JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 188, 774-797 (1994)

Identifiability of Classes of Input-Output Systems

GLENN K. HEITMAN

Department of Electrical Engineering, University of Akron, Akron, Ohio 44325-3904
Submitted by /. W. Helton

Received September 3, 1992

The identifiability of abstract classes of input-output systems from a finite set of
input-output experiments is considered. Both exact and approximate identifiabil-
ity are addressed. Here, “*system’’ means a function from an input space to an
output space. With only linear structure on the output space and on the class of
unknown systems, it is shown that a finite-dimensional class of systems is always
exactly identifiable, and the identified systems have the form of interpolations on
the input-output data. With linear and topological structure on the input space,
output space, and space of unknown systems we state conditions under which a
class of unknown systems can be identified to within a specified tolerance by
interpolative identification models. © 1994 Academic Press. Inc.

1. INTRODUCTION

The word ‘‘identification,”” as used here, is to have the following mean-
ing: from prior knowledge and observation of outputs produced by known
inputs it is desired to construct a mathematical model for the unknown
physical system that allows one to predict to within a specified tolerance
the system output (or perhaps only certain attributes of the output) result-
ing from an arbitrarily chosen input belonging to a specified class. We
shall be concerned in this paper with identifiability; i.e., we shall be
concerned with characterizing abstractly situations in which identification
is possible, rather than with obtaining identification algorithms. (Identifia-
bility can of course be shown by exhibiting an identification procedure,
but the procedure does not have to be practical.) Note that this definition
immediately implies three things. First, there must be two classes of
mathematical models available—one to represent the class that the un-
known physical system belongs to, and another to represent the class that
the identified system belongs to. These mathematical models will be re-
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IDENTIFIABILITY OF SYSTEMS 775

ferred to simply as ‘‘systems’’; when a distinction is necessary we shall
use terms such as ‘‘unknown system models” and ‘‘identification
models.”” In most identification literature these two models are tacitly
taken to be the same; we shall find it convenient to keep them distinct. In
particular, one would normally want the identification models to be sim-
pler. Second, an input-output system is a function from inputs to out-
puts—it does not include the concept of state. In other words, it is not a
“‘dynamical system.’’ Third, inputs and outputs can be observed and
inputs can perhaps be controlled.

One final remark which, though perhaps obvious, needs to be stressed.
Identification is fundamentally an inverse problem. But it is an ill-posed
inverse problem (except in trivial cases) because the data are unavoidably
insufficient; hence, as is characteristic of such problems, the solution may
not be unique or it may be too sensitive to changes in the data. The major
significance of the work reported here is to characterize those situations
in which these difficulties can be circumvented.

We shall now briefly outline the contents of the paper. Section 2 estab-
lishes the basic notation and definitions that will be used throughout the
paper. In Section 3 we consider exact identifiability at a very general level
with the input and output spaces being merely sets. We then impose the
single requirement that the output space be linear, which allows us to
consider linear spaces of mappings. The fundamental result that we shall
prove is that any finite-dimensional space of system mappings can be
exactly identified by an appropriate finite set of input-output tests. We
shall also introduce the concept of interpolative identification, meaning
the identified system must interpolate (in some sense) to the data points.
Interpolative identifications play a central role in the theory developed
here. In Section 4 we address approximate identifiability. We impose
metric space structure on the input space, Banach space structure on the
output space, and we normally require that the class of unknown systems
be a subset of the Banach space of continuous mappings from input space
to output space with bounded range and the uniform norm (hence we shall
consider uniform approximation). We establish a fundamental upper
bound on identification error, and specify conditions on the class of un-
known systems which guarantee that any one of them can be approxi-
mated to within a specified tolerance by an interpolative identification. In
Section 5 we present conclusions and comments. Section 6 consists of
three appendixes containing proofs of theorems.

2. PRELIMINARIES

In this section we state the basic definitions and notation that will be
used throughout the paper.

409-188.3-5



776 GLENN K. HEITMAN

DEFINITION 1. A system is a triple (Y, F, U) where U is a set, the
input space, Y is a set, the output space, and F is a mapping from U into
Y. F(U, Y) denotes the class of all mappings from U into Y. Subsets of
F(U, Y) will normally be denoted by letters such as % and .

With this terminology and notation we can define the fundamental prob-
lem with which we are concerned.

DEeFINITION 2. The identification problem is this: the unknown sys-
tem mapping F belongs to a given class % C #(U, Y), and on the basis of
input-output data we are to choose an identification model F from another
given class ¥ C F(U, Y) such that F approximates F in some prescribed
sense. (Note that the unknown systems and the identification models
always have the same input and output spaces.)

Specifying the class 6 of unknown systems is not a problem that can be
treated mathematically, but mathematical convenience may influence the
choice of U, Y, and #. In particular, we sometimes specify ¥ parametri-
cally. The following notation, introduced by Root in 5], is used to deal
with such situations.

DEerINITION 3. Given input and output spaces U and Y and a set X
denoting a parameter space, let fbe a mapping from X X U into Y. Then
S = (Y, f, X, U)is a compound system. A single system mapping F is
given by F(-) = f(x, -) for each x € X. Let ¥ be the setof all F: U —
Y so defined. The mapping ¢ : X — ¥ defined by y(x) = F is called the
natural mapping of . Let f: # X U — Y be defined by fiF, u) =
F(u). The compound system & = (Y, f, ¥, U) is called the natural repre-
sentation of &.

We begin at a very general level and impose more structure on the input
and output spaces and the classes of system mappings as we proceed.

As we mentioned in the Introduction, the definition of system used here
is not what one usually means by ‘‘dynamical system’ since there is no
explicit provision for state. Although U and Y can be spaces of functions
of a real variable (time), different initial states, in what would normally be
called one system, must be represented by different values of the parame-
ter x; i.e., different initial states result here in a class of systems. The
emphasis in this paper is on situations in which X is interpreted as a
parameter space in the ordinary sense.

