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Abstract

This paper contains a comparison of the asymptotic stability properties for two multirate strategies. For each strategy, the asymptotic
stability regions are presented for a 2×2 test problem and the differences between the results are discussed. The considered multirate
schemes use Rosenbrock type methods as the main time integration method and have one level of temporal local refinement. Some
remarks on the relevance of the results for 2 × 2 test problems are presented.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Many practical applications give rise to systems of ordinary differential equations (ODEs) with different time scales
which are localized over the components. To solve such systems multirate time stepping strategies are considered.
These strategies integrate the slow components with large time steps and the fast components with small time steps. In
this paper we will focus on two strategies: the recursive refinement strategy proposed in [4,7] and the compound step
strategy used in [1,3,9,10]. We will analyze these multirate approaches for solving systems of ODEs

w′(t) = F(t, w(t)), w(0) = w0, (1.1)

with w0 ∈ Rm.
In the recursive refinement strategy, given a global time step �, a tentative approximation at the new time level is

computed first. For those components, where the error estimator indicates that smaller steps would be needed, the
computation is redone with a smaller time step 1

2�. At this refinement stage, the values at the intermediate time levels
of components which are not refined might be needed. These values can be calculated by using interpolation or a dense
output formula. During a single global time step the refinement procedure can be recursively continued until the local
errors for all components are below a given tolerance, hence the name ‘recursive’. In our comparison in this paper we
consider only the most simple case with one level of refinement.
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In the compound step strategy (sometimes also called mixed compound-fast [10]) the macro-step � (for the slow
components) and the first micro-step of a smaller size (for the active components) are computed simultaneously. Again,
the values at the intermediate time levels of the slow components can be obtained by interpolation or dense output.
This strategy may require values at the macro-step time level of the fast components. These values can be obtained by
extrapolation. The integration is followed by a sequence of micro-steps for the fast components, until the time integration
is synchronized with the slow components. In this paper in the compound step strategy also only micro-steps of size
1
2� are considered for the comparison with the recursive refinement strategy.

The values at the macro-step time level for the active components are calculated twice in the recursive refinement
strategy, the first time during the global step and the second time during the refinement step. The compound step
strategy avoids this extra work, however, the partitioning in slow and fast components for this strategy has to be done
in advance before solving the system. With the recursive refinement strategy, implicit relations of the same structure
as with single-rate time stepping are obtained. The refinement step just leads to a system of smaller size. With the
compound step strategy the compound step has a somewhat more complicated structure.

In this paper we consider multirate schemes for systems with two levels of activity, slow and fast. It should be noted,
however, that with the recursive refinement strategy it is easy to extend these schemes to multirate schemes with more
levels of activity; for example, the multirate time stepping strategy presented in [7] can be used. With the compound
step strategy handling more levels of activity is not easy.

In this paper we study and compare asymptotic stability of these two multirate strategies for linear problems in R2.
Our particular interest is to see how the extrapolation of the fast components affects the asymptotic stability of the
scheme. A time integration method is called asymptotically stable if its amplification matrix S satisfies ‖Sn‖ → 0
when n → ∞. A method is asymptotically stable if and only if all eigenvalues of S are inside the unit disk. Asymptotic
stability does not guarantee stability, but it can help us with understanding the instability of some schemes. We also
discuss the relevance of the results for the simple test equation in R2 for some interesting higher-dimensional systems.

The contents of this paper is as follows. In Section 2 we introduce the Rosenbrock ROS1 and ROS2 methods which
will be used as our basic numerical integration methods. In Section 3 we describe the 2 × 2 test problem for which
the asymptotic stability domains are determined. The two multirate versions of ROS1 and ROS2 will be analyzed in
Sections 4 and 5. Some remarks on the relevance of the results for the 2 × 2 test problem are presented in Section 6.
Section 7 is devoted to a property of the eigenvalues of the partitioned Rosenbrock methods. Finally, Section 8 contains
the conclusions.

