumed to play the main role in the computation of 
global motion. One possibility is, that the primary source 
of motion information arises from elongated parts in the 
image (and thus is carried by ID detectors). Because of 
the aperture problem, the visual system would then need 
to follow the detection of 1D motion cues with a second 
stage, to overcome the ambiguity inherent in the 1D 
motion cues. We shall term this "the 1D approach". Since 
its first explicit formulation (Adelson & Movshon, 1982), 
the results of many studies were interpreted as supporting 
the 1D approach (e.g. Welch, 1989; Derrington & Suero, 
1991). The relatively more extensive theoretical knowl- 
edge of 1D detectors (compared to 2D detectors) further 
contributed to the general acceptance of the 1D approach. 

The alternative approach suggests that the visual 
system contains mechanisms which can reliably detect the 
2D velocity of localized parts of the image, and that it 
relies on the outputs of these mechanisms in performing 
global motion computation. Thus, the disambiguation of 
1D motion signals occurs due to the contribution of 
another type of units--2D detectors--and not via 
computations based on the outputs of 1D units alone. We 
term this "the 2D approach". 

Recent psychophysical studies provide support for the 
2D approach. It was shown that when presented with 
images that contain no 2D motion cues or impoverished 
2D motion cues, human observers in many cases fail 
to detect the (mathematically) correct global direction 
of motion and along with it also fail to see the 
rigid interpretation of the time-varying image (Nakayama 
& Silverman, 1988; Ferrera & Wilson, 1990, 1991; Yo & 
Wilson, 1992; Shiffrar & Pavel, 1991; Mingolla, Todd 
& Norman, 1992; Rubin & Hochstein, 1993; see also 
Derrington & Badcock, 1992). Furthermore, if the image 
does contain 2D motion cues, they can have a dramatic 
effect on the perceived motion. When the 2D motion 
of the points or line endpoints is equal to the global 
direction of motion, the result is a coherent, rigid 
(and mathematically correct) global motion percept 
(Nakayama & Silverman, 1988; Rubin & Hochstein, 
1993). When the 2D motion cues conflict with the global 
direction of motion, the effect is a departure from a 
coherent global percept (Lorenceau & Shiffrar, 1992). 

3D global motion computation f rom 1D vs 2D signals 

In this study we present a computational analysis which 
further supports the 2D approach. Our analysis departs 
from the restricted case of frontoparallel motion and 
considers rotation of objects in 3D space. 

A key point in hypothesizing the 1D approach was the 
assumption that the aperture problem can be overcome 
by integration of information from several 1D detectors. 
As mentioned above, this is indeed the case for 
frontoparallet motion. However, frontoparallel motion 
constitutes a vanishingly small set among all the possible 
motion types human observers are likely to encounter. 
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The question arises, therefore, whether it is theoretically 
possible to use 1D local motion signals to recover global 
object motion in the more general case of  motion in 3D 
space. 

The first thing to note in the case of  3D motion, is that 
now the measured 2D motion signals carry ambiguity too: 
this is because the component of  motion along the line of  
sight is not measurable. In order to recover a unique 
interpretation for the underlying 3D motion, some 
extraneous assumptions, or constraints, must be added in 
the process of computation. The perceptual observation 
that humans often prefer the rigid interpretation among 
all possible ones (when it exists) (Wallach & O'Connell, 
1953) led Ullman (1979), and subsequently others, to 
suggest that the visual system imposes a rigidity constraint 
in order to derive a unique structure and motion 
interpretation. Since then, a lot of  theoretical work has 
been done, all aimed at the task of resolving the ambiguity 
of  the 2D motion signals for the recovery of the 
underlying 3D motion which produced them. However, 
to decide between the 1D and 2D approaches, it is not 
sufficient to show that 3D global motion computation can 
be performed using 2D motion cues. Rather, it is 
necessary to demonstrate that a similar computation 
would not be possible (or would be much more difficult) 
based on 1D motion clues. Here, we provide such 
evidence. 

In Section 2 we prove that the task of discriminating 
rigid from non-rigid 3D motion cannot be performed on 
the basis of  any number of straight contours and their 
instantaneous velocities (or their views in two frames). 
This is because, the ambiguity inherent in the 1D motion 
signals is so great that for any (say, random) choice of  
contours and velocities, there exist many rigid-motion 
interpretations--in fact, an infinite number of  them. We 
will subsequently refer to the nature of  computations that 
could, in principle, result in recovering the 3D structure 
and motion from ID motion information alone: these 
embody higher-order temporal calculations which 
couple the 1D motion information from prolonged 
measurements. 