If FE€ % C #(U, Y), then of course we write

y = F(u), uelU,yey,

and u is considered as variable. But because we shall be discussing identi-
fication we often want to consider F as variable; we then write
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y = u(F), Fe¥#, yey.

We shall always use « to denote both the element of U and the mapping
from (U, Y) into Y induced by that element. Furthermore, if for a fixed

F there is known a sequence (u;, y), ..., (un, yn) of input-output pairs,
we denote (i, ..., uy) € U¥Nby uMand (y,, ..., yn) € YN by y¥, and we
write

uN(F) = (F(uy), ..., Fluy)) = yV.

Again, " denotes both an element of UV and the corresponding mapping
from F(U, Y) into ¥V

We have defined the identification problem as that of choosing an iden-
tification model based on input-output data. We shall always require that
the data consist of a finite number of input-output pairs, and so we make
the following definition.

DEFINITION 4. The process of obtaining input-output pairs (u,, y.),
n =1, .., N,iscalled a sequence of N experiments with test set {u,, ...,
un}. A sequence of N experiments is described by the equation

yV = uNF), Fe¥%

with fixed uV.

If «¥ is invertible on u™(¥) then an exact identification of F € ¥ is
given by

F = (M)~ '(yN), yN € uN(3),

where the inverse is restricted to u™(#). Hence, as we said in the Intro-
duction, system identification is fundamentally an inverse problem, but it
is usually ill-posed because ¥ is not invertible.

The definitions of input space, output space, and system given here are
very general and are to apply in all cases. For example, the inputs and
outputs may be functions of time and outputs may be causally related to
inputs. Also, inputs and outputs may be stochastic; we shall not, how-
ever, discuss stochastic systems in this paper. At the level of generality
presented so far, the only thing we can discuss is exact identifiability,
which is the subject of the next section. When we discuss approximate
identifiability in Section 4 we shall impose topological structure on U and
linear and topological structure on Y and ¥.
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3. EXACT IDENTIFIABILITY

The system identification problem described in Definition 2 requires
two compound systems (or classes of systems): one to represent the class
of unknown systems and one to represent the class of identification
models. In this section we are concerned with exact identifiability, so we
take these two classes to be the same. Hence we take & = (Y, f, #, U) in
natural form (Definition 3) for both the class of unknown systems and the
class of identification models, and we wish to exactly identify F € 7 by a
sequence of N experiments.

We begin at a very general level with U and Y merely sets; we then shall
impose the single requirement that ¥ be a linear space. Topological struc-
ture has no bearing on exact identification.

Although the identification ‘‘theory’” at this level of generality is trivial,
it is of interest and needs to be stated precisely; furthermore, the results
of this section form the foundation of our discussion of approximate iden-
tifiability.

Let U%and Y be fixed sets. U%is to be the universal or biggest allowable
input space; any input space U must be a subset of U% Likewise, 4%U°,
Y) C F(U° Y) is the universal space of systems; any admissible # must
be a subset of §°. The restriction of F € 4° to U is denoted by F|U, unless
there is no confusion in using simply F. Note that since U and Y are just
sets, UY and Y* denote the Cartesian products.

DeFINITION 5. The pair (U, ¥), with U C U°, # C 4° is experimen-
tally functionally determined (henceforth just ‘‘determined’’) by (u,, ...,
un), u; € U, if there is a function p,,, . : U X [uN(3)] — Y satisfying the
condition

Puy....un(tt, WN(F)) = F(u) (1)

forall ¥ € U and F € ¥. The function p = p,, ., is called an experimen-
tal model determination function (henceforth just ‘*determination func-
tion”’ or DF) for (U, %) with test set (1, ..., un).

Remarks. (a) The concept of the DF was first defined by Root in [6].
The definition may be paraphrased as follows: any F € #|U can be
exactly identified by the sequence (u,, F(u})), ..., (un, F(uy)) of experi-
ments if and only if (U, #) is determined by (u«;, ..., uy). Hence we
transfer the discussion of exact identifiability onto a discussion of deter-
mination functions.

(b) U may always be extended to contain the test set since one can
define p(u;, u™(#)) = F(u;) fori = 1, ..., N. We shall always assume that
this is done.
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(c) No DF can carry topological information about #; but it can
carry linear information, as we shall see.

Note that «” : 4° — YV its restriction to # will be denoted by u™|#.
But ¥ consists of mappings F with domain U°, with restrictions to U
denoted by F|U. We shall also need to consider u” restricted to #|U; this
will be denoted by u¥. The total images in Y™ of u™|% and u«¥ are the same
(namely u™(%)), but they are different mappings; in particular, u% may be
one-to-one when u™|¥ is not. If u¥ is one-to-one we let (u})~! denote its
inverse on its range u™(%). (The distinction between u¥ and «™|¥ disap-
pears if U = U9.)

As we mentioned, identification is fundamentally the problem of invert-
ing «%; if u¥ is invertible on its range, then an exact identification of F €
¥ is given by F = (u%)~'(u™(F)). The following lemma justifies Definition
5—it says that the existence of a DF is equivalent to the existence of
(uk).

LEMMa 1. @) If (uy, ..., uy) determines (U, ) with DF p, then
(u)~1 exists.
(b) Conversely, for given U and ¥, if (u}l)~" exists then (u;, ..., un)

determines (U, ¥) with DF defined by

plu, y¥) = (W) '(yM)](w) 2
for yN = (yi, ..., yn) € uMN(H).
Proof. (a) Every F € #|U can be exactly identified using (u;, F(u,)),
i=1,..., N, hence u¥ is one-to-one.

