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Abstract

We consider the Dirichlet boundary value problem for an elliptic inclusion governed by a q
linear elliptic operator of Leray–Lions type and a multivalued term which is given by the differ
of Clarke’s generalized gradient of some locally Lipschitz function and the subdifferential of
convex function. Problems of this kind arise, e.g., in mechanical models described by non
and nonsmooth energy functionals that result from nonmonotone, multivalued constitutive law
main goal is to characterize the solution set of the problem under consideration. In particular
going to prove that the solution set possesses extremal elements with respect to the underlyin
partial ordering of functions, and that the solution set is compact. The main tools used in the
are abstract results on pseudomonotone operators, truncation, and special test function tec
Zorn’s lemma as well as tools from nonsmooth analysis.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω ⊂ R
N be a bounded domain with Lipschitz boundary∂Ω. In this paper we con

sider the Dirichlet problem for the following elliptic inclusion:

Au+ ∂j (·, u)− ∂β(·, u) � f in Ω, u = 0 on∂Ω, (1.1)
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whereA is a second order quasilinear differential operator in divergence form of Le
Lions type given by

Au(x)= −
N∑
i=1

∂

∂xi
ai

(
x,∇u(x)

)
with ∇u =

(
∂u

∂x1
, . . . ,

∂u

∂xN

)
,

and the functionj :Ω × R → R is assumed to be the primitive of some locally boun
and Borel measurable functiong :Ω × R → R, i.e.,

j (x, s) =
s∫

0

g(x, τ ) dτ. (1.2)

Thusj (x, ·) :R → R is locally Lipschitz and Clarke’s generalized gradient∂j (x, ·) :R →
2R \ ∅ of j with respect to its second argument exists which is defined by

∂j (x, s) := {
ζ ∈ R | j0(x, s; r)� ζ r, ∀r ∈ R

}
, (1.3)

wherej0(x, s; r) denotes the generalized directional derivative ofj at s in the directionr
given by

j0(x, s; r)= lim sup
y→s, t↓0

j (x, y + tr)− j (x, y)

t
,

cf., e.g., [8, Chapter 2]. The functionβ :Ω × R → R is assumed to be the primitive o
some Borel measurable functionh :Ω × R → R which is monotone nondecreasing in
second variable, i.e.,

β(x, s) =
s∫

0

h(x, τ ) dτ. (1.4)

Thusβ(x, ·) :R → R is convex with∂β(x, ·) :R → 2R \ ∅ denoting the usual subdiffere
tial of β with respect to its second argument, and one has

∂β(x, s) = [
h(x, s), h̄(x, s)

]
, (1.5)

whereh andh̄ denote the left-sided and right-sided limits ofh, respectively, with respec
to the second argument.

Differential inclusions of the form (1.1) have attracted increasing attention ove
last decade mainly due to its many applications in mechanics and engineering, c
[11,12]. This type of inclusions arise, e.g., in mechanical problems when nonco
nonsmooth energy functionals (so-called superpotentials) occur, which result from
monotone, multivalued constitutive laws, such as, for example, certain contact and f
problems, cf., e.g., [9,11,12]. The special case in which the functions �→ j (· , s) is a con-
vex function too, leads to a multivalued term that is given by the generalized gradi
so called d.c.-functions (difference of convex functions). Elliptic and parabolic inclus
with generalized Clarke’s gradient of d.c.-functions have been treated, e.g., in [1–5]
the assumption that appropriately defined super- and subsolutions are available.
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Our main goal is to prove extremality and compactness results of the solution set o
whenj (x, ·) :R → R is only locally Lipschitz, and without assuming super- and subs
tions.

The plan of the paper is as follows. In Section 2 we give the basic notions and hyp
ses, and formulate the main result. In Section 3 we prove the existence of a priori b
of (1.1), and in Section 4 we review the elliptic counterpart of an extremality result of s
auxiliary hemivariational inequality recently obtained by the authors in the parabolic
The proof of our main result is given in Section 5. In Section 6 we consider as a s
case an inclusion of the form (1.1) withA given by thep-Laplacian. The main tools use
in the proofs are abstract results on pseudomonotone operators, truncation, and spe
function techniques, Zorn’s lemma as well as tools from nonsmooth analysis.