2. Numerical integration methods ROS1 and ROS2

As the basic methods for the multirate schemes in this paper we use two Rosenbrock methods [5]. The first method
is a one-stage method, called in this paper ROS1, which for non-autonomous systems w′(t) = F(t, w(t)) is given by

wn = wn−1 + k1,

(I − ��J )k1 = �F(tn−1, wn−1) + ��2Ft(tn−1, wn−1), (2.1)

where wn denotes the approximation to w(tn) and J ≈ Fw(tn−1, wn−1). The method is of order two if �= 1
2 . Otherwise

the order is one. The method is A-stable for any �� 1
2 and L-stable for � = 1. In this paper we use � = 1

2 .
The second method is the two-stage second-order method, to which we will refer to as ROS2,

wn = wn−1 + 3
2 k̄1 + 1

2 k̄2,

(I − ��J )k̄1 = �F(tn−1, wn−1) + ��2Ft(tn−1, wn−1),

(I − ��J )k̄2 = �F(tn, wn−1 + k̄1) − ��2Ft(tn−1, wn−1) − 2k̄1, (2.2)

where J ≈ Fw(tn−1, wn−1). The method is also linearly implicit (to compute the internal vectors k̄1 and k̄2, a system
of linear algebraic equations is to be solved), and it is of order two for any choice of the parameter � and for any choice
of the matrix J . Furthermore, the method is A-stable for �� 1

4 and it is L-stable if � = 1 ± 1
2

√
2. In this paper we use

� = 1 − 1
2

√
2.
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Other possible values of the parameter � were also considered (� = 1 for ROS1; � = 1
2 and � = 1 + 1

2

√
2 for ROS2).

These values gave similar results and conclusions.

2.1. Interpolation and extrapolation

For given approximations wn−1 ≈ w(tn−1), wn ≈ w(tn), the multirate schemes will require an intermediate value
wI (tn−1/2) ≈ w(tn−1/2). In [4] it was shown that for the multirate scheme based on the ROS1 method (with � = 1

2 )
and linear interpolation, stiffness may lead to an order reduction. For a special linear parabolic problem order 1.5 was
obtained. Numerical experiments with the ROS2 method led to the same conclusion. Nevertheless, for many problems
order reduction will not be observed. Therefore, we consider in this paper along with linear interpolation

wI (tn−1/2) = 1
2 (wn−1 + wn), (2.3)

also forward quadratic interpolation

wI (tn−1/2) = 3
4wn−1 + 1

4wn + 1
4�F(tn−1, wn−1), (2.4)

and backward quadratic interpolation

wI (tn−1/2) = 1
4wn−1 + 3

4wn − 1
4�F(tn, wn). (2.5)

With the ROS2 method we could also use what we call ‘embedded’ quadratic interpolation, which uses the stages
values of the method and avoids explicit evaluations of F :

wI (tn−1/2) = wn−1 + 1

8(1 − 2�)
(5 − 12�)k̄1 + 1

8(1 − 2�)
(1 − 4�)k̄2. (2.6)

This interpolation mimics the quadratic interpolation based on w(tn−1), w(tn) and w′(tn−1 + ��),

wI (tn−1/2) = 1

4(1 − 2�)
((3 − 4�)wn−1 + (1 − 4�)wn + �F(tn−1+�, wn−1+�)).

For linear problems and � = 1 ± 1
2

√
2 the interpolation (2.6) coincides with (2.5). In the case of ROS1 with � = 1

2 ,
backward quadratic interpolation is equivalent to the forward quadratic interpolation.

For the compound step strategy also extrapolation is needed: wE(tn) ≈ w(tn). Again, we consider three types of
extrapolation: linear

wE(tn) = 2wn−1/2 − wn−1, (2.7)

forward quadratic

wE(tn) = 4wn−1/2 − 3wn−1 − �F(tn−1, wn−1), (2.8)

and backward quadratic

wE(tn) = wn−1 + �F(tn−1/2, wn−1/2). (2.9)

Usually, for the compound step strategy, extra- and interpolations are done via internal stages.

3. The linear test problem in R2

Usually, linear stability analysis of an integration method is based on the scalar Dahlquist test equation w′(t)=�w(t),
� ∈ C. For multirate methods the scalar problem cannot be used. Instead we consider a similar test problem, a linear
2 × 2 system

w′(t) = Aw(t), w =
(

u

v

)
, A =

(
a11 a12
a21 a22

)
. (3.1)
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We denote

Z = �A, zij = �aij . (3.2)

We will assume that the first component u of the system is fast and the second component v is slow. Thus, to perform
the time integration from tn−1 to tn = tn−1 + � we will complete two time steps of size 1

2� for the first component and
one time step of size � for the second component.

