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Abstract

We consider the Dirichlet boundary value problem for an elliptic inclusion governed by a quasi-
linear elliptic operator of Leray—Lions type and a multivalued term which is given by the difference
of Clarke’s generalized gradient of some locally Lipschitz function and the subdifferential of some
convex function. Problems of this kind arise, e.g., in mechanical models described by nonconvex
and nonsmooth energy functionals that result from nonmonotone, multivalued constitutive laws. Our
main goal is to characterize the solution set of the problem under consideration. In particular we are
going to prove that the solution set possesses extremal elements with respect to the underlying natural
partial ordering of functions, and that the solution set is compact. The main tools used in the proofs
are abstract results on pseudomonotone operators, truncation, and special test function techniques,
Zorn's lemma as well as tools from nonsmooth analysis.
0 2003 Elsevier Inc. All rights reserved.

1. Introduction
Let £2 c RN be a bounded domain with Lipschitz boundarg. In this paper we con-
sider the Dirichlet problem for the following elliptic inclusion:
Au+0j(-,u) —98C¢,u)> f in g, u=0 onos, (1.1
* Corresponding author.
E-mail addressescarl@mathematik.uni-halle.de (S. Carl), motreanu@univ-perp.fr (D. Motreanu).

0022-247X/$ — see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0022-247X(03)00461-X


https://core.ac.uk/display/82728838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

148 S. Carl, D. Motreanu / J. Math. Anal. Appl. 286 (2003) 147-159

where A is a second order quasilinear differential operator in divergence form of Leray—
Lions type given by

N u u
Au(x):—Z—.a,-(x,Vu(x)) WithVu:(— .. >,

— Ox; ax1’ T dxy
i=1

and the functiory : 2 x R — R is assumed to be the primitive of some locally bounded
and Borel measurable functign 2 x R — R, i.e.,

j(x,S)=/g(x,f)dT- (1.2)
0

Thusj(x,-) :R — R is locally Lipschitz and Clarke’s generalized gradiépgx, -) : R —
2R\ ¢ of j with respect to its second argument exists which is defined by

3j(x,s):={¢ eR| jOU,s;r) = ¢r, Vr eR}, (1.3)

wherej0(x, s; r) denotes the generalized directional derivativg @t s in the directiorn-
given by
. / s t _ . ,
JO,sir) = Ilmsup](x yHir) —jl y)’
y—>s5,140 t

cf., e.g., [8, Chapter 2]. The functioh: 2 x R — R is assumed to be the primitive of
some Borel measurable functién 2 x R — R which is monotone nondecreasing in its
second variable, i.e.,

s

ﬁ(x,s):/h(x,t)dr. (1.4)

0

ThusB(x, -) :R — R is convex withdg (x, -) : R — 2% \ ¢ denoting the usual subdifferen-
tial of B with respect to its second argument, and one has

aﬁ(x,s)z[ﬁ(x,s),l_z(x,s)], (1.5)

whereh andi denote the left-sided and right-sided limits/nfrespectively, with respect
to the second argument.

Differential inclusions of the form (1.1) have attracted increasing attention over the
last decade mainly due to its many applications in mechanics and engineering, cf., e.g.,
[11,12]. This type of inclusions arise, e.g., in mechanical problems when nonconvex,
nonsmooth energy functionals (so-called superpotentials) occur, which result from non-
monotone, multivalued constitutive laws, such as, for example, certain contact and friction
problems, cf., e.g., [9,11,12]. The special case in which the funetienj (-, s) is a con-
vex function too, leads to a multivalued term that is given by the generalized gradient of
so called d.c.-functions (difference of convex functions). Elliptic and parabolic inclusions
with generalized Clarke’s gradient of d.c.-functions have been treated, e.g., in [1-5] under
the assumption that appropriately defined super- and subsolutions are available.
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Our main goal is to prove extremality and compactness results of the solution set of (1.1)
whenj(x,-):R — Ris only locally Lipschitz, and without assuming super- and subsolu-
tions.

The plan of the paper is as follows. In Section 2 we give the basic notions and hypothe-
ses, and formulate the main result. In Section 3 we prove the existence of a priori bounds
of (1.1), and in Section 4 we review the elliptic counterpart of an extremality result of some
auxiliary hemivariational inequality recently obtained by the authors in the parabolic case.
The proof of our main result is given in Section 5. In Section 6 we consider as a special
case an inclusion of the form (1.1) with given by thep-Laplacian. The main tools used
in the proofs are abstract results on pseudomonotone operators, truncation, and special test
function techniques, Zorn’s lemma as well as tools from nonsmooth analysis.