(b) The function (2) trivially satisfies p(u, u™(F)) = F(u) foru € U
and F € ¥ and sois a DF. |

We shall now prove a technical result that will be needed; it says that
for a given test set there is a biggest U and a biggest 7 determined by the
test set. If (U, #) and (U’, ') are both determined by (u,, ..., uy) with
DFspand p’, and if U C U’ and ¥ C %', then we write (U, ¥) < (U’,
#'). The relation < gives a partial ordering on the set

Buy, ..., uny) = {(U, #) : (U, ¥) is determined by (u,, ..., un)}.

It follows from Definition 5 that

pM| ..... M}\"(u’ yN) = pz’u ..... uN(u’ yN) (3)

for all u € U and all y¥ € u™N(¥).
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THEOREM | (Root [6]). The set Si(u,, ..., uy) with partial ordering <
contains a maximal element (U*, ¥*).

Proof. See Appendix 1.

We shall now impose the single requirement that ¥ be a linear space
over a field K. (K is either the real or complex field.) F(U?, Y) is then a
linear space over K with addition of mappings and scalar multiplication
defined in the usual way. We require that the universal space 4%(U?, Y) of
mappings be a linear subspace of #(U?, Y). Then the mappings u : §°— Y
and uV : 4% — YV are linear. The set # may or may not be a linear
subspace of %°. Since Y is a linear space, Y» now denotes the direct
sum.

The following lemma states an elementary linearity property of DFs.

LEMMA 2. Let (U, ¥) have DF p with test set (u,, ..., uy). If aF’, bF”,
and aF' + bF" all belong to H for F', F" € # and any a, b € K, then for
alue U

plu, uMaF’' + bF")) = ap(u, u™F") + bp(u, u™MF").

Proof. By the definition of the DF,

aF'(u) + bF"(u)

plu, uMaF' + bF")
ap(u, uM(F")) + bp(u, uNF"). |

If (U, %) is determined by (u,, ..., uy) then there is a maximal #*
(Theorem 1). But now that 4° is a linear space more is true if U is fixed:
there is a maximal linear ¥*. (In fact any linear subspace #* of 4°
satisfying #* @ ker(«™) = 4° is maximal and linear, and such an #*
exists.)

If % is also a linear subspace of ¢° then its image € = u™N(¥) is necessar-
ily a linear subspace of Y¥. (Of course the converse is not true in general.)
If in addition Y is finite-dimensional (say dim Y = M), then for any (U, %)

determined by (u,, ..., uy), ¥ must be finite-dimensional and dim ¥ =
MN. To see this, suppose without loss of generality that € = Y and let
{ey, ..., es} be a basis for Y. Define mappings in # as

FomW) = p(u, 0, ..., 0, y, = €,,0, ..., 0)). 4)

Let the element y, € Y be written as y, = Z,A,L, & mem. Then by Lemma 2
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N M
CpmFrm() = D0 Y tpmp(t, (0, ..., 0, y, = €,,, 0, ..., 0))

M=
Mk

H
1
=
I

N
= > pu, 0, ... 2, 0, ..., 0)) (5
n=1
= plu, (yi, -’y YN))
= F(u),
where (y;, ..., yn) = uX(F). Hence ¥ is spanned by the set {F,..}.

Although exact identification is not possible in general, there is one not
very surprising (in view of the above discussion) but important case in
which it is always possible—the case in which ¥ is a finite-dimensional
subspace of 4% To prove this, we need an elementary lemma in linear
algebra.

LeEmMMA 3. If Uis a set, Y a linear space, and {F, ..., Fx} a linearly
independent set in #(U, Y), then there exists a set {u,, ..., uy} C U such
that {u™(Fy), ..., uM(En)} is a linearly independent set in YN.

Proof. See Appendix 2.

THEOREM 2. For any U C U® and ¥ any finite-dimensional linear
subspace of 4° there exists a test set (uy, ..., uy) and a DF p = p, .
for (U, %). pislinearin(y,, ..., yn) € € = uMHK). N need never be larger
than the dimension of #|U.

Proof. Let N = dim ¥|U and let {F), ..., Fy} be a basis. Choose {u,,
..., Un} € U as in Lemma 3. For any F € ¥|U write F = b)F, + --- +
byFy so that

uMF) = biu™MF) + -+ + byu™MFp). (6)

If u™(F) were zero for some nonzero F € span{F,, ..., Fy} then (6) would
provide a trivial linear relation among the «™(F)), in contradiction to
Lemma 3. Hence u is invertible on its range. By Lemma 1

p(, (¥1s ... YN = [@WH) (1, o YN

defines a DF for (U, %), and this p is clearly linear in (y,, ..., y»). |

Note that the theorem guarantees only that N need never exceed dim
#|U; there may be a test set with fewer than N elements.
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Note also that Y need not be finite-dimensional. If however Y is finite-
dimensional, then the DF of Theorem 2 is an interpolation (in some sense)
of the test data. To see this, let M = dim Y. Given (U, %), with ¥ linear,
suppose there is a test set (4, ..., uy) and DF p for (U, #). Then, as we
remarked following Lemma 2, dim # = MN; suppose dim ¥ = MN. Let
{er, ..., ey} be a basis for Y and let

Fon) = p(u, 0, ...,0, y, = €,,0, ..., 00 7

as we have done previously in Eq. (4). Note that

Fom(u) {em e (8)
nm \Uj) =
0 ifi # n.

Let a™(u,) denote the mth coordinate of F,,.(u,) € ¥ and let vy (u)
denote the kth coordinate of F,,,(«) € Y. Then by the linearity property of
p (Lemma 2) we have for any F € #*.