2. Notation, hypotheses, and main result

Let V = W1,p(Ω) andV0 = W
1,p
0 (Ω), 1< p < ∞, denote the usual Sobolev spac

andV ∗ andV ∗
0 their corresponding dual spaces, respectively.

We assumef ∈ V ∗
0 and impose the following hypotheses of Leray–Lions type on

coefficient functionsai , i = 1, . . . ,N , of the operatorA.

(A1) Eachai :Ω × R
N → R satisfies the Carathéodory conditions, i.e.,ai(x, ξ) is mea-

surable inx ∈ Ω for all ξ ∈ R
N and continuous inξ for almost allx ∈ Ω . There exist

a constantc0 > 0 and a functionk0 ∈ Lq(Ω), 1/p + 1/q = 1, such that
∣∣ai(x, ξ)∣∣ � k0(x)+ c0|ξ |p−1

for a.e.x ∈ Ω and for allξ ∈ R
N .

(A2)
∑N

i=1(ai(x, ξ) − ai(x, ξ
′))(ξi − ξ ′

i ) > 0 for a.e.x ∈ Ω and for allξ, ξ ′ ∈ R
N with

ξ �= ξ ′.
(A3)

∑N
i=1ai(x, ξ)ξi � ν|ξ |p − k1(x) for a.e.x ∈ Ω and for allξ ∈ R

N with some con-
stantν > 0 and some functionk1 ∈ L1(Ω).

As a consequence of (A1) and (A2) the semilinear forma associated with the operatorA

by

〈Au,ϕ〉 := a(u,ϕ)=
∫
Ω

N∑
i=1

ai(x,∇u)
∂ϕ

∂xi
dx, ∀ϕ ∈ V0,

is well defined for anyu ∈ V , and the operatorA :V0 → V ∗
0 is continuous, bounded, an

monotone. Here〈· , ·〉 denotes the duality pairing betweenV0 andV ∗
0 . A partial ordering

in Lp(Ω) is defined byu � w if and only if w − u belongs to the positive coneLp
+(Ω) of

all nonnegative elements ofLp(Ω). This induces a corresponding partial ordering als
the subspacesV0 ⊂ V of Lp(Ω). We define the notion of weak solution of problem (1
as follows.
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Definition 2.1. A function u ∈ V0 is a solution of the BVP (1.1) if there are function
η ∈ Lq(Ω) andγ ∈ Lq(Ω) such that the following holds:

(i) η(x) ∈ ∂j (x,u(x)) andγ (x) ∈ ∂β(x,u(x)) for a.e.x ∈ Ω,

(ii) 〈Au,ϕ〉 + ∫
Ω
(η(x)− γ (x))ϕ(x) dx = 〈f,ϕ〉, ∀ϕ ∈ V0.

As for the functiong related withj by (1.2) and the functionh related withβ by (1.4)
we assume the following hypotheses.

(H1) The functiong :Ω × R → R satisfies
(i) g is Borel measurable inΩ × R, andg(x, ·) :R → R is locally bounded;
(ii) There exists a constantc1 � 0 such that

g(x, s1) � g(x, s2)+ c1 (s2 − s1)
p−1

for a.e.x ∈ Ω and for alls1, s2 with s1 < s2;
(iii) There is a functionk2 ∈ L

q
+(Ω) and a constantµ1 � 0 such that∣∣g(x, s)∣∣ � k2(x)+µ1|s|p−1

for a.e.x ∈ Ω and for alls ∈ R.
(H2) The functionh :Ω × R → R is Borel measurable, monotone nondecreasing in

second argument, and satisfies with some functionk3 ∈ L
q
+(Ω) and with some con

stantµ2 � 0 the growth condition∣∣h(x, s)∣∣ � k3(x)+µ2|s|p−1

for a.e.x ∈ Ω and for alls ∈ R.
(H3) Let cF > 0 denote the best constant in Poincaré–Friedrichs inequality and d

µ := µ1 + µ2, whereµ1 andµ2 are the nonnegative constants of (H1) and (H
respectively. Then the positive constantν of (A3) is related withµ andcF by

cFµ< ν.

Remark. Condition (H1)(ii) implies that Clarke’s gradient of the functionj :Ω × R → R

fulfills the following condition: Forηi ∈ ∂j (x, si), i = 1,2, one has

η1 � η2 + c1(s2 − s1)
p−1

for a.e.x ∈ Ω and for alls1, s2 with s1 < s2. This condition is mainly used in the proof o
Theorem 4.1 which we recall in Section 4.