2. Notation, hypotheses, and main result

LetV =wbr(2) andVp = W&’p(ﬂ), 1< p < o0, denote the usual Sobolev spaces,
andV* andVj their corresponding dual spaces, respectively.

We assumef e V' and impose the following hypotheses of Leray-Lions type on the
coefficient functions;, i =1, ..., N, of the operatoA.

(A1) Eachg;: 2 x RN — R satisfies the Carathéodory conditions, i®(x, &) is mea-
surable iny € £2 forall £ e RN and continuous i for aimost allx € £2. There exist
a constanto > 0 and a functiorkg € L9(£2), 1/p + 1/¢q = 1, such that

‘ai(x, 5)‘ <ko(x) + c'o|§|”_1

for a.e.x € £2 and for all e RV.

(A2) YN 1(ai(x, &) —ai(x,€))(& — &) > 0 for a.e.x € £2 and for allg, £’ € RN with
EFAE

(A3) Z,N:Ni (x,£)& > v|E|P — k1(x) for a.e.x € £2 and for alls € R with some con-
stanty > 0 and some functioky € L1(£2).

As a consequence of (A1) and (A2) the semilinear farassociated with the operatar
by

N
9
(Au, p) :=a(u,<p)=/zai(x,w)—(pdx, Vg € Vo,
i=1 oxi

S iz

is well defined for any: € V, and the operatod : Vo — V{ is continuous, bounded, and
monotone. Heré-, -) denotes the duality pairing betwe&p and V. A partial ordering

in LP(£2) is defined by < w if and only if w — u belongs to the positive corieﬁ(.Q) of

all nonnegative elements @f” (£2). This induces a corresponding partial ordering also in
the subspace®y C V of L7 (£2). We define the notion of weak solution of problem (1.1)
as follows.
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Definition 2.1. A function u € Vp is a solution of the BVP (1.1) if there are functions
n € L1(£2) andy € L9(£2) such that the following holds:

() n(x) €dj(x,ux)) andy (x) € 98(x, u(x)) fora.e.x € £,
(i) (Au, @)+ [o((x) =y @)ex)dx = (f,9), Yo € Vo.

As for the functiong related withj by (1.2) and the function related withg by (1.4)
we assume the following hypotheses.

(H1) The functiong: 2 x R — R satisfies
(i) gis Borel measurable i? x R, andg(x,-):R — R is locally bounded;
(ii) There exists a constan > 0 such that

g(x,51) < gx,52) +c1(s2 —s1)P 7t
for a.e.x € £2 and for allsq, s2 with 51 < s2;
(iii) There is a functiork; € Lﬂ(Q) and a constant1 > 0 such that
|g(x,5)] <ka(x) + pals|P~t

fora.e.x € £2 and for alls € R.
(H2) The functioni: 2 x R — R is Borel measurable, monotone nondecreasing in its
second argument, and satisfies with some fundtipa Lﬂ(Q) and with some con-
stantuo > 0 the growth condition

|h(x,5)] < ka(x) + pals|P ™t

fora.e.x € £2 and for alls € R.

(H3) Let cgp > 0 denote the best constant in Poincaré—Friedrichs inequality and denote
w = u1+ u2, whereu1 and o are the nonnegative constants of (H1) and (H2),
respectively. Then the positive constaraf (A3) is related withy andcg by

CEM < V.

Remark. Condition (H1)(ii) implies that Clarke’s gradient of the functipn2 x R — R
fulfills the following condition: Fom; € 3j (x, s;), i =1, 2, one has
n < n2+ci(sz —sp)P 7t

for a.e.x € £2 and for allsy, s2 with s1 < s2. This condition is mainly used in the proof of
Theorem 4.1 which we recall in Section 4.

Definition 2.2. A solutionu* of (1.1) is called theyreatest solutiornf for any solutionu
of (1.1) we havex < u*. Similarly, u, is theleast solutionf for any solutionu one has
u, < u. The least and greatest solutions of the BVP (1.1) are calleeiinemalones.

The main result of the present paper is given by the following theorem.
Theorem 2.1. Let hypothese@\1)—(A3) and (H1)—(H3)be satisfied. Then the BMR.1)

possesses extremal solutions and the solution set of all solutiofls1ofis a compact
subset inVg.