In Section 3, we discuss the relation of these results to 
human perception. In an accompanying paper (Rubin, 
Hochstein & Solomon, 1995) we report that human 
observers perform poorly in tasks which probe 3D motion 
perception when given an image which contains many 1D 
motion cues, but no or impoverished 2D motion cues. 
These experimental observations support our compu- 
tational analysis and conclusions about the necessity of  
2D motion detectors when they are taken together with 
other recent psychophysical data which show that the 
human ability to perform higher order temporal 
calculations for global motion perception is very limited. 

2. F O R M A L  R E S U L T S  

In this section, we present the formal results pertaining 
to the main question raised in the Introduction, namely, 
can the 1D approach be extended to the general case of  
motion in 3D? We present the results using the formalism 

of position measurements in discrete frames. From a 
strictly theoretical point of view, this formalism is more 
general since in fact it encompasses both the case of 
apparent motion and that of smooth motion, because the 
position measurements may be taken as dense as desired. 
However, all the results below could be re-derived in a 
formalism where the primary measurements are the 
velocity vectors of  the instantaneous velocity field (Rubin, 
1993). 

We will be using throughout the term "a straight 
contour".  By that we mean one which has no identifiable 
points (such as an endpoint, dashes etc.) on it, or that 
these identifiable points are not given to the system (e.g. 
because of lack of  reliable 2D detectors). Thus, in what 
follows we will concentrate on what is and what is not 
mathematically possible to compute based solely on 1D 
motion information. We consider here pure rotations in 
3D space. The treatment of translation can be done 
separately (e.g. Heeger & Jepson, 1992). 

A word on conventions: we take the 2D-projection 
plane to be the X Y  plane, and the viewing axis to be the 
Z axis. 

Lemma: Given two straight contours in the X Y  plane, 
then for any choice of  a 3D linear transformation (except 
for a set of  zero measure), there exists a unique straight 
contour in the 3D space whose orthographic projections 
on the X Y  plane before and after application of  the linear 
transformation equal the two planar contours. 

Proof: A straight contour in 3D space is fully 
characterized by its point of  intersection with some plane 
and its direction in space. Let us choose a scheme whereby 
we specify the contour by its intersection with the X Z  
plane, ( Xo,Zo), and the two ratios t~ = r x / ry ;  t 2 ~ rz/r ,  where 
(rx,ry,rz) is a vector parallel to the contour. 

The contour is therefore parametrized by the formula: 

where e is a scalar that parametrizes position along the 
c o n t o u r .  

Now consider a linear transformation sJ, which is 
specified by a 3 x 3 matrix with elements a~, i , j =  1 . . . . .  3. 
As a result of  applying d on C, it is transformed into a 
new straight contour, C', given by: 

\z0/ \,2/j 
However, we can also parameterize C' by four numbers 
X~, Z~, t~, t~, applying our scheme as before: 

c'= VIr'= | 
( \t2/j 

In order for the two representations of  C' to be identical, 
two conditions must be met. (1) The vectors (t~, 1,t~) T and 
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d ( t l , l , t 2 )  T should be equal up to some multiplicative 
factor/~: 

t~ = f l (al l t l  + a12 + al3t2) 

1 = f l(a:l t l  + a22 4- a23t2) 

t~ = fl(a31t I + a3: 4- a33/2). 

Solving for fl in the second equation and substituting it 
into the other two, we get: 

t; - (allt~ + a~2 + ax3t2) 
. (azltl  4-a224-a23t2 ) (1) 

t, _ (a31tl + a32 + a33t2) 
2 - (a2l t---~ + a22 + a23t2)" (2) 

(2) The second condition is that there exist some scalar 
such that the vector (X6,0 ,Z6)  v be equal to the vector 

(~¢(Xo,0,go) v + c~'( t l ,  1,t2)v): 

X6 = (al iXo + a13Zo) + o~(alltl + al2 + al3t2) 

0 = (a21X0 4- az3Z0) 4- ~(a21 tl + a22 + a23t2) 

Z;  = (a31Xo + a33Zo) + o~(a3Ltl 4- a32 + a33t2). 

Solving for e in the second equation and substituting 
it into the other two, and using the expressions for t'l,t; 
from equations (1) and (2) above, we get: 

X6 = (al t X0 + al3Z0) - -  t'l(a21Xo 4- az3Z0) (3) 

Z~ = (a31X 0 4- a3320) - t~(a2, Xo + a23Z0). (4) 

Proving the above lemma is now a straightforward 
matter  of  identifying the known and the unknown 
variables in equations (1)-(4): in the situation as described 
in the lemma, what we are given are the orthographically 
projected views of the 3D contour before and after 
applying the transformation, and the transformation ,~¢ 
itself. Therefore the known variables are Xo, t l ,X6, t l  and 
the aijs.  What is unknown is the underlying depth 
structure of  the contour, namely Zo, t2, Z6, t~. The 
problem (of specifying the unique 3D contour whose 
orthographic projections on the X Y  plane before and 
after the application of~¢ equal the two planar contours) 
reduces therefore to finding the unique solution to the 
four unknowns from equations (1)-(4). Doing this, we 
get: 