Definition 2.2. A solutionu∗ of (1.1) is called thegreatest solutionif for any solutionu
of (1.1) we haveu � u∗. Similarly, u∗ is the least solutionif for any solutionu one has
u∗ � u. The least and greatest solutions of the BVP (1.1) are called theextremalones.

The main result of the present paper is given by the following theorem.

Theorem 2.1. Let hypotheses(A1)–(A3) and (H1)–(H3)be satisfied. Then the BVP(1.1)
possesses extremal solutions and the solution set of all solutions of(1.1) is a compact
subset inV0.
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The proof of Theorem 2.1 requires several preliminary results which are of inter
its own and which will be provided in Sections 3 and 4. We will assume throughou
rest of the paper that the hypotheses of Theorem 2.1 are satisfied.

3. A priori bounds

In this section we shall prove the existence of a priori bounds for the solutions of
which are crucial in the proof of our main result. To this end we consider the follo
auxiliary BVP:

Findu ∈ V0: Au = f + k +µ|u|p−1 in V ∗
0 , (3.1)

Findu ∈ V0: Au = f − k −µ|u|p−1 in V ∗
0 , (3.2)

wherek ∈ L
q
+(Ω) is given byk(x) = k2(x)+ k3(x) andµ = µ1 +µ2.

Lemma 3.1. There exist solutions of the BVP(3.1) and(3.2) and their respective solutio
sets are bounded inV0.

Proof. We prove the existence and boundedness of the solution set for the BVP (3.1
since the same arguments can be applied for the BVP (3.2). LetP denote the Nemyt
skij operator related with the functions �→ µ|s|p−1, thenP :Lp(Ω) → Lq(Ω) ⊂ V ∗

0 is
continuous and bounded, and due to the compact embeddingV0 ⊂ Lp(Ω) it follows that
P :V0 → V ∗

0 is compact. Thus due to the property ofA the operatorA−P :V0 → V ∗
0 is a

bounded, continuous, and pseudomonotone operator. Rewriting the BVP (3.1) in th

u ∈ V0: (A− P)u = f + k in V ∗
0 , (3.3)

and noting thatf + k ∈ V ∗
0 , there exist solutions of (3.3) providedA− P is coercive, i.e.,

the following holds:

〈(A− P)u,u〉
‖u‖V0

→ ∞ as‖u‖V0 → ∞. (3.4)

Let cF > 0 denote the best constant in Poincaré–Friedrichs inequality, i.e., in

‖u‖Lp(Ω) � cF‖∇u‖Lp(Ω), ∀u ∈ V0,

then by means of (A3) we obtain〈
(A− P)u,u

〉
� ν‖∇u‖pLp(Ω) − ‖k1‖L1(Ω) −µ‖u‖pLp(Ω)

� (ν − cFµ)‖∇u‖pLp(Ω) − ‖k1‖L1(Ω), (3.5)

which proves the coercivity due to (H3) and the fact that‖u‖ = ‖∇u‖Lp(Ω) defines an
equivalent norm inV0. The coercivity argument applies also to get the boundedness o
solution set of (3.1). To this end letu be any solution of the BVP (3.1), then from (3.
and (3.5) one gets

(ν − cFµ)‖∇u‖pLp(Ω) − ‖k1‖L1(Ω) �
〈
(A− P)u,u

〉
�

(‖f ‖V ∗
0

+ ‖k‖Lq(Ω)

)‖u‖V0,

(3.6)

which proves the assertion.✷
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For the proof of the next result we recall the notion ofdirectednessof a partially ordered
set.

Definition 3.1. Let (P,�) be a partially ordered set. A subsetC of P is said to beupward
directedif for each pairx, y ∈ C there isz ∈ C such thatx � z andy � z, andC is down-
ward directedif for each pairx, y ∈ C there isw ∈ C such thatw � x andw � y. If C is
both upward and downward directed it is calleddirected.

Lemma 3.2. The solution sets of the BVP(3.1) and(3.2), respectively, are directed sets

Proof. We are going to prove the assertion for the BVP (3.1) only, since analogou
guments apply for the BVP (3.2). Let us denote byS the solution set of the BVP (3.1
ThenS �= ∅ in view of Lemma 3.1. Givenu1, u2 ∈ S, thenu := max(u1, u2) ∈ V0 is a
subsolution of the BVP (3.1), see, e.g., [6, Lemma 6.1.3]. Define the following trunc
operatorT :

(T u)(x)=
{
u(x) if u(x) � u(x),

u(x) if u(x, t) < u(x).