We denote

� = a22

a11
, � = a12a21

a11a22
. (3.3)

It will be assumed that

a11 < 0 and a22 < 0. (3.4)

Then, both eigenvalues of the matrix A have a negative real part if and only if det(A) > 0. This condition can also be
written as

� < 1. (3.5)

We can regard � as a measure for the stiffness of the system, and � indicates the coupling between the fast and slow
part of the system. For this two-dimensional test equation we will consider asymptotic stability whereby it is required
that the eigenvalues of the amplification matrix of the multirate method are less than one in modulus. Instead of z11 �0
and � < 1 it is convenient to use the quantities

� = z11

1 − z11
, � = �

2 − �
, (3.6)

which are bounded between −1 and 0, and −1 and 1, respectively.

4. Asymptotic stability for multirate ROS1

4.1. Recursive refinement strategy

In our recursive strategy, first we take the global step

wn = wn−1 + k1,

(I − �Z)k1 = Zwn−1, (4.1)

from which we also obtain an approximation vI(tn−1/2) for the second component at the intermediate time level tn−1/2
by interpolation.

We continue with the first update step for the first component by solving the subproblem

u′(t) = a11u(t) + a12vI(t),

where the interpolant vI is now considered as a time-dependent source term. We get

un−1/2 = un−1 + k̃1,

(1 − 1
2�z11)k̃1 = 1

2 (z11un−1 + z12vn−1) + 1
4�z12�v

′
I(tn−1), (4.2)
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where the time derivative term is approximated by

�v′
I(tn−1) = vn − vn−1 (4.3)

without loosing the second order of the method.
At this point we have an numerical approximation of the solution at time tn−1/2,

wn−1/2 =
(

un−1/2
vI(tn−1/2)

)
. (4.4)

We proceed with the second update step

un = un−1/2 + k̂1,

(1 − 1
2�z11)k̂1 = 1

2 (z11un−1/2 + z12vI(tn−1/2)) + 1
4�z12�v

′
I(tn−1/2), (4.5)

where, again, we approximate

�v′
I(tn−1/2) = vn − vn−1, (4.6)

without loosing the second order of the method. The final numerical value of the solution at time tn is now given by

wn =
(

un

vn

)
. (4.7)

4.2. Compound step strategy

In the compound step strategy, the first micro-step for the first component

un−1/2 = un−1 + k1,

(1 − 1
2�z11)k1 = 1

2 (z11un−1 + z12vn−1) + 1
4�z12�v

′
I(tn−1) (4.8)

and the time step for the second component

vn = vn−1 + k̂1,

(1 − �z22)k̂1 = (z21un−1 + z22vn−1) + �z21�u
′
I(tn−1) (4.9)

are computed at the same time. Then we continue with the second micro-step for the first component

un = un−1/2 + k̃1,

(1 − 1
2�z11)k̃1 = 1

2 (z11un−1/2 + z12vI(tn−1/2)) + 1
4�z12�v

′
I(tn−1/2). (4.10)

The time derivative terms are approximated by

�u′
I(tn−1) = 2(un−1/2 − un−1), (4.11)

�v′
I(tn−1) = vn − vn−1, (4.12)

�v′
I(tn−1/2) = vn − vn−1. (4.13)



V. Savcenco / Journal of Computational and Applied Mathematics 220 (2008) 508–524 513

ξ

η

κ = 1

−1 −0.8 −0.6 −0.4 −0.2 0
−1

−0.5

0

0.5

1

ξ

κ = 10

−1 −0.8 −0.6 −0.4 −0.2 0
−1

−0.5

0

0.5

1

ξ

κ = 100

−1 −0.8 −0.6 −0.4 −0.2 0
−1

−0.5

0

0.5

1

Fig. 1. Recursive refinement, ROS1 with linear interpolation. Asymptotic stability domains (gray areas) for � = 1, 10, 100.
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Fig. 2. Compound step, ROS1 with linear interpolation. Asymptotic stability domains (gray areas) for � = 1, 10, 100.

Since these approximations are used for the �2Ft term in (2.1), it follows that the order of the method does not change
by Eqs. (4.11)–(4.13). Relations

2(un−1/2 − un−1) = 2k1 ,

vn − vn−1 = k̂1,

used for Eqs. (4.11)–(4.13), reveal the joint computation of k1 and k̂1 in Eqs. (4.8)–(4.9).