S. Carl, D. Motreanu / J. Math. Anal. Appl. 286 (2003) 147-159 151

The proof of Theorem 2.1 requires several preliminary results which are of interest in
its own and which will be provided in Sections 3 and 4. We will assume throughout the
rest of the paper that the hypotheses of Theorem 2.1 are satisfied.

3. A priori bounds

In this section we shall prove the existence of a priori bounds for the solutions of (1.1)
which are crucial in the proof of our main result. To this end we consider the following
auxiliary BVP:

Findu e Vo: Au=f+k+ulul’t inV{, (3.1)
Findu e Vo: Au=f—k—plul’t inV{, (3.2)
wherek € LY (£2) is given byk (x) = ka(x) + ka(x) andu = 1 + po.

Lemma 3.1. There exist solutions of the BMB.1) and (3.2) and their respective solution
sets are bounded i¥p.

Proof. We prove the existence and boundedness of the solution set for the BVP (3.1) only,
since the same arguments can be applied for the BVP (3.2)PLétnote the Nemyt-

skij operator related with the functian— u|s|?~1, thenP: L?(2) — L1(£2) C Vg is
continuous and bounded, and due to the compact embedfgiagL” ($2) it follows that

P Vo — Vj is compact. Thus due to the propertysthe operatod — P: Vo — Vi isa
bounded, continuous, and pseudomonotone operator. Rewriting the BVP (3.1) in the form

ueVoo (A—Pu=f+k inVg, (3.3)

and noting thaif + k € V7, there exist solutions of (3.3) provided— P is coercive, i.e.,

the following holds:

((A— P)u,u)
lluell vy

Let cg > 0 denote the best constant in Poincaré—Friedrichs inequality, i.e., in

— 0o asllully, = oo. (3.4)

lullLr 2y < cellVullr(2), Yu € Vo,
then by means of (A3) we obtain

(A= Pyu,u) > vlIVull] o) = lkall 1@y — mllull} )

> = cem)IVullL ) — kil ), (3.5)
which proves the coercivity due to (H3) and the fact thall = ||VullLr o) defines an
equivalent norm irVp. The coercivity argument applies also to get the boundedness of the
solution set of (3.1). To this end letbe any solution of the BVP (3.1), then from (3.3)
and (3.5) one gets

W = e IVull] gy — Ikall 1y < ((A = Pyu,u) < (ILf llvg + Ikl o)) 1l v,
(3.6)
which proves the assertion.o
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For the proof of the next result we recall the notioroéctednessf a partially ordered
set.

Definition 3.1. Let (P, <) be a partially ordered set. A subgkof P is said to beupward
directedif for each pairx, y € C there isz € C such that < z andy < z, andC is down-
ward directedif for each pairx, y € C there isw € C such thatw < x andw < y. If Cis
both upward and downward directed it is caltdicected

Lemma 3.2. The solution sets of the BMB.1) and(3.2), respectively, are directed sets.

Proof. We are going to prove the assertion for the BVP (3.1) only, since analogous ar-
guments apply for the BVP (3.2). Let us denote®yhe solution set of the BVP (3.1).
ThenS # @ in view of Lemma 3.1. Givemu, uz € S, thenu := max(uy, u2) € Vg is a
subsolution of the BVP (3.1), see, e.g., [6, Lemma 6.1.3]. Define the following truncation
operatorT';

u(x) if u(x) <u(x),
u(x) ifulx,t) <ulx).
Itis well known thatT : Vo — Vp is a continuous and bounded operator, cf., e.g., [6, Chap-
ter C.4]. Consider the auxiliary BVP,
Findu € Vo:  Au= f +k+u|Tul’"t inVg§. (3.7)

The same arguments as in the proof of Lemma 3.1 apply to ensure the existence of solutions
of the BVP (3.7). We shall show that any solutierof the BVP (3.7) satisfies > u, and

hence due td'u = u it follows that« is a solution of the BVP (3.1) which exceeds the
given solutions:1 andu». This provesS is upward directed. Lat be any solution of (3.7)

and recall thak is a subsolution of (3.1), i.e., we have

(Tu)(x) = {

(Au, @) < (f. @) + u/(k +ulPNedx, VeeVonLl(2), (3.8)
2
andu is any solution of (3.7), i.e.,

(Au, @) = (f, <p>+u/(k+|Tu|P*l)<odx, Vo € Vo. (3.9)
2

Taking as special nonnegative test functjos (z —u)* :=max(u —u, 0) € VoN Li (£2),
we obtain by subtracting (3.9) from (3.8) the inequality