It is well known thatT :V0 → V0 is a continuous and bounded operator, cf., e.g., [6, C
ter C.4]. Consider the auxiliary BVP,

Findu ∈ V0: Au = f + k +µ|T u|p−1 in V ∗
0 . (3.7)

The same arguments as in the proof of Lemma 3.1 apply to ensure the existence of so
of the BVP (3.7). We shall show that any solutionu of the BVP (3.7) satisfiesu � u, and
hence due toT u = u it follows that u is a solution of the BVP (3.1) which exceeds t
given solutionsu1 andu2. This provesS is upward directed. Letu be any solution of (3.7
and recall thatu is a subsolution of (3.1), i.e., we have

〈Au,ϕ〉 � 〈f,ϕ〉 +µ

∫
Ω

(
k + |u|p−1)ϕ dx, ∀ϕ ∈ V0 ∩L

p
+(Ω), (3.8)

andu is any solution of (3.7), i.e.,

〈Au,ϕ〉 = 〈f,ϕ〉 +µ

∫
Ω

(
k + |T u|p−1)ϕ dx, ∀ϕ ∈ V0. (3.9)

Taking as special nonnegative test functionϕ = ( u−u)+ := max( u−u,0) ∈ V0∩L
p
+(Ω),

we obtain by subtracting (3.9) from (3.8) the inequality

∫
Ω

N∑
i=1

(
ai(x,∇u)− ai(x,∇u)

)∂(u− u)+

∂xi
dx

� µ

∫
Ω

(|u|p−1 − |T u|p−1)( u− u)+ dx

= µ

∫ (|u|p−1 − |u|p−1)( u− u) dx = 0, (3.10)
{u>u}
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where{u > u} := {x ∈ Ω | u(x) > u(x)}. By means of (A2) we deduce from (3.10) th
∇( u − u)+ = 0, and thus( u − u)+ = 0 which yieldsu � u. This completes the proo
for S being upward directed. Noting that for any solutionsu1, u2 ∈ S the functionū :=
min(u1, u2) is a supersolution of the BVP (3.1), see, e.g., [6, Lemma 6.1.3], we can
in a similar way thatS is also downward directed, and thus the directedness ofS. ✷
Lemma 3.3. The BVP(3.1) and(3.2) have extremal solutions.

Proof. Again the proof will be given for the BVP (3.1) only, since for the BVP (3
it can be done similarly. Moreover, we will concentrate on the existence of the gr
solution of the BVP (3.1), because the existence of the least solution follows by ob
dual reasoning. LetS denote the solution set of the BVP (3.1). First we shall show
existence of a maximal element ofS with respect to the underlying partial ordering
means of Zorn’s lemma. To this end letC ⊂ S be any well-ordered chain which is bound
in V0 by Lemma 3.1, and thus, in particular, also bounded inLp(Ω). Then there exists a
increasing sequence(un) of C which converges strongly inLp(Ω) and weakly inV0 to
w := sup(C). We claim thatw belongs toS. From (3.1) we immediately get

〈Aun,un −w〉 = 〈f,un −w〉 +µ

∫
Ω

(
k + |un|p−1)(un −w)dx. (3.11)

Taking the convergence property of(un) and its boundedness into account we obt
from (3.11),

lim sup
n→∞

〈Aun,un −w〉 � 0, (3.12)

which impliesun → w strongly inV0 due to due to the (S+)-condition satisfied by the
operatorA, cf., e.g., [6, Theorem D.2.1]. Thus we may pass to the limit in (3.1) asn → ∞,
i.e., in

un ∈ V0: Aun = f + k +µ |un|p−1 in V ∗
0 ,

which proves thatw ∈ S. ThusC possesses an upper bound inC, so that Zorn’s lemma
can be applied, which ensures the existence of a maximal elementw̄. BecauseS is, in
particular, upward directed the maximal element is unique and must be the greate
Thusw̄ is the greatest solution.✷

By means of Lemmas 3.1–3.3 we are now able to derive a priori bounds of the or
BVP (1.1).