4.3. Results

Both considered strategies can be written in the form of partitioned Rosenbrock methods (see for example [2]).
Therefore the eigenvalues of the amplification matrix of the multirate schemes depend just on three parameters �, �
and � (see Section 7). The domains of asymptotic stability are shown in Figs. 1–4 for both strategies and all considered
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Fig. 3. Recursive refinement, ROS1 with forward quadratic interpolation. Asymptotic stability domains (gray areas) for � = 1, 10, 100.
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Fig. 4. Compound step, ROS1 with forward quadratic interpolation. Asymptotic stability domains (gray areas) for � = 1, 10, 100.

types of interpolation. We present these domains in the (�, �)-plane for three values of �=10j , j =0, 1, 2. We observe
that for these multirate schemes the stability region decreases with the increasing of �.

From Figs. 1 and 2 it is seen that the combination of ROS1 and linear interpolation is unconditionally stable for both
multirate strategies if the coupling parameter ��0. For the � < 0 case, both strategies have instability regions which
increase when � becomes large. In this case stability regions for the recursive refinement strategy are somehow larger
than for the compound step strategy.

For the ROS1 with forward quadratic interpolation (Figs. 3 and 4), both multirate schemes become unstable for large
�, except the trivial case �=0. Both strategies have almost the same stability regions. The recursive refinement strategy
has slightly larger stability area for � > 0. For � < 0 there exist a small set of points (close to � = −0.8) where the
compound step strategy is asymptotically stable but the recursive refinement strategy is unstable. However, in general
the recursive refinement strategy in the experiments in this section is slightly more stable.

The case ��0 is relevant to the semi-discrete systems which are obtained by the central spatial discretization of
the heat equation. The results obtained here suggest that the both strategies, based on ROS1 and linear interpolation,
are stable for these semi-discrete systems. The results also show that for both strategies it is not possible to have an
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unconditionally stable second-order multirate scheme based on ROS1. Using linear interpolation/extrapolation we get
better stability properties, however, we may lose one order due to stiffness (see the analysis in [4]).

5. Asymptotic stability for multirate ROS2

5.1. Recursive refinement strategy

In our recursive strategy, first we take the global step

wn = wn−1 + 3
2 k̄1 + 1

2 k̄2,

(I − �Z)k̄1 = Zwn−1,

(I − �Z)k̄2 = Z(wn−1 + k̄1) − 2k̄1, (5.1)

from which we also obtain an approximation vI(tn−1/2) for the second component at the intermediate time level tn−1/2
by interpolation.

We continue with the first update step for the first component

un−1/2 = un−1 + 3
2 k̃1 + 1

2 k̃2,

(1 − 1
2�z11)k̃1 = 1

2 (z11un−1 + z12vn−1) + 1
4�z12�v

′
I(tn−1),

(1 − 1
2�z11)k̃2 = 1

2 (z11(un−1 + k̃1) + z12vI(tn−1/2)) − 1
4�z12�v

′
I(tn−1) − 2k̃1, (5.2)

where the time derivative term is approximated with

�v′
I(tn−1) = vn − vn−1. (5.3)

Since this approximation is used for the �2Ft term in (2.2), it follows that the order of the method does not change
by (5.3).

At this point we get the numerical approximation of the solution at time tn−1/2

wn−1/2 =
(

un−1/2
vI(tn−1/2)

)
. (5.4)

We proceed further with the second update step

un = un−1/2 + 3
2 k̂1 + 1

2 k̂2,

(1 − 1
2�z11)k̂1 = 1

2 (z11un−1/2 + z12vI(tn−1/2)) + 1
4�z12�v

′
I(tn−1/2),

(1 − 1
2�z11)k̂2 = 1

2 (z11(un−1/2 + k̂1) + z12vn) − 1
4�z12�v

′
I(tn−1/2) − 2k̂1, (5.5)

where, again, we approximate

�v′
I(tn−1/2) = vn − vn−1. (5.6)

The final numerical value of the solution at time tn is given by

wn =
(

un

vn

)
. (5.7)
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5.2. Compound step strategy