Z0 _ J ( 0  - -  al iX0 4- a21 t~Xo (5) 
a13 - -  a23t ~ 

a21tlt~ 4- a22t~ --  aHtl --  al2 
t2 - a13 - ae3t~ (6) 

t~ - -  (a3111 4- a32 4- a33/2) (7) 
- (a214-a224-a23t2) 

Z~ = (a31A" 0 4- a33Z0) - t~(a21Xo + a23Z0). (8) 

There exists a set of  measure zero of forbidden 
transformations. These are the matrices which would lead 
to vanishing denominators in the formulae of  equations 
(5)-(8). Specifically, these matrices are of  two families: 
one family is that in which (a13=a23=O).  These are 
rotations around the Z axis. The second family of  

matrices is that in which (a13=a23 6 )  o r  (a21 t~ 4-a22÷a23  
t 2 = 0  ). These correspond to rotations in which, using 
Euler's notation ( t g 4 9 = - t l )  or (tgqJ=t'~) (Goldstein, 
1959, p. 109). In the case when the chosen axis of  rotation 
lies in the plane of  the screen, this means that axes which 
are perpendicular to one of the contours (in either frame) 
are not a l lowed.•  

Note that the lemma implies that given a pair of  
contours, there exist an in f in i te  number of  interpretations 
of  this pair as the 2D projections of  some 3D contour 
before and after a linear transformation (e.g. a rigid 
rotation, a stretch along one of the axes, etc.). The 
uniqueness of  the 3D contour is introduced only after a 
particular transformation is chosen. However, a pr ior i ,  
any linear transformation may be chosen (except those 
that belong to the set of  measure zero). 

Having proved the above lemma, we are now ready to 
derive from it a theorem that will bring out the extent to 
which 1D signals in two frames are insufficient for the 
recovery of any knowledge about the 3D motion. 

Theorem: Given two sets S~ and $2 each containing N 
straight contours in the X Y  plane (and assuming the 
correspondence between the contours in one set to the 
other is known), then for any choice (up to a set of  
measure zero) of  a rotation ~ ,  there exist a set of  N 
contours in the 3D space whose orthographic projections 
before and after applying the rigid rotation .~ equal the 
sets of  planar contours St and $2 respectively. 

Proof: Choose the linear transformation mentioned in 
the above lemma to be the orthogonal transformation .~¢. 
Now consider the procedure outlined in the proof  of  the 
lemma for the determination of  the unique 3D contour on 
the basis of  its two projections and the transformation. 
Since this procedure can be applied to each contour 
separately and no coupling between different contours is 
introduced, it can be applied to any number N of pairs of  
planar contours, resulting in a unique set of  N 3D 
contours which correspond to the required 3D structure. 
The set of  rotation transformations for which such 
underlying 3D structure does not exist is obtained by the 
unification of all forbidden transformations for each pair 
of  contours, as described in the proof  to the lemma 
above. • 

The fact that the number of  contours N may be as large 
as desired may seem very surprising at first glance. After 
all, intuitively one might expect that increasing the 
number of  contours would eventually provide enough 
information to discriminate a set of  arbitrary contours 
from a set consistent with rigidity, and possibly also to 
determine the rotation parameters in the latter case. 
However, it can be seen where this expectation fails by 
using a simple counting argument: according to equations 
(1)-(4) above, each additional contour contributes 4 
equations and 4 unknowns. Therefore, adding more and 
more contours cannot help in determining the elements of  
the matrix o~¢. Consequently, it is impossible to check 
whether or not ,~1 is orthogonal, and thus discriminate 
rigid from non-rigid cases. Even after imposing rigidity 
constraints, which reduce the number of  unknowns in the 
transformation .~/ from 9 to 3. the rotation parameters 
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remain (in the generic case) completely unfixed regardless 
of  the number of  contours. 