Lemma 3.4. Let w̄ be the greatest solution of the BVP(3.1) andw be the least solution o
the BVP(3.2) according to Lemma3.3. Then any solutionu of the BVP(1.1) is contained
in [w, w̄].

Proof. Let u be any solution of (1.1), i.e., we have by Definition 2.1,

〈Au,ϕ〉 +
∫ (

η(x)− γ (x)
)
ϕ(x) dx = 〈f,ϕ〉, ∀ϕ ∈ V0, (3.13)
Ω
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whereη(x) ∈ ∂j (x,u(x)) andγ (x) ∈ ∂β(x,u(x)) for a.e.x ∈ Ω. In view of the growth
conditions of (H1) and (H2) we have

∣∣η(x)∣∣ � k2(x)+µ1
∣∣u(x)∣∣p−1

,
∣∣γ (x)∣∣ � k3(x)+µ2

∣∣u(x)∣∣p−1
. (3.14)

From (3.13) and (3.14) we see thatu is a subsolution of the BVP (3.1). Now the sam
arguments as in the proof Lemma 3.2 apply which show that there exist solutions
BVP (3.1) that are greater thanu. However,w̄ is the greatest solution of (3.1), and th
it exceedsu which proves that̄w is an upper bound of any solution of the original pro
lem (1.1). The proof forw to be a lower bound is carried out in a similar way.✷

4. Auxiliary hemivariational inequality

In this section we consider the following subproblem of the BVP (1.1):

Au+ ∂j (·, u) � f in Ω, u = 0 on∂Ω, (4.1)

wheref ∈ V ∗
0 is a given element. One can show that any solution of problem (4.1

solution of the hemivariational inequality

〈Au,ϕ − u〉 +
∫
Ω

j0(· , u;ϕ − u) dx � 〈f,ϕ − u〉, ∀ϕ ∈ V0. (4.2)

We recall an existence and extremality result for the BVP (4.1) in terms of appropr
defined super- and subsolutions which may be considered as the elliptic counterp
result recently obtained by the authors in [7] in the parabolic case. To this end w
provide a generalization of the notion of super- and subsolution known for singlev
equations to the hemivariational inequality (4.1).

Definition 4.1. A function ū ∈ V is called asupersolutionof the BVP (4.1) if there is a
functionv̄ ∈ Lq(Ω) such that

(i) ū � 0 on∂Ω,

(ii) v̄(x) ∈ ∂j (x, ū(x)) for a.e.x ∈ Ω,

(iii) 〈Aū,ϕ〉 + ∫
Ω v̄(x)ϕ(x) dx � 〈f,ϕ〉, ∀ϕ ∈ V0 ∩L

p
+(Ω).

Similarly, a functionu ∈ V is asubsolutionof the BVP (4.1) if the reversed inequalitie
hold in Definition 4.1 withū andv̄ replaced byu andv, respectively.

The following existence and extremality result can be deduced from [7].

Theorem 4.1. Let u and ū be sub- and supersolutions of(4.1), respectively, satisfyin
u � ū. Then the BVP(4.1) has extremal solutions within the order interval[u, ū].
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5. Proof of Theorem 2.1

In this section we are going to prove our main result. The proof is inspired by an id
the first author used in [3,5] to treat boundary hemivariational inequalities of the d.c.
Our proof will be given in two steps.

Proof. (a) Existence of extremal solutions of (1.1).
Lemma 3.4 provides a priori boundsw̄ andw satisfyingw � w̄, wherew̄ is the greates

solution of the BVP (3.1) andw is the least solution of the BVP (3.2). We are going to pr
that (1.1) possesses extremal solutions within the order interval[w, w̄], which proves the
existence of extremal solutions of (1.1). Let us concentrate on the existence of the g
solution, because the existence of the least solution can be shown similarly.