In the compound step strategy, the first micro-step for the first component

un−1/2 = un−1 + 3
2 k̄1 + 1

2 k̄2,

(1 − 1
2�z11)k̄1 = 1

2 (z11un−1 + z12vn−1) + 1
4�z12�v

′
I(tn−1),

(1 − 1
2�z11)k̄2 = 1

2 (z11(un−1 + k̄1) + z12vI(tn−1/2)) − 1
4�z12�v

′
I(tn−1) − 2k̄1 (5.8)

and the time step for the second component

vn = vn−1 + 3
2 k̂1 + 1

2 k̂2,

(1 − �z22)k̂1 = (z21un−1 + z22vn−1) + �z21�u
′
I(tn−1),

(1 − �z22)k̂2 = (z21uE(tn) + z22(vn−1 + k̂1)) − �z21�u
′
I(tn−1) − 2k̂1 (5.9)

are computed at the same time. Then we continue with the second micro-step

un = un−1/2 + 3
2 k̃1 + 1

2 k̃2,

(1 − 1
2�z11)k̃1 = 1

2 (z11un−1/2 + z12vI(tn−1/2)) + 1
4�z12�v

′
I(tn−1/2),

(1 − 1
2�z11k̃2 = 1

2 (z11(un−1/2 + k̃1) + z12vn) − 1
4�z12�v

′
I(tn−1/2) − 2k̃1. (5.10)

The time derivative terms are approximated by

�u′
I(tn−1) = 2(un−1/2 − un−1), (5.11)

�v′
I(tn−1) = vn − vn−1, (5.12)

�v′
I(tn−1/2) = vn − vn−1. (5.13)

Again, these approximations will not affect the order of the method.
A multirate scheme based on a third-order Rosenbrock method and compound step strategy was considered in [2].

Due to stability constraints, instead of the third-order method the embedded second-order method was used for time
stepping. Extra and interpolations were done via internal stages.

5.3. Results

Again, both considered strategies can be written in the form of a partitioned Rosenbrock methods (for example by
adding some artificial extra stages to the original method). Therefore the eigenvalues of the amplification matrix of the
multirate schemes will depend on three parameters �, � and � (see Section 7).

The domains of asymptotic stability are shown in Figs. 5–10 for both strategies and all considered types of inter-
polation/extrapolation. We present these domains in the (�, �)-plane for three values of � = 10j , j = 0, 1, 2. From
Figs. 5 and 6 it is seen that the combination of ROS2 and linear interpolation is unconditionally stable for both multirate
strategies if ��0. An instability region appears at � close to −1. The instability region for the recursive refinement
strategy is smaller than for the compound step strategy.

For ROS2 with forward quadratic interpolation (Figs. 7 and 8), both multirate schemes become unstable for large �,
unless � = 0. In this case the recursive refinement strategy has larger stability regions than the compound step strategy.
A curious fact is that for � = 1 and 10 the recursive refinement strategy is stable almost for all the values of � when
� = �∗, where �∗ is a number close to −0.9. For � = 100 this property is not valid anymore.

Fig. 9 shows that the combination of ROS2 and backward quadratic interpolation is almost unconditionally stable
for the recursive refinement strategy. There is a small set of points in the bottom-right corner of the domain where this
strategy is unstable. In this case the stability domain is getting larger with the increase of the stiffness parameter �,
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Fig. 5. Recursive refinement, ROS2 with linear interpolation. Asymptotic stability domains (gray areas) for � = 1, 10, 100.
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Fig. 6. Compound step, ROS2 with linear interpolation. Asymptotic stability domains (gray areas) for � = 1, 10, 100.

probably due to the L-stability of the ROS2 scheme. As shown in Fig. 10, the compound step strategy used with ROS2
and backward quadratic interpolation has large instability regions, which in this case is a disadvantage of this strategy
in comparison with the recursive refinement strategy.

In the case of linear and forward quadratic interpolation, for both strategies stability regions decrease with the increase
of �. However, in the case of backward quadratic interpolation, the stability region of the recursive refinement strategy
increases with the increase of �. The compound step strategy, used with backward quadratic interpolation, has irregular
large stability regions, which shows that it can lead to unpredictable stability problems.

In this section we showed some results for ROS2 with the choice � = 1 − 1
2

√
2. We also performed some tests for

� = 1 + 1
2

√
2 and � = 1

2 . The results we obtained are very similar to the ones with � = 1 − 1
2

√
2. The asymptotic

instability regions were a bit larger for � = 1 + 1
2

√
2 than for � = 1 − 1

2

√
2. The only significant difference was that

ROS2 with � = 1
2 and backward quadratic interpolation was as unstable as ROS2 with � = 1

2 and forward quadratic
interpolation.