N M

plt, uN(F) = Flu) = S S a™(up)Fom(te)

n=1 m=1

N M )
=2 > > am™uyyBue (9)

n=1 m=1 k=1

C!(ll(un)

N
> ler -+ emITau) : ,
n=1

a™M{uy)

where I',(u) is the M X M matrix [y%,(u)], k, m = 1, ..., M. If the scalar

coordinates y*,(x) satisfy

® () = {vn(u) if k =m .

Yo 0 itk +m

(i.e., I',(w) is the diagonal matrix vy,(u)I), then

N
pu, uM(F)) = ZI Ya(W)F(u,). (11)

Thus in a fairly general case a DF is given as an interpolation of test data.
Such DFs play a central role in the theory of approximate identifiability to
be developed, so we make a formal definition.



IDENTIFIABILITY OF SYSTEMS 783

DeFINITION 6. If a DF p is given by

N
plu, uM(F)) = Z Yl F (1) (12)

for some finite integer N where each y, (1) = v, (u; u,, ..., ux), n =1, ...,
N, is a scalar function of u satisfying

(l) ’)/n(ui) = 8m

(8,; is the Kronecker delta) then p is a weak interpolation. If in addition
each vy, satisfies

) 0=y (w)=1,u€U
(i) =y =1, ueU

then p is an interpolation.

ExaMpLE. Under suitable conditions on the input and output spaces
and on the space of kernel functions, Volterra polynomial systems are
exactly identifiable by a weak interpolation.

A Volterra polynomial is a system representation of the form

y(t) = [F(u))(1)
(13)

P
= > | x(t, 81, o, suls) - ulsy) ds, -+ ds,, €T,
= la A

where A and T are subsets of the real line. We assume that « € L,(A) and
X, € Ly(T x AP} for p = 0, 1, ..., P; it follows that y € Ly(T). Volterra
polynomials provide quite general classes of mappings that can be used as
mathematical system models.

We shall require the following conditions.

(a) U is an L-dimensional closed linear subspate of Ly(A).
(b) Y is an M-dimensional closed linear subspace of LAT).
(c) Each of the kernels x, is symmetric in s, ..., 5,.

The parameter space X (see Definition 3) can then be chosen to be a K-
dimensional closed linear subspace of Z/_o @ Ly(T x A”) where

K=Mi<L+p_l>.

p=0 14
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Now the natural mapping ¢ maps the linear space X into the linear space
of bounded continuous mappings from U into Y. (Here bounded means
that bounded sets in U are sent into bounded sets in Y.) It is easy to verify
that s is linear. Let # = s(X) denote the class of Volterra polynomials of
the form of Eq. (13), subject to the conditions (a)—(c); then dim # = K
since y is linear, one-to-one, and onto #. It follows from Theorem 2 that
there is a test set (uy, ..., uy), with N = K, that determines (U, #).
Furthermore, it can be shown that the resulting DF is a weak interpolation
and that the test set can be chosen to satisfy

K I L+p—l)
N==3== .
M ,»Eu( p

The proof of this result, although fairly straightforward, is very long;
complete details can be found in {3].

Note that we do not construct a test set and DF; we get their existence
by invoking Theorem 2. Nevertheless, the result that finite-dimensional
classes of Volterra polynomials are exactly identifiable by a weak interpo-
lation is of interest because the generality of the Volterra polynomials
makes them important system models; at least it is difficult to think of
other algebras of operators which have all of the properties of the Volterra
polynomials.

The approach taken in this paper, and in this Volterra system example
in particular, is not the one normally taken in the identification literature.
Usually, one would identify the Volterra kernels by observing a single
input-output pair (1(t), y(t)) over a finite time duration, rather than by
observing a finite sequence (u,, (). ..., (un, yn) of experiments as we
have done; but note that our finite sequence of experiments need not arise
from N different input functions. In other words, our approach is more
general in the sense that identification based on observing a single input-
output pair over a finite time can be developed as a special case. That
development is not, however, as trivial as one might at first think because
causality and system memory introduce subtie problems which must be
dealt with more carefully than we can do here.

4. APPROXIMATE IDENTIFIABILITY
For consideration of approximate identifiability we assume that U = U?

is a metric space with distance d and Y is a Banach space with norm ||-]|.
Then Y¥ is a Banach space when equipped with the norm.

Iy¥|| = max |]yil.

=100 N
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4%U, Y) will refer to either 6€=(U/, Y), the Banach space of continuous
mappings from U into Y with bounded range and norm ||F|j = sup,cy
|lF(u)||, or the Banach space B=(U, Y) of mappings from U into Y with
bounded range and the same norm. Any space of mappings denoted by %
or % is then at least a metric subspace of 4°.

Several remarks are in order. (1) U 1s required only to be a metric
space. This is because we shall want to consider bounded and even totally
bounded input spaces, which of course cannot be linear spaces. We usu-
ally take U to be a metric subspace of some normal linear space. (2) The
spaces €~ and B~ consist of mappings having bounded range. Usually a
(nonlinear) mapping is said to be bounded if it sends bounded sets into
bounded sets; we shall find it convenient to restrict the mappings to have
bounded range. (3) The uniform norm has been chosen for 4° and so the
kind of approximation has been fixed. In many cases uniform approxima-
tion seems appropriate, particularly in the cases of bounded or totally
bounded input spaces. If U is not bounded, say if U is a normed linear
space, then linear operators are not accommodated by the uniform norm.
Other norms are available for such cases; for example, one could use the
Lipschitz norm defined by

|F(u) — Flo)l]
F = z =
H HL :EE Hll] - HQH

The space of mappings from U into Y with F(0) = 0 and with finite
Lipschitz norm is then a Banach space (see [4]). For our purposes, how-
ever, the Lipschitz norm does not seem to provide an appropriate mea-
sure of identification error because it emphasizes too much the fine struc-
ture of the mappings.