N

Tt
/Z(ai(x, Vu) —a;(x, Vu))M dx
, 0x;
o i=1
<M/(I£I”_l— 1Tul” ) (u—u)*dx

2

=pu / (I~ = |u|”~ ) (u — u) dx =0, (3.10)

{u>u}
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where{u > u} :={x € 2 | u(x) > u(x)}. By means of (A2) we deduce from (3.10) that
V(u —u)™ =0, and thus(u — u)™ = 0 which yieldsu < u. This completes the proof

for S being upward directed. Noting that for any solutionsu, € S the functioni :=
min(u1, u2) is a supersolution of the BVP (3.1), see, e.g., [6, Lemma 6.1.3], we can show
in a similar way thats is also downward directed, and thus the directedness of

Lemma 3.3. The BVP(3.1) and (3.2) have extremal solutions.

Proof. Again the proof will be given for the BVP (3.1) only, since for the BVP (3.2)

it can be done similarly. Moreover, we will concentrate on the existence of the greatest
solution of the BVP (3.1), because the existence of the least solution follows by obvious
dual reasoning. Lef denote the solution set of the BVP (3.1). First we shall show the
existence of a maximal element &fwith respect to the underlying partial ordering by
means of Zorn’s lemma. To this end &t- S be any well-ordered chain which is bounded

in Vo by Lemma 3.1, and thus, in particular, also boundeflfiii§2). Then there exists an
increasing sequendg,) of C which converges strongly ia”(£2) and weakly inVy to

w :=sup(C). We claim thatw belongs taS. From (3.1) we immediately get

(Aup, up —w) = (f,up —w) + u/(k + lun|P7) y — w) dx. (3.11)
2

Taking the convergence property @f,) and its boundedness into account we obtain
from (3.11),

limsupAuy, u, —w) <0, (3.12)

n—oo
which impliesu, — w strongly in Vo due to due to the (§-condition satisfied by the
operatorA, cf., e.g., [6, Theorem D.2.1]. Thus we may pass to the limitin (3.%)-asoco,
i.e.,in

up € Vor  Aup = f +k+pluP7t in Vg,

which proves thaiw € §. ThusC possesses an upper bound’inso that Zorn's lemma

can be applied, which ensures the existence of a maximal eleineBécausesS is, in
particular, upward directed the maximal element is unique and must be the greatest one.
Thusw is the greatest solution.

By means of Lemmas 3.1-3.3 we are now able to derive a priori bounds of the original
BVP (1.1).

Lemma 3.4. Letw be the greatest solution of the BY®.1) andw be the least solution of
the BVP(3.2) according to Lemma&.3. Then any solution of the BVP(1.1) is contained
in[w, 0.

Proof. Letu be any solution of (1.1), i.e., we have by Definition 2.1,

(Au, ¢) + /(n(x) —y@®))ex)dx=(f,¢), VpeVo, (3.13)
2
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wheren(x) € 9j (x,u(x)) andy(x) € 98(x, u(x)) for a.e.x € 2. In view of the growth
conditions of (H1) and (H2) we have

In)] ko) + uafu@|” ™ |y @] ks + plu)]” (3.14)

From (3.13) and (3.14) we see thats a subsolution of the BVP (3.1). Now the same
arguments as in the proof Lemma 3.2 apply which show that there exist solutions of the
BVP (3.1) that are greater than However,w is the greatest solution of (3.1), and thus

it exceeds: which proves thatv is an upper bound of any solution of the original prob-
lem (1.1). The proof fow to be a lower bound is carried out in a similar waya

4. Auxiliary hemivariational inequality

In this section we consider the following subproblem of the BVP (1.1):
Au+93j(,u)> f ing2, u=0 0nas, (4.1)

where f € V' is a given element. One can show that any solution of problem (4.1) is a
solution of the hemivariational inequality

(Au, ¢ —u) +/j0(-,u;<p—u)dx z(fio—u), Voelo. (4.2)
2

We recall an existence and extremality result for the BVP (4.1) in terms of appropriately
defined super- and subsolutions which may be considered as the elliptic counterpart of a
result recently obtained by the authors in [7] in the parabolic case. To this end we first
provide a generalization of the notion of super- and subsolution known for singlevalued
equations to the hemivariational inequality (4.1).