This state of  affairs is to be contrasted with the situation 
when information from three frames is available. Here, 
each additional contour contributes 8 equations (4 for 
each frame-to-frame transition), but only 6 unknowns- -2  
for each frame. I f  we impose rigidity constraints, the 
number  of  unknowns contributed by the transformations 
is 6:3 for each frame-to-frame transition. Therefore, for 
four or more contours (in each frame) the number  of  
equations exceeds the number  of  unknowns, thus 
allowing the rejection of  cases inconsistent with rigidity. 
As for the recovery of depth information from three 
frames in the cases which are consistent with rigidity, 
these computat ions involve in general the solution of 
transcendental equations, and therefore need to be 
performed numerically and the solution cannot be given 
in closed form. A detailed account of  the algorithm that 
leads to the numerical solution is beyond the scope of  this 
paper  (but see Spetsakis & Aloimonos, 1990). The reason 
for not considering in detail the case of  three-frame 
analysis in the present study will become evident in the 
next section: although having a mathematical  interest of  
their own, the three-frame computat ions appear  to be 
irrelevant to the computat ions done by the visual system 
and to perceptual phenomena. To see that, we have to 
integrate the theoretical results obtained thus far with 
other theoretical and perceptual observations about  2D 
(point) motion, which strongly suggest that two-frame 
calculations are the main source of  global motion 
information to the visual system. This will be done in 
Section 3. 

At this point, it is constructive to bring a concrete visual 
demonstrat ion of  the statement expressed in the theorem 
above. For  this purpose, we use a pair of  images which 
should be fused stereoscopically in two different ways. 
Each half of  the picture in Fig. l(a) contains a (slightly*) 
different set of  four straight contours. The theorem states 
that for (almost) any choice of  rotation axis and rotation 
angle, there is an underlying 3D structure whose 
projections before and after the rotation equal the two 
images. I f  the chosen axis lies in the plane of the figure, 
we can use stereoscopic vision (instead of motion) to 
actually see this underlying structure: by orienting the 
figure such that the chosen axis-of-rotation is parallel to 
the (body-centered) vertical and fusing the two images, 
what we get (assuming the stereoscopic matching 
procedure is done correctly by the visual system in this 
case) is a 3D percept that is identical to the one that would 
result f rom applying the theorem. 

Fusing the two images in Fig. 1 (a) therefore produces 
a percept of  the underlying 3D structure when choosing 
the vertical axis to be the axis o f  rotation. In Fig. 2(a), the 
same two halves are drawn one above the other, and 

*Note that in principle, the theorem holds for two sets of N contours 
that differ as much as desired: greater contour-disparity, in this case, 
merely implies greater depth-gradient. However, to get proper 
fusion, we had to demonstrate the theorem by using sets of lines that 
differ only slightly. 

therefore rotating the page by 90 deg and fusing them 
produces a percept of  the underlying 3D structure when 
the chosen axis is the (page-centered) horizontal one. 

The percept of  3D structure produced by these figures 
may not seem overwhelmingly strong. Indeed, the reader 
may even find it non-trivial to achieve fusion and see any 
depth at all without allowing for prolonged viewing 
periods. This is related to the fact that the results derived 
above have implications for stereo perception as well as 
for motion perception. To limit ourselves to discussing 
motion phenomena,  however, we will take a more 
pragmatic approach and refer the reader to Figs l(b, c) 
and 2(b, c). To facilitate fusion, dots were superimposed 
on the lines in Figs l(b) and 2(b) in locations consistent 
with the chosen axis. In Figs l(c) and 2(c), the dots alone 
are drawn. After viewing the structure in these figures, 
most  readers will find it easier to go back to Figs 1 (a), 2(a) 
and see the 3D structures. 

FIGURE 1. Each pair of images should be fused stereoscopically to 
obtain a 3D percept. In order to facilitate fusion of (a), it is 
recommended that the viewing order be (c); (b); (a). (a) When the two 
sets of contours are fused, the emerging 3D percept demonstrates the 
underlying 3D structure that would be obtained by applying the proof 
of the theorem (see text) if the chosen axis of rotation is the 
(page-centered) vertical. (b) Dots are superimposed on the contours in 
locations consistent with stereoscopic fusion when the page is viewed 
upright. (c) Only the dots are drawn, to decrease images disparity and 

facilitate stereoscopic fusion. 
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Note how different the two 3D structures in Figs l(a) 
and 2(a) are: in Fig. l(a), each pair of neighboring lines 
intersects in space, to form a wire-frame of four connected 
lines that resembles the skeleton of  a kite, bent around its 
symmetry axis. In Fig. 2(a), the structure is one of  four 
lines in 3D space that do not touch each other at all. 
Instead, their directions seem to "chase" each other in a 
whirlpool-like fashion. However, note that the 3D 
structures of  Fig. 1 (a, b) were obtained from identical two 
image-halves that were only oriented differently for 
stereoscopic fusion. This completes our visual demon- 
stration of  the statement made in the theorem, that two 
sets of straight contours have many possible interpret- 
ations as the 2D projections of  3D structures before and 
after a rigid rotation, and that these interpretations may 
differ from one another significantly. 

