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a b s t r a c t

To provide a geometrical description of the classification theory and the structure theory
of varieties of almost minimal degree, that is of non-degenerate irreducible projective
varieties whose degree exceeds the codimension by precisely 2, a natural approach is to
investigate simple projections of varieties of minimal degree. Let X̃ ⊂ Pr+1K be a variety
of minimal degree and of codimension at least 2, and consider Xp = πp(X̃) ⊂ PrK where
p ∈ Pr+1K \ X̃ . By Brodmann and Schenzel (2007) [1], it turns out that the cohomological
and local properties of Xp are governed by the secant locusΣp(X̃) of X̃ with respect to p.
Along these lines, the present paper is devoted to giving a geometric description of the

secant stratification of X̃ , that is of the decomposition of Pr+1K via the types of secant loci.
We show that there are atmost six possibilities for the secant locusΣp(X̃), andweprecisely
describe each stratumof the secant stratification of X̃ , each ofwhich turns out to be a quasi-
projective variety.
As an application, we obtain a different geometrical description of non-normal del

Pezzo varieties X ⊂ PrK , first classified by Fujita (1985) [3, Theorem 2.1(a)] by providing
a complete list of pairs (X̃, p), where X̃ ⊂ Pr+1K is a variety of minimal degree, p ∈ Pr+1K \ X̃
and Xp = X ⊂ PrK .

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, we work over an algebraically closed field K of arbitrary characteristic. We denote by PrK the
projective r-space over K .
Let X ⊂ PrK be a non-degenerate irreducible projective variety. It is well known that deg(X) ≥ codim(X) + 1. In case

equality holds, X is called a variety of minimal degree. Varieties of minimal degree were completely classified more than
hundred years ago by P. del Pezzo and E. Bertini, and now they are very well understood from several points of view. A
variety X ⊂ PrK is of minimal degree if and only if it is either PrK or a quadric hypersurface or (a cone over) the Veronese
surface in P5K or a rational normal scroll.
In the next case, that is if deg(X) = codim(X) + 2, one calls X a variety of almost minimal degree. The results of [3,4]

imply that these varieties can be divided into two classes:

1. X ⊂ PrK is linearly normal and X is normal;
2. X ⊂ PrK is non-linearly normal or X is non-normal.
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By [3, Theorem 2.1(b)], see also (6.4.6) and (9.2) in [5], X is of the first type if and only if it is a normal del Pezzo variety.
By [3, Theorem 2.1(a)], X is of the second type if and only if X = πp(̃X) where X̃ ⊂ Pr+1K is a variety of minimal degree and
of codimension at least two and πp : X̃ → PrK is the linear projection of X̃ from a closed point p in Pr+1K \ X̃ . For details, we
refer the reader to Notation and Remarks 2.3. Smooth del Pezzo varieties are completely classified by Fujita (cf. (8.11) and
(8.12) in [5]).
Now, a natural approach to understand varieties of almost minimal degree which are not normal del Pezzo is to

investigate simple projections of varieties of minimal degree. In this situation, i.e. in the case where X = πp(̃X), one can
naturally expect that all the properties of X may be precisely described in terms of the relative location of pwith respect to
X̃ . For the cohomological and local properties of X , this expectation turns out to be true in [1]. Indeed those properties are
governed by the secant locusΣp(̃X) of X̃ with respect to p, which is the scheme-theoretic intersection of X̃ and the union of
all secant lines to X passing through p.
Along these lines, the main purpose of the paper is to classify the pairs (̃X, p)with X̃ ⊂ Pr+1K a variety of minimal degree

via the analysis of the secant locusΣp(̃X).
The classification theory of varieties of minimal degree says that X̃ is either (a cone over) the Veronese surface in P5K or

else a rational normal scroll of degree≥ 3.When X̃ is the Veronese surface in P5K , it is well known thatΣp(̃X) is either empty
or a smooth plane conic. The case where X̃ is a cone over the Veronese surface can be easily dealt with from this fact. For
details, see Remark 6.3.
When X̃ is a rational normal scroll of degree ≥ 3, Proposition 3.2 and Corollary 3.4 show that there are at most six

different possibilities for the secant locusΣp(̃X).
According to this, the secant locusΣp(̃X) can be at most of six different types, giving a decomposition of Pr+1K \ X̃ which

will be called the secant stratification of X̃ , see Theorem 4.2.
Finally, Theorem 6.2 gives a different proof of the classification of non-normal del Pezzo varieties X = πp(̃X) ⊂ PrK . If

X is not a cone, then either X̃ is S(a) ⊂ PaK with a ≥ 3; or S(1, b) ⊂ Pb+3K with b ≥ 2; or S(2, b) ⊂ Pb+4K with b ≥ 2; or
S(1, 1, c) ⊂ Pc+4K with c ≥ 1. This provides a geometric picture of non-normal del Pezzo varieties from the view point of
linear projections and normalizations, reproving some of the results of Fujita contained in [3,4]. In particular, as shown in
[3,4], we provide a different proof of the fact that the dimension of X ⊂ PrK , not a cone, does not exceed three although there
is no upper bound on the degree of X .

2. Preliminaries

Notation and Remark 2.1. Let X̃ ⊆ Pr+1K be a variety of minimal degree. That is, X̃ ⊆ Pr+1K is a non-degenerate irreducible
projective subvariety of Pr+1K such that deg(X̃) = codim(X̃) + 1. According to the well-known classification of varieties of
minimal degree (cf. [2]), X̃ ⊆ Pr+1K is either

(i) Pr+1K ;
(ii) a quadric hypersurface;
(iii) (a cone over) the Veronese surface in P5K ; or
(iv) a rational normal scroll.