Definition 4.1. A function iz € V is called asupersolutiorof the BVP (4.1) if there is a
functionv € L9(£2) such that

(i) #>00nas2,
(i) v(x)€dj(x,u(x)) fora.ex e 2,
(i) (A, @)+ [ 0(x)p(x)dx > (f. @), Yo € VoN LY (2).

Similarly, a functioru € V is asubsolutiorof the BVP (4.1) if the reversed inequalities
hold in Definition 4.1 withiz andv replaced by andwv, respectively.
The following existence and extremality result can be deduced from [7].

Theorem 4.1. Let u and i be sub- and supersolutions ¢4.1), respectively, satisfying
u < u. Then the BVR4.1) has extremal solutions within the order intervyad, i].
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5. Proof of Theorem 2.1

In this section we are going to prove our main result. The proofis inspired by an idea of
the first author used in [3,5] to treat boundary hemivariational inequalities of the d.c.-type.
Our proof will be given in two steps.

Proof. (a) Existence of extremal solutions of (1.1).

Lemma 3.4 provides a priori boundsandw satisfyingw < w, wherew is the greatest
solution of the BVP (3.1) and is the least solution of the BVP (3.2). We are going to prove
that (1.1) possesses extremal solutions within the order intemab], which proves the
existence of extremal solutions of (1.1). Let us concentrate on the existence of the greatest
solution, because the existence of the least solution can be shown similarly.

We recall that the subdifferentiaB(x, s) is generated by the functign: 2 x R — R,
which is monotone nondecreasing in its second argument via

8B(x, ) = [h(x. ). h(x,s)]

with s — h(x,s) ands — h(x,s) being the left- and right-sided limits, respectively, of

s — h(x,s). Denote byH and H the Nemytskij operator associated withand i, re-
spectively. By hypothesis (H2) the operatdis H : L7 (£2) — L1(£2) are well defined,
monotone nondecreasing, but not necessarily continuous. Consider the following hemi-
variational inequality:

ueVo: Au+9dj(-,u)> f+ H(u). (5.1)

Our goal is to show that (5.1) has the greatest solutiowithin [ w, w], and that.* is the
greatest solution of the original problem (1.1). To this end let us consider first the following
hemivariational inequality with given right-hand side:

ueVo: Au+9j(-,u)> f+ HWw). (5.2)
By (H1)(iii) and (H2), and taking into account thatis the greatest solution of (3.1), we
get for anyn € 9j (-, w) the estimate

A+ i = f+k+plDlP ™ 7> f+k+palwl” > f + H@),

which proves that is a supersolution of (5.2). Analogously one shows thas a sub-
solution of (5.2). Thus by applying Theorem 4.1 with the right-hand gide H (w) € Vo
there exist extremal solutions of (5.2) within the interval w]. Letu; denote the greatest
solution of (5.2) within[ w, w], and consider next the hemivariational inequality

ueVo Au+9j(,u)> f+ Hu). (5.3)

By the monotonicity off we haveH (u1) < H (w), and thus; is a supersolution for (5.3).
One readily verifies thai is a subsolution for (5.3) as well. Again by applying Theo-
rem 4.1 there exist extremal solutions of (5.3) within, #1]. In this way we are able to
define by induction the following iteration process: lugt:= w and define by,,+1 € Vo
the greatest solution of

ueVor Au+9j(-,u)> f+ H(u,) (5.4)
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within [w, u,]. Due tou,+1 € [ w, u,] this iteration yields a monotone nonincreasing se-
quencegu,) that satisfies

W< Suppr Sy < Sup <ugi=w (5.5)
and
Autpi1+ Vo1 = f + H(u,) in Vg, (5.6)

wherev, 11 € 9j (-, up+1) andv,4+1 € L9(£2). Since the sequence,,) can easily be seen to
be bounded irVy, and becausév,) € L7(£2) is bounded as well, we obtain the following
convergence properties:

(i) up — u*in Vo,
(i) wuy — u*in LP(£2),
(iii) v, = v*in L9(£2) (for some subsequence which is again denote¢bh)),

where in (i) we havev* € 3j(-,u*). The boundedness @ (u,)) in L9(£2) and the
convergence properties (i)—(iii) imply
limsup(Au,, u, —u*) <0,

n—oo

so that we obtain
(iv) Aup, — Au*in Vy.