The main result of this section is that for the recursive refinement strategy there exists a second-order multirate
scheme, based on ROS2 and backward quadratic interpolation, which is unconditionally asymptotically stable (except
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Fig. 7. Recursive refinement, ROS2 with forward quadratic interpolation. Asymptotic stability domains (gray areas) for � = 1, 10, 100.
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Fig. 8. Compound step, ROS2 with forward quadratic interpolation. Asymptotic stability domains (gray areas) for � = 1, 10, 100.

for a very small region). For the compound step strategy it is not possible to have a second-order multirate scheme with
this stability property.

6. Relevance of the linear 2 × 2 test problem

Asymptotic stability guarantees ‖Sn‖ → 0 as n → ∞. This also implies boundedness of

M = sup
n�0

‖Sn‖, (6.1)

but this bound M may depend on � and A, and in particular on the stiffness of the problem. There is also lack of
theory which would extend the results of stability analysis for multirate schemes for the linear 2 × 2 test equation to
general systems of ODEs. Therefore, in order to see how relevant the asymptotic stability results for the linear 2 × 2
test problem are we did some stability tests in Rm to determine M for some interesting matrices A. In this section we
consider m=50 and we assume that the first 25 components of the system are fast and the last 25 components are slow.
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Fig. 9. Recursive refinement, ROS2 with backward quadratic interpolation. Asymptotic stability domains (gray areas) for � = 1, 10, 100.
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Fig. 10. Compound step, ROS2 with backward quadratic interpolation. Asymptotic stability domains (gray areas) for � = 1, 10, 100.

We use ROS2 as our main time integration method. Forward quadratic interpolation showed bad asymptotic stability
properties in the 2 × 2 tests and therefore we do not consider it anymore in the following numerical tests.

6.1. The heat equation

Let us consider the heat equation

ut = duxx . (6.2)

Applying the second-order central discretization on a uniform spatial grid leads to a semi-discrete system

w′(t) = Aw(t), (6.3)

where A is a m × m matrix

A = 	 tridiag(1, −2, 1) (6.4)
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Fig. 11. Problem (6.2). Plot of the bound value M for ROS2 with recursive refinement (left) and compound step (right) strategies, used with linear
(solid line) and backward quadratic interpolation (dashed line).
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Fig. 12. Problem (6.5). Plot of the ln(||Sn||) for ROS2 with recursive refinement (left) and compound step (right) strategies, used with backward
quadratic interpolation.

and 	 > 0 will depend on m and d . For matrices A of type (6.4), with m = 50, numerical tests for the recursive
refinement and compound step strategies based on ROS2 and backward quadratic interpolation showed boundedness
for the powers of the amplification matrix of the scheme in the maximum norm. From Fig. 11 it is seen that in this case
‖Sn‖∞ is bounded by 2 and 25, for any choice of n and 	, for the recursive refinement and the compound step strategy,
respectively. The bound value M = 25 for the compound step is much larger than M = 2 for the recursive refinement
strategy. For the compound step strategy M becomes larger with the increase of m; numerical experiments suggest that
for this strategy M = 1

2m, which can be viewed as a weak instability.
However, if we consider the heat equation with a non-constant diffusion coefficient

ut = d(x)uxx (6.5)

then with the same spatial discretization we obtain a semi-discrete system (6.3) with

A = diag(	1, . . . , 	m)tridiag(1, −2, 1). (6.6)

If, for this type of systems, we take 	i = 7
6 for i�25 and 	i = 35

3 for i > 25 then the compound step strategy based
on ROS2 and backward quadratic interpolation becomes unstable. Fig. 12 shows that for this choice of the coefficients
	i , ‖Sn‖∞ is bounded by 2 for any n for the recursive refinement strategy, whereas for the compound step strategy an
exponential growth in n is observed.

These numerical results are in accordance with the results obtained for the linear 2 × 2 test problem. The 2 × 2
version of the matrix (6.4) would correspond to � = 1 and � = 1

7 . Figs. 5,6,9, and 10 show that for these values of �
and � both multirate strategies are asymptotically stable. The 2 × 2 version of the matrix (6.6) corresponds to � = 10,
�= 1

7 and �=−0.7. For these values the compound step strategy is asymptotically unstable (Fig. 10), but the recursive
refinement strategy is stable (Fig. 9).