With these preliminaries, we can now discuss approximations. The
mapping u” : 4% — YV is linear and its linear operator norm (if it exists)
will be denoted by |u™|:

¥ = sup [¥E)] = sup max_ IFGl.
IFl=1 =1 =l N
LEMMA 4. (a) u™is a continuous linear operator on %0 \with \uNI =1

(b) If (U, ¥) is determined by (uy, ..., uy) then uy has an inverse
(uR)~ on its range. If u}} has closed range then (u})~" is bounded.

(c) If (U, #) is determined by (uy, ..., uy) and the DF is interpola-
tive (Definition 6) then u¥ is an isometry.

Proof. (a)

lu¥] = sup max [|[F(u)|| = sup ||Fj] = 1.
IEf=1 (=N let=1
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To prove the reverse inequality, let F, be the constant mapping Fy(u) =
z € Y with ||z]| = 1; then

™| = SLHIP le™ME)| = (lu™MFol| = max, NFonll = 1.

(b) The existence of (u%)~!is Lemma 1; the boundedness is a well-
known fact (see [2]).

(c) For each F € # we have [[uX(F)|| < [u%] - ||F|| = |IF||. On the
other hand, for each F € X and u € U,

N

= > yilw|[F |

i1

1FGa)]

1l

N
_2 y:i (1) F ()

A

N
max [[F(w)l| 2 viw) = max [F)l| = [uFF,
J =1 7

so ||F|| = |luX(F)l|. Hence [IF|| = luiF). |

DeriniTION 7. For a given U and test set (), ..., 4y) a mapping ¢ :
u™M(G% — 90 provides an e-identification for (U, 4), § C 4%, if

|F = (deuF) =e

for all F € 4. 1t is a continuous s-identification if ¢ is continuous.

It is not required by this definition that any F € % be exactly identified
by an e-identification for (U, 9); it may be however that ¢ does exactly
identify (U, %) for some ¥ C 4, and it is this situation that we want to
consider with # required to be linear.

LEMMA S (Root [6]). Let ¥ be a linear subspace of XU, Y), let (U,
%) be determined by (uy, ..., uy), and let u’l have closed range. Suppose
that F', F’ € 4° satisfy two conditions:

(l) inff:g‘x HF’ - FH < g and il’lf[—‘e‘,}( [fF" - F“ < g,
(1) uMF') = uMF") € uN#).
Then
([F" — F|

= 2e(l + [(uf)"'). (14)

Proof. There exist Fy, F, € ¥ such that ||[F' — F||| = ¢ and ||F" -
F)|| = &. Then, since [u™| = [ (Lemma 4),

la™(F') = uMF)|| < &
[uMF") — uMFy)|| < e.
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Therefore, since u™F') = u™MF"),
leM(F)y — u™MF)]| = 2e.

Now (u¥)"" exists as a bounded operator because « has closed range

{Lemma 4), and u™(F,) and «™(F>) both lie in the domain of (1)~ '. Hence

|Fy — Foll = ||y TuNF) — uMF)Y| = 2el(u) .

The conclusion follows from the triangle inequality. |
CoROLLARY |. Let (U, ) and F' satisfy the conditions of the lemma.
Then

IF" = 1d) ™" o wIF )] = el + Jwi) ). (15)

COROLLARY 2. If the conditions of the lemma are satisfied and if in
addition the DF is interpolative, then the bounds become

\F'— F'll=e (16)

and

(IF' = [) P o uNI(F)|| = 2 (a7

because u’y is an isometry by Lemma 4.

A trivial example shows that these bounds cannot be improved. Con-
sider a case in which the system mappings are ordinary real functions: let
U=1[0,1],Y=R,and 94" = B=(U, Y). Foragiven (u,, ..., un)in U, letp:
U x Y¥— Y be an interpolative DF:

N
plu, ¥N) = 2 yut)yn, y¥ e v,
n=1

where y,(;) = 8. 0 < y,(u) < 1, and =h=) v.(u) = 1. Then define F(u) =
p(u, yV) and let ¥ be the linear subspace of %° consisting of all such F.
Suppose we choose the interpolation functionals in the following way.
For each u, let I, be a left-closed right-open interval containing u, (but no
other u;) such that the I, are disjoint and cover U. (The last interval Iy is
closed at both ends.) Then define

1 ifu€el,
Yaltt) = . :
0 ifuel;.
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With these y,’s, each F is a staircase function and # is the linear space of
all staircase functions on [0, 1]. Now for an arbitrarily small positive &
consider a function F' € %B* satisfying

F'(u,) = 2¢ — 8, n=1,..,N,
and
F'(y) =0 for some u € [0, 1].

Then

I
inf HF' - F” = & — 55
rex

(In fact F(u) = £ — 8/2 is the function in ¥ satisfying |F' — F|| = & — 8/2.)
Also,

uMF") = 2e — 8, ..., 2e — 8) € uM#).
Hence
IF' = [(f)~" o uM)F")| = 26 — 8.

Since & is arbitrarily small, this example shows that the bound in (19) is
the best possible.