The functions — i (x, s) related with the Nemytskij operataf is monotone nondecreas-

ing and right-sided continuous, so that by means of Lebesgue’s dominated convergence
theorem and due to the a.e. monotone pointwise convergence of the sequgraseord-

ing to (5.5) we get

/I:I(un)(pdx—> /I-_I(u*)(pdx (5.7)
2 2

for all ¢ € LP(£2). The convergence properties (i)—(iv) above and (5.7) allow us to pass
to the limit in (5.6) a1 — oo, which shows that* is a solution of the BVP (5.1) within

[w, w]. Moreover,u™ is the greatest solution of (5.1) withinw, w]. To verify this let

u € [w, w] be any solution of (5.1). Then is, in particular, a lower solution of (5.1).
Replacing in the iteration abowe by 1 we see that: < u, < w holds for alln. Thus we
getu < u*, i.e.,u* is the greatest solution of (5.1) [rw, w]. Now definingy* := H (u*),
obviously one hag*(x) € 98(x, u*(x)) for a.e.x € 2, and thus* satisfies

Aut+v* —y*=f inVy,

which means that* is a solution of the original problem (1.1) as well.
Finally, to prove thau* is the greatest solution of (1.1) take any solutipof (1.1),
which by definition satisfies

Aut+n—y=/
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whereij € 9 (-, @) andy € d8(-, i) C [ H(@), H(i)]. Sincey < H(i1) we see thali < w
is a subsolution of the hemivariational inequality (5.1). By the same iteration procedure
introduced above witlv replaced by: we getz < u,, < w which impliesi < u*, and thus
u* must be the greatest solution of the original problem (1.1). The existence of the least
solutionu,. can be shown by obvious dual reasoning which completes the proof of the ex-
tremality result. We remark the interesting fact thétrelated with the greatest solutiari
is thus given byy* = maxos(-, u™)}.

(b) Compactness of the solution set.

We denote byZ the set of all solutions of the BVP (1.1). Th@ncC [u,, u*], where
u, andu™* is the least and the greatest solution of (1.1). kgt c 7 be any sequence.
Then (u,) is bounded inVy and one has the following convergence properties for some
subsequence denoted by, ):

() ugp —uin Vp,
(i) ug —> uin LP(£2),
(iii) nx —mnandy, — y in L9(2),
wheren; € 9j (-, uy) andy € 98(-, ux), and we have
Aup+m—y=f inVy. (5.8)

The compactembedding’ (£2) C Vo implies the compactembeddiid (£2) C V which
yields

=1, yk—y inVy, (5.9)
wheren € 395 (-, u) andy € 38(-, u). Due to (5.9) from (5.8) we get
(Auj,up —u) = (f — nk + vi, uk —u) = 0,

so that in view of the pseudomonotonicity af we getAuy — Au in Vy ask — oo.
Passing to the limit ak — oo in (5.8) yields

Au+n—y=f inVy,

and thus: € 7. Finally, by applying the ;. )-property ofA we get the strong convergence
ur — u in Vo which completes the compactness proaif

6. Special caseand remarks

As a special case of (1.1) we consider the following BVP:
ueVor —Apu+9j(,u)—08(,u)> f, (6.1)

where A ,u = div(|Vu|P~?Vu) with 1 < p < oo denotes thep-Laplacian. Obviously,
—A, satisfies (A1)—(A3). The variational characterization of the first Dirichlet eigenvalue
X1 of —A, which is positive and given by

[ VulP dx
A= inf =t—— —
O£ueVo [o ulPdx
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(see [10]), enables us to sharpen condition (H3) as follows:
(H4) Letp := 1+ p2 < A1 be satisfied.

The following result is an immediate consequence of the general result obtained in the
preceding sections.

Theorem 6.1. Under the conditiongH1), (H2), and (H4) the BVP(6.1) has extremal
solutions and the solution set is compactin

Remarks. (i) Our main result, Theorem 2.1, can be extended to more general Leray—-Lions
operatorsA such as, e.g.,

N
Au(x)=— Z iai (x, u(x), Vu(x)) + ao(x, u(x), Vu(x)).
o1 8x,-
Only for the sake of simplifying our presentation, and in order to emphasize the main idea
we have taken a nonlinear, monotone operator
(i) In case that one assumes the existence of an orderedvpdifv that satisfies the
following inequalities:

weV: Aw+7q>f+ HW), wherejedj(-,w),
and
weV: Aw+n<f+H(w), wherenedj(-,w),

then the results obtained in this paper apply to prove extremality and compactness of the
solution set contained in the interab, w]. In this case hypothesis (H3) can be dropped,
and only local growth conditions gfandg with respect to the intervékw, w] are required.
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