The numerical tests presented in this subsection suggest that the conclusions obtained in Section 5 are also valid for
more general systems. The following conjecture can be formulated: the recursive refinement strategy, based on ROS2
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Fig. 13. Problem (6.7), first-order upwind spatial discretization. Plot of the bound value M for ROS2 with recursive refinement (left) and compound
step (right) strategies, used with linear (solid line) and backward quadratic interpolation (dashed line).

and linear or backward quadratic interpolation, is stable if it is applied to the discrete system obtained by second-order
spatial discretization of the heat equation. In the same context, the compound step strategy is stable if is used with
linear interpolation, but it can lead to instabilities when is used with backward quadratic interpolation.

6.2. The advection equation

As a second test problem we consider the advection equation

ut + aux = 0. (6.7)

Applying the first-order upwind discretization on a uniform spatial grid leads to a semi-discrete system

w′(t) = Aw(t), (6.8)

where A is a m × m matrix

A = 	 tridiag(1, −1, 0). (6.9)

For the matrices A of type (6.9), numerical tests for the recursive refinement and compound step strategies based on
ROS2 and backward quadratic interpolation showed uniform boundedness for the powers of the amplification matrix
of the scheme. From Fig. 13 it is seen that in this case ||Sn||∞ is bounded by 3 and 35, for any choice of n and 	, for the
recursive refinement and the compound step strategy, respectively. The bound M = 35 for the compound step strategy
is larger than the bound M = 3 for the recursive refinement strategy. However, for this case (6.9) it was observed in
further numerical tests that both these bounds do not change significantly, with increasing m, in contrast to (6.4).

We also consider the case of the second-order central spatial discretization of the advection term for the problem
(6.7). With this discretization we obtain a semi-discrete system (6.8) with

A = 	 tridiag(1, 0, −1). (6.10)

Numerical tests showed that both multirate strategies used with ROS2 are unstable for the system (6.8) with matrices
A of type (6.10). Fig. 14 shows that the infinity norm of the powers of the amplification matrix S for the case 	 = 100
is not bounded.

Again, the results from this subsection agree with those obtained for the linear 2 × 2 test problem. The 2 × 2 version
of the matrix (6.9) would correspond to �= 1 and �= 0. Figs. 5–10 show that for these values of � and � both multirate
strategies are asymptotically stable. The 2 × 2 version of the matrix (6.10) corresponds to � = −1 and � = 0. The
same figures show that these values of � and � can lead to asymptotic instabilities of both strategies. All this suggests
that both strategies, based on ROS2 and linear or backward quadratic interpolation, are stable when applied to the
semi-discrete system obtained by first-order upwind spatial discretization of the advection equation. They are unstable
if, instead, the second-order central spatial discretization is used.
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Fig. 14. Problem (6.7), second order central spatial discretization. Plot of the ln(||Sn||) for ROS2 with recursive refinement (left) and compound
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7. A property of the eigenvalues of the amplification matrix for partitioned Rosenbrock methods

All multirate schemes considered in this paper can be transformed into a partitioned Rosenbrock method, for example
by adding some artificial extra stages; see [2], for example.

For a system

u′ = F1(u, v),

v′ = F2(u, v), (7.1)

a partitioned Rosenbrock method is given by

un = un−1 +
s1∑

i=1

b̄i k̄i , (7.2)

vn = vn−1 +
s2∑

i=1

b̂i k̂i , (7.3)

k̄i = �F1

⎛
⎝un−1 +

i−1∑
j=1


̄ij k̄j , vn−1 +
p̄i∑

j=1

�̄ij k̂j

⎞
⎠

+ �F1u

i∑
j=1

�̄ij k̄j + �F1v

s2∑
j=1

�̄ij k̂j , i = 1, . . . , s1, (7.4)

k̂i = �F2

⎛
⎝un−1 +

p̂i∑
j=1


̂ij k̄j , vn−1 +
i−1∑
j=1

�̂ij k̂j

⎞
⎠

+ �F2u

s1∑
j=1

�̂ij k̄j + �F2v

i∑
j=1

�̂ij k̂j , i = 1, . . . , s2, (7.5)

where Fiu = �Fi/�u and Fiv = �Fi/�v.
We mention that if

p̄i � i and p̂i � i (7.6)

then the system Eqs. (7.4)–(7.5) can be solved by sequentially computing the values of the pairs (k̄i , k̂i ). The recursive
refinement strategy leads to a multirate scheme which can be written as a partitioned Rosenbrock method with property
(7.6). In the compound step strategy the macro-step and the first micro-step are computed simultaneously. The micro-
step uses the information obtained from the interpolation of the results from the macro-step. The macro-step uses
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the information obtained by the extrapolation of the results from the micro-step. The partitioned Rosenbrock method
derived from the multirate scheme obtained with the compound step strategy may not satisfy (7.6). This happens if
backward quadratic interpolation is used. In this case all micro-steps are computed using interpolation which depends
on the value of the solution calculated at the last micro-step. Therefore for the compound step strategy, Eqs. (7.4)–(7.5)
can result in large implicit systems. In practice, backward quadratic interpolation is not used.