We can now connect these bounds with the facts established in Section
3 about exact identifiability and bring them to bear on the problem of
approximate identifiability. Suppose that U = U is fixed and it is desired
to identify an unknown F belonging to a specified 4 C %". The idea,
roughly, is to approximate ‘4 by a finite-dimensional linear #, obtain a DF
p for %, and use p to give an approximate identification of the unknown F.
But we must say this more carefully. Suppose that # has been chosen;
then there exists a test set (uy, ..., uy) and a DF p for (U, #) (Theorem 2}.
Let n = e(1 + |(«%)~")) and define

He={F e 9 dF, ¥) <e}l

Then Corollary 1 says this: if u™ carries each F € ¥* into the range of u’y,
then an identification is provided for any F € 3* with error not exceeding
n. If § C ¥, the same can be said for each F € ‘4. There are three
difficulties. The first is to assure that «™(‘4) C u™(%). This is not serious
because if ¥ is maximal for fixed U and given test set, then «™(%4% =
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u™(¥). The second, and more serious, difficulty is finding a suitable test
set given a finite-dimensional linear %. Furthermore, since |(«%)'] is not
known until after the test set is chosen, the relation between ¢ and 7 is not
known until after 7 and the test set are fixed. One would like ¥ to be &-
dense in 4, but £ is not known a priori. The final difficulty is this: even if &
were known it would be hard to specify a finite-dimensional linear ¥ that
would be e-dense in — presuming it exists. Apparently the thing to do is
start the problem from the other end. That is, rather than starting with (U,
%) and attempting to find a test set and a function p such that p is a DF for
(U, %), we proceed as follows. With U fixed one starts with a test set (u,,
..., uy) (probably chosen to be representative in some sense) and then
chooses a function p : U x YV — Y satisfying

Pln, (Y1 oo VW) = Yoo (¥1y s W) EE C YN (18)
Then define £ : U — Y by
Fw)=pu, (yi, ooy, (Vs w0 YW EEUE U,  (19)
and let ¥ be the set of all such F. It follows then that
plu, (F(uy), ..., Fux)) = F(u),

and so p is a DF for (U, #) with test set (i, ..., uy). An interpolative p is
a good choice for then u¥ is an isometry (Lemma 4). If € is a linear
subspace of YV then ¥ is a finite-dimensional subspace of 4". Then by
Corollary 2 every F € % can be identified to within 2. Note that we still
have the difficulty of getting # to satisfy #¢ D %. In some general cases
this can be done, and it is those cases that we shall now consider. We
begin by imposing more conditions on the interpolation functionals of

Definition 6.

DerINITION 8. Let {y, ..., yn} be a set of interpolation functionals
with respect to the test set (uy, ..., uy); i.e., they are real-valued functions
on U satisfying conditions (i), (i), (iii) of Definition 6. They are called
continuous interpolation functionals if

(iv) each vy, is continuous on U,
and, for 8 > 0 they are called 8-local interpolation functionals if
(v) vy.(«#) = 0 whenever d(u, u,) =8, n =1, ..., N.
One construction of continuous &-local interpolation functionals is

given in [5]; a simpler construction is given in [7]. Note that U/ must be
totally bounded to support 8-local interpolation functionals.
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Continuous interpolation functionals can be used to construct e-identifi-
cations. We begin with the following theorem.

THEOREM 3. Let Y be finite-dimensional. Let U be a compact metric
space and % a compact metric subspace of €(U, Y). For a given & > 0

there exists a test set (uy, ..., uy) and a set of continuous local interpola-
tion functionals {y1, ..., yn} such that F € €~ defined by

. N

F(u) = Z Yalaty tyy oo, un)F () (20)

n=l

satisfies ||F — F|| < & for all F € 6.

Proof. This theorem is a special case of Proposition 1.7 of [5]: the
proof is omitted.

Hence if ¥ is defined as the linear subspace of ¢* comprising all F
defined by Eq. (20) as F ranges over ‘€™, then

N
plu, uMF) = 2, ya(wF(u,) 210

n=1

is a DF for (U, %), and uniformly good approximation is guaranteed not
only for % but also for 7¢ D 4.

If M = dim Y then the parameters for the identification model defined
by Eq. (20) are the MN coordinates of the F(u,); i.e., the model is finitely
parametrized. The model is also linear in the parameters (Lemma 2).

Proposition 1.7 in [5] is more general because Y is allowed to be an
infinite-dimensional Banach space; but the identification model is not nec-
essarily an interpolation and % is not necessarily linear. If, however, we
are willing to sacrifice the condition that the interpolation functionals be
8-local, then we can show that the conclusion of Theorem 3 holds for non-
compact U and infinite-dimensional Y.

THEOREM 4. Let U be a metric space and Y a Banach space. Let G be
totally bounded in ‘€=U, Y) and let

def

GU)E{Fu): FE G, ue U}

be totally bounded in Y. For a given £ > 0 there exists a test set (uy, ...,
uy) and a set of continuous interpolation functionals {y,, ..., yn} such
that F € €~ defined by

N
F(w) = 2, yalus ur ooy un)F (i) (22)
n=1
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satisfies ||F ~ F|| = e for all F € §. If Y is finite-dimensional then the
identification model F is finitely parametrized.

Proof. See Appendix 3.

Remarks. (a) The interpolation functionals are not 8-local, but they
are continuous.

(b) This theorem gives an interpolative identification even when Y
is infinite-dimensional; when Y is finite-dimensional, then of course the
identification model is finitely parametrized. In a practical problem one
would naturally insist that the model be finitely parametrized. This theo-
rem could be modified to provide a finitely parametrized model for infi-
nite-dimensional Y, but the model would not be interpolative. We shall
not pursue this further here.

(c) Theorem 4 is in fact a generalization of Theorem 3—the hypoth-
esis in Theorem 4 that ‘9(U) be totally bounded is not additional because it
is implied by the hypotheses of Theorem 3. The construction of the inter-
polation functionals in Theorem 4, however, seems to be less amenable to
calculation than that given in the original proof of Theorem 3.

(d) Theorems 3 and 4 give conditions guaranteeing the existence of
a simultaneous interpolation and approximation; it is of course a natural
requirement that the identification model should interpolate to the un-
known system at the test inputs. There does not appear to be an exact
parallel in the classical theory of approximation of functions, although
there are some theorems with a similar flavor. In particular, we mention a
theorem of Walsh: let S be a closed bounded set in the complex plane and
let z;, ..., zwv be distinct points of S. If fis defined on S and is uniformly
approximable there by polynomials, then fis uniformly approximable by
polynomials p that also satisfy p(z,) = f(z,) forn =1, ..., N. (A proof of
this theorem is given in [1].) This and Weierstrass’s Theorem imply that
any f € %€[a, b] is uniformly approximable by interpolative polynomials.
But our Theorem 3 and 4 are different: they say that there is some set
(uy, ..., uy) such that we can interpolate and approximate every F in the
class 4.