We recall that the subdifferential∂β(x, s) is generated by the functionh :Ω × R → R,
which is monotone nondecreasing in its second argument via

∂β(x, s) = [
h(x, s), h̄(x, s)

]
with s �→ h(x, s) and s �→ h̄(x, s) being the left- and right-sided limits, respectively,
s �→ h(x, s). Denote byH and H̄ the Nemytskij operator associated withh and h̄, re-
spectively. By hypothesis (H2) the operatorsH,H̄ :Lp(Ω) → Lq(Ω) are well defined
monotone nondecreasing, but not necessarily continuous. Consider the following
variational inequality:

u ∈ V0: Au+ ∂j (· , u) � f + H̄ (u). (5.1)

Our goal is to show that (5.1) has the greatest solutionu∗ within [w, w̄], and thatu∗ is the
greatest solution of the original problem (1.1). To this end let us consider first the follo
hemivariational inequality with given right-hand side:

u ∈ V0: Au+ ∂j (· , u) � f + H̄ (w̄). (5.2)

By (H1)(iii) and (H2), and taking into account thatw̄ is the greatest solution of (3.1), w
get for anyη̄ ∈ ∂j (· , w̄) the estimate

Aw̄ + η̄ = f + k +µ|w̄|p−1 + η̄ � f + k1 +µ1|w̄|p−1 � f + H̄ (w̄),

which proves thatw̄ is a supersolution of (5.2). Analogously one shows thatw is a sub-
solution of (5.2). Thus by applying Theorem 4.1 with the right-hand sidef + H̄ (w̄) ∈ V ∗

0
there exist extremal solutions of (5.2) within the interval[w, w̄]. Letu1 denote the greate
solution of (5.2) within[w, w̄], and consider next the hemivariational inequality

u ∈ V0: Au+ ∂j (· , u) � f + H̄ (u1). (5.3)

By the monotonicity ofH̄ we haveH̄ (u1) � H̄ (w̄), and thusu1 is a supersolution for (5.3
One readily verifies thatw is a subsolution for (5.3) as well. Again by applying The
rem 4.1 there exist extremal solutions of (5.3) within[w,u1]. In this way we are able to
define by induction the following iteration process: Letu0 := w̄ and define byun+1 ∈ V0
the greatest solution of

u ∈ V0: Au+ ∂j (· , u) � f + H̄ (un) (5.4)



156 S. Carl, D. Motreanu / J. Math. Anal. Appl. 286 (2003) 147–159

se-

o
g

s-
rgence

pass

).
within [w,un]. Due toun+1 ∈ [w,un] this iteration yields a monotone nonincreasing
quence(un) that satisfies

w � · · · � un+1 � un � · · · � u1 � u0 := w̄ (5.5)

and

Aun+1 + vn+1 = f + H̄ (un) in V ∗
0 , (5.6)

wherevn+1 ∈ ∂j (· , un+1) andvn+1 ∈ Lq(Ω). Since the sequence(un) can easily be seen t
be bounded inV0, and because(vn) ⊂ Lq(Ω) is bounded as well, we obtain the followin
convergence properties:

(i) un ⇀ u∗ in V0,
(ii) un → u∗ in Lp(Ω),
(iii) vn ⇀ v∗ in Lq(Ω) (for some subsequence which is again denoted by(vn)),

where in (iii) we havev∗ ∈ ∂j (· , u∗). The boundedness of(H̄ (un)) in Lq(Ω) and the
convergence properties (i)–(iii) imply

lim sup
n→∞

〈Aun,un − u∗〉 � 0,

so that we obtain

(iv) Aun ⇀Au∗ in V ∗
0 .

The functions �→ h̄(x, s) related with the Nemytskij operator̄H is monotone nondecrea
ing and right-sided continuous, so that by means of Lebesgue’s dominated conve
theorem and due to the a.e. monotone pointwise convergence of the sequence(un) accord-
ing to (5.5) we get∫

Ω

H̄(un)ϕ dx →
∫
Ω

H̄(u∗)ϕ dx (5.7)

for all ϕ ∈ Lp(Ω). The convergence properties (i)–(iv) above and (5.7) allow us to
to the limit in (5.6) asn → ∞, which shows thatu∗ is a solution of the BVP (5.1) within
[w, w̄]. Moreover,u∗ is the greatest solution of (5.1) within[w, w̄]. To verify this let
u ∈ [w, w̄] be any solution of (5.1). Thenu is, in particular, a lower solution of (5.1
Replacing in the iteration abovew by u we see thatu � un � w̄ holds for alln. Thus we
getu � u∗, i.e.,u∗ is the greatest solution of (5.1) in[w, w̄]. Now definingγ ∗ := H̄ (u∗),
obviously one hasγ ∗(x) ∈ ∂β(x,u∗(x)) for a.e.x ∈ Ω , and thusu∗ satisfies