So far, we have referred to the possible rigid 
interpretations of the given time-varying image. How- 
ever, the lemma derived above allows us also to deduce 
the existence of different classes (each of  an infinite 
number of members) of  non-rigid interpretations 
consistent with the time-varying image: for one, since the 
transformation ~¢ in the lemma was not constrained to 
be orthogonal but only linear, we may choose d such 
that it introduces stretching (or shrinking) of  differing 
degrees along the major axes. Second, since as noted 
before, the procedure of  determining the 3D structure on 
the basis of  the 2D-projected image and the chosen 
transformation can be carried out for each contour 
independently, we may choose an altogether different 
transformation for each of  the contours--a  different axis 
of rotation, a different rotation angle, different scaling 
factors for the major axes, or any combination of these 
variables. 

To summarize, we have shown that contrary to the case 
of frontoparallel motion, where local 1D motion 
information alone can be used to compute the correct 
global motion, in the generic case when the object viewed 
moves in 3D space, the instantaneous 1D velocity field is 
not sufficient to recover the object's global motion. 
Roughly speaking, this arises from the fact that now the 
ambiguity inherent in contour motion allows for an 
infinite number of (very different) depth interpretations 
for the same time-varying image, even after the 
introduction of  specific constraints such as requirement 
for a rigid interpretation. In particular, it was shown that 
for (almost) any arbitrary choice of a 3D rotation, there 
exists a 3D structure which would produce the 
2D-projected images given in two frames (or, alterna- 
tively, the image and its instantaneous velocity field). 
Therefore, when given such a time varying image, the 
visual system cannot use the 1D velocity measurements to 
compute the axis of  rotation. Furthermore, the mere 
discrimination between rigid and non-rigid motion is not 
possible in this case, thus eliminating the use of a strategy 
whereby first consistency with rigidity is checked and then 
the structure and motion are computed under a rigidity 
assumption. 

3. RELATION TO PERCEPTION 

It has long been known that human observers readily 
detect the 3D structure and motion of objects from their 
time-varying 2D-projected image, even in the absence of 
other depth cues (Wallach & O'Connell, 1953 and 
references therein; see also Sperling, Landy, Dosher & 
Perkins, 1989 and references therein). In order to assess 
the relative contribution of 1D vs 2D motion cues to the 

a b C 

FIGURE 2. The pairs of  images from Fig. l(a) are drawn here one above the other (instead of alongside). After rotating the 
page by 90 deg, each pair of  images should be fused stereoscopically to obtain a 3D percept. Again, recommended order of  viewing 
is (c); (b); (a). (a) When the two sets of contours are fused, the emerging 3D percept demonstrates the underlying 3D structure 
that would be obtained by applying the proof  of the theorem (see text) if the chosen axis of rotation is the (page-centered) 
horizontal. (b) Dots are superimposed on the contours in locations consistent with stereoscopic fusion when the page is rotated 

by 90 deg. (c) Only the dots are drawn, to decrease images disparity and facilitate stereoscopic fusion. 
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computations leading to this stable 3D percept, we 
have presented subjects with time-varying images of  
3D wire-frames made of  several connected bars that 
rotated a b o u (  a fixed axis. However, we have 
eliminated or substantially weakened the 2D motion 
cues in these images, using various techniques (Rubin 
et al., 1995). Under these conditions, subjects' perform- 
ance in global motion detection tasks deteriorated 
dramatically. Poor  performance was found not only in 
tasks of discriminating rigid from non-rigid motion, 
but also in tasks as simple as discriminating rotation 
about a vertical axis from rotation about a horizontal 
axis (both in the plane of  the screen). These results 
hold even for prolonged observations, comprising as 
many as 80 consecutive frames and sweeping up 
to 32 deg in rotation. Observers report that these 
images do not elicit a notion of movement in depth 
at all. 

While the results of Section 2 would fully explain 
these observations for apparent motion sequences 
made of two frames, the relation of the theoretical 
results to the more general conditions of  prolonged 
viewing need further elaboration. From a purely 
mathematical point of  view, the visual system could 
use the 1D motion information acquired from 
prolonged viewing (three frames or more) to perform 
the required tasks. 

Nevertheless, taken together with recent results from 
studies on the perception of  point motion (see below), 
the theoretical results presented in Section 2 are at the 
heart of understanding the relative role of 1D vs 2D 
motion cues for the formation of  the global motion 
percept. 

To explain this statement, we need first to go back 
to the theoretical knowledge about the computation 
of  3D structure and motion based on 2D motion 
signals. To recover the full Euclidean structure of an 
object and its corresponding motion, a minimum of  
three orthographically-projected views (frames) of  at 
least four object points is needed (Ullman, 1979). It 
may therefore seem that the situation is similar to the 
case of  contour motion described above. However, this 
initial impression is misleading: this is because, 
although the ful l  description of  structure and motion 
cannot be recovered, a substantial amount of infor- 
mation can be inferred from only 2 frames when 2D 
signals are given. 