5. CONCLUSION

In this paper we have considered the identifiability of abstract classes of
input-output systems based on a finite sequence of input-output experi-
ments. We shall briefly summarize and organize our results.

We began with exact identiability. A system F belonging to a class ¥ is
exactly identifiable if and only if the mapping u¥ is invertible; the identifi-
cation is given by

409/188:3-6
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F = (i) "u™F)).

We defined the concept of determination function so that we can also say
that every F € ¥ is exactly identifiable if and only if a DF p exists for the
pair (U, ¥). The fundamental result we proved is that if Y is a linear space
and if ¥ is a finite-dimensional linear space of systems, then every Fin ¥
is exactly identifiable by a finite sequence of test inputs. (The same test
set applies to each F.) Furthermore, if Y is also finite-dimensional then the
DF can be a weak interpolation. In particular, the identification of finite-
dimensional subspaces of Volterra polynomials with finite-dimensional
input and output spaces can be given by a weak interpolation.

We next addressed approximate identifiability by imposing topological
structure—U is a metric space, Y a Banach space, and any class of
systems is a subset of €*(U, Y) or B=(U, Y). We concentrated on inter-
polative then u¥ is an isometry. The main result is Theorem 4 which gives
conditions on U, Y, and % guaranteeing the existence of a test set (u, ...,
uy) such that every F € % can be identified to within a specified tolerance
by the interpolation

N
Fm=§wwﬂm.

We therefore provide an approximate identification for a class 4 as fol-
lows. For a given test set (4, ..., uy), the function

N
pu, uMF)) = F(u) = 2, y.()F (uy),
n=1

with the appropriate choice of interpolation functionals {y,, ..., y»}, is an
interpolative DF for (U, #) where # is the linear space of all such FasF
ranges over all of € (U, Y). Then, provided % is compact in ‘6~ and 4(U)
is compact in ¥, Theorem 4 says that ¢ C %°. Corollary 2 of Lemma 5
then says that any F € ¢ can be identified to within 2¢; hence the same is
true of any F € 4. Note that the identification models are continuous
interpolations belonging to a linear space of systems. If Y is finite-dimen-
sional then Theorem 3 gives us continuous /local interpolations belonging
to a finite-dimensional .
We shall end with a few concluding remarks.

(i) We have considered only interpolative identifications, for two
major reasons. One is that it simply is natural to require that the identified
system should interpolate to the test data; the other reason is Lemma 4.
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(ii)) We have not considered random noise in the observations of the
inputs or outputs. We get approximations in Section 4 because of model-
ing error, not because of noise.

(iii) More generally, we have not included stochastic systems, but
neither have we specifically excluded them. Our results depend only on
the topological and linear properties of U, Y, and % and so they still hold
whether or not inputs and outputs have a stochastic interpretation. Of
course, to say anything about stochastic systems beyond obvious general-
ities requires more structure than we have imposed here.

+

(iv) As we have mentioned previously, ‘‘system,’” as used in this
paper, does not have the usual interpretation of ‘‘dynamical system.”
Clearly there is a connection between the identification of input-output
systems from a finite number of input-output experiments and the identifi-
cation of dynamical systems from a single input-output experiment per-
formed over a finite interval of time. To clearly display that connection,
however, requires a great deal of definition and detail which could not be
included here.

APPENDIX [: PROOF OF THEOREM 1

Let®' ={(U', %" : (U’', ¥') > (U, #)} C 9D and let M be an ordered
subset of @', say M = {(U,, #o)}a. Put U= U, U,and ¥ = U, ¥, Note
that U C U and ¥ C 4°. A DF p for (U, %) may be defined as follows. If
u € U, then u € U, or some a, and if (y;, ..., yn) € u™¥(¥) then (y, ...,
yn) € uN(3 ) for some B (because uN(¥#) = uM(U¥,) = Uu™(%,)). Either
(U, #,) < (Ug, ¥p) or the other way round since M is an ordered set.
Suppose that (U,, #,) < (U, #g). Then u € Up. Define

ﬁ(u’ ()’1, feny }’N)) = pﬂ(u’ (.Yl’ ravy )’N));

where pg is the DF for (Ug, ). By the consistency of the DFs described
by Eq. (3) this defines 5 on U X [u™(¥)]. p is a DF for (U, ), and (U, %)
is an upper bound for M. Hence by Zorn’s Lemma %' contains a maximal
element, and the proof is complete.

APPENDIX 2: PROOF OF LEMMA 3

(a) Since {F,, ..., Fy} is a linearly independent set, none of the F,-’.s is
zero. So there is u; € U such that Fi(u;) # 0.

(b) Consider Fy(u,) and F>(u;) in Y.
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Case (i). They are linearly dependent in Y. (If ¥ = R this is the only
case.) Then there are scalars a,, a; not both zero such that ¢, F(u,) +
a:F>(u;) = 0; a, and a5 are unique to within a scalar multiple. There must
then be a u» € U such that a,F(u2) + a2F>(us) # 0. (If @ F(u) + a:Fy(u) =
0 for all « then a,F, + a,F; = 0, contradicting linear independence.) We
shall now show that «2(F;) = (Fi(u;), Fi(u:)) and ui(F,) = (Fs(uy), Fxus))
are linearly independent in Y2. Consider a non-trivial relation

¥ (F) + cu*(Fy) = 0 (23)
or

aiFi(uy) + e2F(u) =0 (24)

o Fluz) + e Fxur) = 0. (25)

Equation (24) implies that ¢ = ka, and ¢; = ka; since ¢, and &, are unique
up to a multiplier. But then Eq. (25) cannot hold because of the way in
which u; was chosen. Hence ¢, = ¢; = 0 and «*(F)) and «*(F>) are linearly
independent.