In the case of our 2 × 2 linear test problem the system (7.1) can be written as

u′ = a11u + a12v,

v′ = a21u + a22v. (7.7)

If we write the method Eqs. (7.2)–(7.5) in a short form

(
un

vn

)
= S

(
un−1

vn−1

)
, (7.8)

with S = (Sij ), i, j = 1, 2, then we can prove the following theorem.

Theorem 1. The eigenvalues of the amplification matrix S can be written as functions of the three variables z11, z22
and det(Z).

Proof. For the problem (7.7) the formulas Eqs. (7.4)–(7.5) reduce to

k̄i = z11

⎛
⎝un−1 +

i∑
j=1


̄∗
ij k̄j

⎞
⎠ + z12

⎛
⎝vn−1 +

s2∑
j=1

�̄
∗
ij k̂j

⎞
⎠ , (7.9)

k̂i = z21

⎛
⎝un−1 +

s1∑
j=1


̂∗
ij k̄j

⎞
⎠ + z22

⎛
⎝vn−1 +

i∑
j=1

�̂
∗
ij k̂j

⎞
⎠ . (7.10)

If we set (un−1, vn−1)
T = (1, 0)T then we get (S11, S21)

T = (un, vn)
T. By defining k̂i = z21k̂

∗
i from Eqs. (7.9)–(7.10)

we obtain

k̄i = z11

⎛
⎝1 +

i∑
j=1


̄∗
ij k̄j

⎞
⎠ + z12z21

s2∑
j=1

�̄
∗
ij k̂

∗
j , i = 1, . . . , s1, (7.11)

k̂∗
i = 1 +

s1∑
j=1


̂∗
ij k̄j + z22

i∑
j=1

�̂
∗
ij k̂

∗
j , i = 1, . . . , s2. (7.12)

The solution of system Eqs. (7.11)–(7.12) depends only on z11, z22 and det(Z). Therefore we have

S11 = un = 1 +
s1∑

i=1

b̄i k̄i = f11(z11, z22, det(Z)), (7.13)

S21 = vn = z21

s2∑
i=1

b̂i k̂
∗
i = z21f21(z11, z22, det(Z)). (7.14)

In a similar way, by setting (un−1, vn−1)
T = (0, 1)T one can show that

S12 = z12f21(z11, z22, det(Z)) and S22 = f22(z11, z22, det(Z)). (7.15)
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Finally from

S =
(

f11(z11, z22, det(Z)) z12f21(z11, z22, det(Z))

z21f21(z11, z22, det(Z)) f22(z11, z22, det(Z))

)
(7.16)

the proof of the theorem directly follows. �

This property was already observed for some special methods in [4,6,8].

8. Conclusions

In this paper we presented a comparison of asymptotic stability properties for the multirate recursive refinement and
the compound step strategies. We also discussed how the obtained results can be used in the context of stability of the
more general schemes. For most of the tests in the paper the recursive refinement strategy does have the asymptotic
stability regions somewhat larger than the compound step strategy. Sometimes the difference is very small (ROS1 and
quadratic interpolation), in other cases the difference is significant (ROS2 and backward quadratic interpolation).

The scheme based on the recursive refinement strategy used with ROS2 and backward quadratic interpolation is
clearly the favorite among the considered second-order schemes. It has a very small instability region. There are no
multirate schemes based on the compound step strategy, which are of second-order for stiff problems and have good
stability properties.

The numerical tests for more general systems presented in the paper gave results which are in accordance with those
obtained for the 2 × 2 linear test problem. Therefore, the simple 2 × 2 case already gives a good indication for stability
properties for more general systems, such as the semi-discrete systems obtained from the spatial discretization of the
heat equation and the advection equation.

Finally we mention that the compound step strategy, by avoiding the extra work of doing the macro-step for all the
components, looses some stability properties compared to the recursive refinement strategy, and it can also lead to more
complex implicit systems which are difficult to solve. The recursive refinement strategy is very simple and it has better
stability properties.
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