We will summarize below what is the information 
that can be recovered from 2 frames (or, equivalently, 
the instantaneous velocity field) of 2D cues. For  the 
derivation of these mathematical results see Bennet, 
Hoffman, Nicola and Prakash (1989) and Koenderink 
and van Doorn (1991). First, a discrimination can be 
made as to whether the motion is consistent with a 
rigid rotation or not. This means that the vast majority 
of pairs of  images (generated say, by some random 
procedure) will be rejected by such a discrimination 
process. Recall that such a "correct rejection" process 
on the basis of  only two frames cannot be carried out 
on the basis of  1D motion information alone. 

But one can extract yet more information from the 
two frames when 2D motion measurements are given: 
once consistency with rigidity has been established, 
it is possible to determine the overall shape of the 
object up to a stretch and a shear by some factor along 
the line of site. With respect to the motion of the 
object, considerable information can be recovered also: 
denote the axis of rotation by a vector (~x,Ogy,O~), 
where the direction of  the vector parallels the axis of 
rotation, and its magnitude equals the rotation angle. 
On the basis of  point-location in two frames (or the 
instantaneous 2D velocity field) one can determine the 
value of  coz, and the value of tox/O~y. This means that 
although the axis of rotation cannot be fully recovered, 
the direction of  its projection on the plane of  the 
screen is determined already from two frames, as is the 
magnitude of rotation around the line of sight. 
(Choosing a particular scale for the Z direction, in 
return, will determine the values of  ogx,ogy and thus the 
axis of  rotation and the angle of rotation.) 

How do these theoretical results stand in relation 
to human perception of depth from motion? This 
question was studied experimentally by a number of 
authors, and their results lead to the conclusion that 
the visual system indeed takes advantage of  the 
possibility to extract 3D information from two-frame 
point-motion sequences. Braunstein, Hoffman and 
Pollick (1990) showed, that human observers can 
discriminate two-frame apparent motion sequences of  
4-45 points that are consistent with rigid 3D motion 
from sequences that are not. Lappin, Doner and 
Kottas (1980), Braunstein e t a / .  (1990), Todd and 
Bressan (1990), and others, note that such two-frame 
apparent motion sequences lead to a strong percept of 
structure and motion in depth. It is particularly 
important to note that, although the Z scale cannot be 
determined (mathematically) from only two views (see 
above), this ambiguity is not experienced perceptually. 
Rather, viewers generally report perceiving a scene 
with well-defined depth! 

To reconcile these seemingly contradictory facts, we 
propose below three hypotheses which together de- 
scribe the computational approach taken by the visual 
system for global motion computation. The first 
hypothesis states that: 

• Hypothesis 1: The visual system constructs a 
completed 3D percept already from first-order temporal 
computations. In this process o f  global motion compu- 
tation, 2D motion cues are used, since (mathematically) 
it cannot be performed on the basis o f  1D cues alone. 

The term "completed" is used in Hypothesis 1 
because, as noted above, not all of  the 3D information 
can be recovered from two-frame sequences. Thus, the 
missing information has to be "filled-in", or in fact 
guessed by the visual system. We suggest that: 

• Hypothesis 2: In generating the completed 3D 
percept, the visual system determines the scale o f  the 
object in the Z direction according to one or more 
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more of  a set of  heuristic rules. Two examples o f  such 
rules* are: 

- - t h e  Z scale is chosen to be of  the same order of  
magnitude as the scale in the X, Y directions; 

- -  i f  available, perspective cues are used to deduce the 
structure o f  the object and thus determine the Z scale. 

So far we have talked about the use of information 
obtained from only two frames. What about the 
subsequent frames--what is their role in determining the 
final percept? 

When viewing long sequences of  apparent motion (or 
prolonged smooth motion) and perceiving an underlying 
3D structure and motion, our notion usually, is that the 
large number of  frames plays a significant role in 
establishing our stable 3D percept. However, we must ask 
what exactly is the contribution of  these additional 
frames? What we claim, is that all existing psychophysical 
data can be accounted for - -and  in fact in some cases can 
be explained only (see below)--by assuming that the 
contribution of subsequent frames is in fact fairly limited: 

• Hypothesis 3: The use of  motion information arriving 
after the completed 3D percept is obtained (i.e. information 
from third frame and beyond) is limited to the re-validation 
of  this 3D percept. I f  the information in subsequent frames 
is consistent with it, this percept will be further strengthened. 
I f  not, it will lead to a breakdown of  this percept and the 
process will begin de novo from Hypothesis 1. 