Case (ii). F\(u)) and F»(u,) are linearly independent in Y. Choose any u,
# u; in U. Consider again the linear relation (23). Equation (24) implies
¢ = ¢; = 0, and so ¥¥(F) and u¥(F,) are linearly independent in Y2,

(c) General inductive step. Suppose that {u,, ..., u.}, n < N, have been
chosen so that u*(F)), ..., u™(F,) are linearly independent in Y~

Case (i). u™(Fy), ..., w"(F,), u™(F,+) are linearly dependent in Y”. Then
there are scalars a,, ..., a,+ not all zero such that E,'-:,' au(F;) = 0. The
a;’s are unique up to a scalar multiple. Now if for every u € U we have

:11 a;F{u) = 0, then E;’:ll a;F; = 0, which contradicts the independence
of the F;'s. Hence there is «,.; € U such that i":,' a;F{u,+1) # 0. Con-
sider

U Y F) + -+ T W(Fa) =0 (26)
or

aFG) + -+ e Foniiy) = 0

(27)
ClFl(un) + oo+ Cn+an+l(un) =0

i F\(ups) + -0+ cper Fpei(ins) = 0.
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The first n equations of (27) imply ¢; = ka;fori =1, ..., n + 1. But then the
last equation cannot hold because of the choice of u,.,. Hence ¢, = - - - =
Cnr1 = 0 and w**1(F)), ..., "t W(F,,,) are linearly independent in Y"*!,

Case (i1). w'(Fy), ..., u(F,), u"(F,,,) are linearly independent in Y".
Choose any u, . distinct from u, ..., u,. Then for any linear relation (26),
the first n equations of (27) imply ¢; = -+ - = ¢,+; = 0 and so u"*'(F)), ...,
u"*\(F,,) are linearly independent in Y7*!. This completes the proof.

APPENDIX 3: PROOF OF THEOREM 4

Fixe > 0. Let{F|, ..., Fx} be an e/4-net for 47 ; i.e., for any F € 4 there
is a k such that || F — F,|| < /4. (4~ denotes the closure of 4.) Let {B,, ...,
B;} be open £/4-balls covering 4(U)~, and put Bf=F'B)forl=1,...,

L. k=1,...,K. Each B_f‘ is open in U since Fy is continuous. Consider the
nonempty setsamong Bl N BLN---NBL,ii,...,ix =1, ..., L. These sets

are open and cover U (in fact, for each k any « € U is in F; '(B)) for some
/). Enumerate the nonempty D, = Bl N BN ---NBX. n=1,..,N,in
such a way that no D, is contained in a union of preceding ones. (If a
candidate for D, is contained in a union of D, ..., D,_;, discard it.)

Now choose any u; € D;. Since D, is not a subset of D, and D, is not
empty, we can choose u; € D, with u, # u,. Similarly, since D, is not
contained in Dy U D,, we can choose w3 € D; distinct from u, and u,; in
general we can choose v, € D, withu, € DU D, U --- U D,_,. There is
thus obtained a set {u;, ..., u,} of distinct points with u, € D,. Put

=0, \NU () =1 ..N
itn
Each C, is nonvacuous (because u, € C,) and the C,’s provide an open
cover for U (because the D,’s provide an open cover).
To define the interpolation functionals vy, first define forn =1, ..., N
and all « € U,

_ du, C5)
W) = T ¥ dw, €9

This is well defined because d(u, u,) + d(u, C3) > 0 for all u € U. Now
define

Sultt)

0 = SN Sy
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It is easy to verify that the vy, satisfy (i) 0 < y,(«) = | for all ¥ and n, (i1)
2 yau) = 1 for all u, (iii) « € C& implies y,(u) = 0, (iv) u = u, implies
vu) = 1, and (v) y, is continuous on U. In other words the vy, are
continuous interpolation functionals.

Now define the approximation of ' € 4:

N
Fu) = 2 vty uy, ..., un)Fuy,), u € U.
n=1

It remains to show that |F — F|| = &. First note that for any k € {1, ...,
K}

|F@) — Fll < ||Fw) — Fuw)|| + ||Fuw) — Ex@)|| + || Fw) — Fw)|.

Consider each of the three terms.

(1) Choose k so that [|F — F| < €/4; then ||F(u) — Fy(u)|| < /4.
(2) Let

N

|Fuy — Fu@)|| = ||Fuu) — 2, ya) Filu,)|]

n=1

N
= 2 Yo ) Flt) — Fi(un)l|

N
= E Yalt)|| Fi(u) = Fi(un)|).

Let C,,, ..., C,, (Where P = N) be those C,’s with u € C,,. Then

N P
Z, Yalw)| Fiu) — Flun)l| = 2 Y[ Fuu) = Filu)||
n= p=

because y,(u) = 0 for the other indices. But

| Fiu) — Fi(u,)l| = &/2.
In fact

ueC, CD, =B NB,N---NBk

for some i, ..., ix. Also u, € C,, and so u, u,, € Fi! B,) in particular.
Hence Fi(u) € B; and Fi(u,) € B, ; but B; is an open &/4-ball in Y. Hence
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| Fuw) — Fuw)|| =< &/2.

(3) Let
N
Ew) — Fuw)|| = "2' YOl Filun) — F(un)]‘
N
=< 20 Yl Filun) = Fla)|
< ||Fy — F|l = &/4.
Hence,
IF-Fll=3+35+5=¢
and the theorem is proved.
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