Au∗ + v∗ − γ ∗ = f in V ∗
0 ,

which means thatu∗ is a solution of the original problem (1.1) as well.
Finally, to prove thatu∗ is the greatest solution of (1.1) take any solutionũ of (1.1),

which by definition satisfies

Aũ+ η̃ − γ̃ = f,
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whereη̃ ∈ ∂j (· , ũ) andγ̃ ∈ ∂β(· , ũ) ⊂ [H(ũ), H̄ (ũ)]. Sinceγ̃ � H̄ (ũ) we see that̃u � w̄

is a subsolution of the hemivariational inequality (5.1). By the same iteration proc
introduced above withw replaced bỹu we getũ � un � w̄ which impliesũ � u∗, and thus
u∗ must be the greatest solution of the original problem (1.1). The existence of the
solutionu∗ can be shown by obvious dual reasoning which completes the proof of th
tremality result. We remark the interesting fact thatγ ∗ related with the greatest solutionu∗
is thus given byγ ∗ = max{∂β(· , u∗)}.

(b) Compactness of the solution set.
We denote byT the set of all solutions of the BVP (1.1). ThenT ⊂ [u∗, u∗], where

u∗ andu∗ is the least and the greatest solution of (1.1). Let(un) ⊂ T be any sequence
Then(un) is bounded inV0 and one has the following convergence properties for s
subsequence denoted by(uk):

(i) uk ⇀ u in V0,
(ii) uk → u in Lp(Ω),
(iii) ηk ⇀ η andγk ⇀ γ in Lq(Ω),

whereηk ∈ ∂j (· , uk) andγk ∈ ∂β(· , uk), and we have

Auk + ηk − γk = f in V ∗
0 . (5.8)

The compact embeddingLp(Ω)⊂ V0 implies the compact embeddingLq(Ω)⊂ V ∗
0 which

yields

ηk → η, γk → γ in V ∗
0 , (5.9)

whereη ∈ ∂j (· , u) andγ ∈ ∂β(· , u). Due to (5.9) from (5.8) we get

〈Auk,uk − u〉 = 〈f − ηk + γk,uk − u〉 → 0,

so that in view of the pseudomonotonicity ofA we getAuk ⇀ Au in V ∗
0 as k → ∞.

Passing to the limit ask → ∞ in (5.8) yields

Au+ η − γ = f in V ∗
0 ,

and thusu ∈ T . Finally, by applying the (S+)-property ofA we get the strong convergen
uk → u in V0 which completes the compactness proof.✷

6. Special case and remarks

As a special case of (1.1) we consider the following BVP:

u ∈ V0: −∆pu+ ∂j (· , u)− ∂β(· , u) � f, (6.1)

where∆pu = div(|∇u|p−2∇u) with 1 < p < ∞ denotes thep-Laplacian. Obviously
−∆p satisfies (A1)–(A3). The variational characterization of the first Dirichlet eigenv
λ1 of −∆p which is positive and given by

λ1 = inf
0�=u∈V

∫
Ω |∇u|p dx∫ |u|p dx
0 Ω
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(see [10]), enables us to sharpen condition (H3) as follows:

(H4) Letµ := µ1 +µ2 < λ1 be satisfied.

The following result is an immediate consequence of the general result obtained
preceding sections.

Theorem 6.1. Under the conditions(H1), (H2), and (H4) the BVP(6.1) has extrema
solutions and the solution set is compact inV0.

Remarks. (i) Our main result, Theorem 2.1, can be extended to more general Leray–
operatorsA such as, e.g.,

Au(x)= −
N∑
i=1

∂

∂xi
ai

(
x,u(x),∇u(x)

)+ a0
(
x,u(x),∇u(x)

)
.

Only for the sake of simplifying our presentation, and in order to emphasize the mai
we have taken a nonlinear, monotone operatorA.

(ii) In case that one assumes the existence of an ordered pairw � w̄ that satisfies the
following inequalities:

w̄ ∈ V : Aw̄ + η̄ � f + H̄ (w̄), whereη̄ ∈ ∂j (· , w̄),

and

w ∈ V : Aw + η � f +H(w ), whereη ∈ ∂j (· ,w ),

then the results obtained in this paper apply to prove extremality and compactness
solution set contained in the interval[w, w̄]. In this case hypothesis (H3) can be dropp
and only local growth conditions ofg andβ with respect to the interval[w, w̄] are required
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