We propose that Hypotheses 1-3 encompass all the 
stages that lead to a 3D percept of structure and motion 
from a time varying 2D image. Note, that this is a 
description of  the computational strategy taken by the 
visual system. It is far from being a full description of  all 
the processes involved: we do not refer to the specific 
nature of  the neural computations undertaking these 
stages. But the computational approach determines the 
goals--and l imitations--of what the algorithm and 
implementation must achieve. In particular, Hypothesis 
3 implies that the visual system is unable to perform the 
higher-order temporal calculations needed for complet- 
ing the missing structure and motion information on the 
basis of third-frame measurements. This hypothesized 
limitation should be contrasted with the models suggested 
thus far which assume that such high-order temporal 
calculations are in fact performed by the visual system 
(Ullman, 1983; Landy, 1987; Rieger & Lawton, 1985; 
Heeger & Jepson, 1992; for a more complete exposition 
of the existing models and the presentation of  an 
approach congenial to ours see Todd and Bressan (1990) 
and Koenderink and van Doorn, 1991). 

Before moving on to review the evidence, an important 
point should be clarified. The heart of our claim is that the 
visual system relies heavily on first-order temporal 
calculations in depth from motion perception. This is not 
the same as saying that it can only carry out computations 
on images presented successively (in time): given, for 

*For further discussion o f  various heuristics used by observers see 
Braunstein (1976). 

example, an apparent motion sequence whereby each 
image is very close to its preceding one, the visual system 
may still perform the first-order temporal computations 
of  the kind discussed in Hypotheses 1 and 2 on two images 
that are, say, five frames apart, thus increasing the 
apparent motion signal and getting a better signal-to- 
noise ratio. Similarly, when viewing smooth motion, the 
instantaneous velocity field that will serve as signal for the 
necessary first-order temporal calculations will probably 
be an approximation obtained from some finite temporal 
extent rather than the actual infinitesimal velocity field. 

Two questions must be answered when examining the 
validity of a particular theoretical approach. Firstly, can 
it account for the existing experimental evidence? 
Secondly, can it account for experimental evidence which 
was not understood before? For  Hypotheses 1-3, the 
answer to both questions is positive. 

To answer positively the first question, one must show 
that there are no existing data that contradict the theory. 
In our case, this would imply direct evidence for the ability 
of  human observers to perform tasks that could not be 
performed on the basis of first order temporal calculations 
and possibly a following stage of re-validation. To this 
end, we refer the reader to Todd and Bressan (1990). They 
scan the literature and show that the structure and motion 
information contained in two-frame sequences is sufficient 
for the performance of all the psychophysical structure- 
from-motion tasks. When use of the information from 
subsequent frames (third and beyond) for re-validation or 
rejection of the two-frame percept is taken into account, 
the approach we suggest can account also for results 
obtained more recently (Norman & Todd, 1993). 

The results presented in Braunstein et al. (1990), in 
particular, provide direct support to the notion of 
re-validation proposed in Hypothesis 3: they analyze the 
observed increase in performance of  a rigid/non-rigid 
discrimination task as a function of  number of  frames, 
and show that this observed increase is due exclusively to 
a decrease in the "false-alarms", where a false-alarm is 
defined as a case where the stimulus is inconsistent with 
rigidity but the subject mistook it for a rigid one. In other 
words, the subjects were able to use the subsequent frames 
to reject cases where the motion information in these 
frames was inconsistent with their (erroneous) rigid 
percept based on two frames, but were not able to use this 
subsequently obtained information to increase their "hi t"  
rate (which was below 80% correct). Weinshall (1992) 
reports that in a task of determining surface curvature 
from motion, performance does not improve when the 
number of frames is increased from two to four. Todd and 
Bressan (1990) also discuss in detail some experimental 
results which at first glance seem to suggest otherwise 
(Hildreth, Grzywacz, Adelson & Inada, 1990), and show 
that these results can be accounted for by the confounding 
effects of  the duration of the stimulus or the extent of 
angular rotations between two frames. 

Moving to answer the second question, we first describe 
the (so far unaccounted for) phenomenon: this is a class 
of objects whereby motion sequences which are 
mathematically consistent with a rigid rotation of  the 
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object, are perceived by human observers as highly 
non-rigid and distorting. 

Adelson (1985) writes that ifa set of identical 3D objects 
are stretched along the Z (viewing) axis to varying 
degrees, then while rotating, "some members of this family 
look rigid, but others look quite non-rigid". He then goes 
on to state that "the effect is not simply due to static depth 
cues, since it works with figures that have weak static depth 
(e.g., pseudo-random wire-frame figures, or rigid 
constellations of random dots)". We have replicated these 
results, and observed that the notion of non-rigidity comes 
into play in the cases when, as a result of stretching (or 
shrinking) the previously-isotropic object along the Z axis, 
its extension along the Z axis was markedly different from 
its X, Yscale (by a factor of 3 or more). In these cases, even 
prolonged viewing of many complete 360 deg rotation 
cycles, and the top-down knowledge that these are in fact 
rigid objects, did not help: an overwhelming sense of 
distortion reigns. 

The explanation we propose for these observations goes 
as follows. The heuristic rules that serve to add the missing 
information and to obtain a completed-3D-percept from a 
pair of frames, fail in these cases, and lead to erroneous 
percepts---of objects whose Z scale is similar to the observed 
X, Y scales. The next frames, therefore, supply information 
that is in conflict with these erroneous percepts, and 
subsequently lead to the breakdown of the rigid 
interpretation and the perceptual experience of a distorting 
image. Indeed, it is our (as yet informal) observation, that 
in the demonstrations noted above, the perceptual notion 
of non-rigidity and distortions becomes more, not less, 
pronounced with longer motion sequences, that sweep a 
larger overall rotation angle. Lastly, as suggested by 
Hypothesis 3, the discrepancy between the "completed-3D- 
percept" and the information obtained from subsequent 
frames leads to a breakdown of the rigid interpretation, and 
not to repeated readjustment of the perceived 3D structure, 
till arriving to the correct one (as would be the case in 
existing models of structure-from-motion). 

To summarize, Hypotheses 1-3 suggest that in 
computing 3D global structure and motion, the visual 
system relies heavily on computations performed on local 
motion signals obtained from two-frame motion 
sequences. In doing so, the visual system by necessity uses 
2D local motion signals, since this strategy could not be 
used with 1D motion information alone. This implies, that 
local detectors that reliably signal 2D motion in the image 
must exist in the early stages of visual processing. 

4. DISCUSSION 

We have reported here some mathematical results 
which relate to the recovery of global object motion from 
local 1D motion measurements. We showed that 1D 
signals alone cannot subserve 3D global motion 
computation if only first-order temporal calculations are 
available (based on two-frame motion or instantaneous 
velocity field). This means that it is not possible to recover 
the underlying 3D structure and motion by constructing 
a 3D generalization of what has been termed (in the case 

of frontoparaUel motion) a "velocity space construction". 
Rather, some form of localization information is needed. 
If the system can perform higher than first-order temporal 
calculations, then 1D motion signals alone can in principle 
be used to recover 3D structure and motion information. 

We compared the results to previous theoretical results 
which use 2D signals. In this case, a lot of information can 
be recovered already from two-frame motion sequences. 
Based on these results and on related perceptual 
observations, we suggested a computational approach 
which outlines the strategy used by the visual system in 
recovering 3D structure and motion. This proposed 
strategy relies heavily on the results of computations 
obtained from two-frame motion sequences, and 
therefore 2D local motion signals must be used in this 
process of global motion computation. 

Our results provide support for the 2D approach, 
since they suggest that the contribution of 2D detectors is 
critical for the computation of global motion. We should 
note, however, that the nature of the 2D motion cues used 
in the global motion computation need not necessarily be 
confined only to the detection of point and endpoint 
motion. Sections of high curvature in a contour may also 
be used, at some level, as sources of unambiguous motion 
information (see e.g. Philip & Fisichelli, 1945; Mulligan, 
1992; Braunstein & Andersen, 1984). In fact, it has been 
suggested that endpoint detecting mechanisms may be 
closely related to curvature detecting mechanisms 
(Dobbins, Zucker & Cynader, 1987, 1989). 

Finally, an important point should be clarified. Our claim 
that reliable 2D signals must exist in the visual system 
should not be taken to imply that the ID signals play no role 
in global motion perception. Rather, what we claim is that 
1D signals alone cannot account for the observed 
characteristics of human global motion perception. The 
contribution of identifiable points, i.e. of 2D cues, is 
essential for the overcoming of a deep ambiguity inherent 
in contour motion. The "aperture problem", which is a term 
used in the context of the ambiguity inherent in the rigid 
motion of straight contours, is in fact only one 
manifestation of the more general "correspondence 
problem" inherent in contour motion: since, when viewing 
non-rigid (such as elastic) moving objects, knowledge of the 
motion of one point on the curve does not lead to 
knowledge of the motion of other points along it (see 
Wallach, 1976, Chap. IX, Part 2 for a more complete 
discussion of this issue). However, once this ambiguity has 
been resolved by the detection of identifiable points along 
(or near) smoothly curved contours, the 1D signals arising 
from the contour motion--which are abundant in images 
in general and are more robust to image noise--do 
participate in the determination of the global motion 
percept. The question of how the visual system combines 
the information from 2D motion cues with 1D motion 
signals to produce a coherent global motion percept is an 
important one for further research. 
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