In particular X̃ is always arithmetically Cohen–Macaulay.

Notation and Remark 2.2. Let X̃ ⊆ Pr+1K be as above and let p ∈ Pr+1K \ X̃ be a fixed closed point. The union of all secant
lines to X passing through p is called the secant cone of X̃ with respect to p and denoted by Secp(X̃), i.e.

Secp(X̃) :=
⋃

q∈X̃,length(X̃∩〈p,q〉)≥2

〈p, q〉.

We use the convention that Secp(X̃) = {p} when there is no secant line to X passing through p. Observe that Secp(X̃) is a
cone with vertex p. We define the secant locus Σp(X̃) of X̃ with respect to p as the scheme-theoretic intersection of X̃ and
Secp(X̃). Therefore

Σp(X̃)red = {q ∈ X̃ | length(̃X ∩ 〈p, q〉) ≥ 2}.

ThusΣp(X̃) is the entry locus of X̃ with respect to p in the sense of [6].

Notation and Remarks 2.3. (A) Let X̃ ⊆ Pr+1K and p ∈ Pr+1K \ X̃ be as above. We fix a projective space PrK and consider the
linear projection

πp : X̃ → Xp := πp(X̃) ⊆ PrK
of X̃ from p. As the morphism πp : X̃ → Xp is finite, we have

codim(X̃) = codim(Xp)+ 1 ≤ deg(Xp)| deg(X̃) = codim(X̃)+ 1.
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If codim(X̃) = 1, then X̃ is a quadric and πp is a double covering of PrK . On the other hand, if codim(X̃) > 1 then πp is
birational and Xp ⊆ PrK is of almost minimal degree (that is deg(Xp) = codim(Xp)+ 2).
(B) Suppose that X̃ is smooth. Then Sec(X̃)will denote the secant variety of X̃ , i.e. the closure of the union of chords joining
pairs of distinct points of X̃ . Also Tan(X̃) will denote the tangent variety of X̃ , i.e. the closure of the union of the tangent
spaces of X̃ . Thus Xp is smooth if and only if p /∈ Sec(X̃).

3. Possible secant loci

Throughout this section we keep the previously introduced notation. Let X̃ ⊆ Pr+1K be a rational normal scroll. The aim
of this section is to show which secant lociΣp(X̃) ⊆ Secp(X̃)may occur at all.
We first treat the case in which X̃ is a smooth rational normal scroll.

Notation and Remark 3.1. Let X̃ ⊂ Pr+1K be a smooth rational normal scroll. Thus there is a projection morphism ϕ : X̃ →
P1K . For each x ∈ P1K , let L(x) = ϕ

−1(x) denote the ruling of X̃ over x.

Proposition 3.2. Let X̃ ⊂ Pr+1K be a smooth rational normal scroll and of codimension at least 2 and let p ∈ Sec(̃X) \ X̃ . Then

(1) Secp(̃X) = Pt−1K ⊂ Pr+1K for some t ≥ 2, Σp(̃X) ⊂ Pt−1K is a quadric hypersurface, Sing(Xp) = πp(Σp(̃X)) = Pt−2K is the
non-normal locus of Xp and depth(Xp) = t, where depth is the arithmetic depth of Xp.

(2) One of the following holds:
(a) Secp(̃X) = P1K andΣp(̃X) ⊂ P1K is either a double point or the union of two simple points.
(b) Secp(̃X) = P2K andΣp(̃X) ⊂ P2K is either a smooth conic or the union of a line L which is contained in a ruling L(x) ⊂ X̃
and a line section L′ of X̃ .

(c) Secp(̃X) = P3K andΣp(̃X) ⊂ P3K is a smooth quadric surface.

Proof. (1) For the geometric description of the secant cone and the secant locus, let us recall that X̃ satisfies Vermeire’s
condition K2 which means that the homogeneous ideal of X̃ is generated by quadrics and the Koszul relations among
them are generated by linear syzygies (cf. [2, Lemma 2.1]). Thus the simple argument of [7, Proposition 2.8] (see also
[8, Theorem 2.2]) enables us to deduce that Secp(̃X) = Pt−1K ⊂ Pr+1K for some t ≥ 2 and Σp(̃X) ⊂ Pt−1K is a quadratic
hypersurface. This implies that πp(Σp(̃X)) = Pt−2K is precisely the singular and also the non-normal locus of Xp since
πp : X̃ → Xp is the normalization map of Xp. For the fact that depth(Xp) = t , we refer the reader to [1, Theorem 1.1].

(2) Let the notation be as in (3.1) and let f : Σp(̃X)→ P1K be the restriction of ϕ to Σp(̃X). If t = 2, then Σp(̃X) ⊂ P1K is a
hyperquadric and so we get statement (a). Suppose that t ≥ 3. Since p /∈ X̃ and since p ∈ 〈Σp(̃X)〉, the morphism
f is surjective. If t = 3, then Σp(̃X) is a smooth conic or the union of two distinct lines L and L′ or a double line
supported on a section L of ϕ. In the second case, it is easily shown that one of the two lines L or L′ is contained in a
ruling and the other one is a section of ϕ. To rule out the third case it suffices to remark that for two distinct points
q1, q2 ∈ L, letting xi = ϕ(qi), we have TqiΣp(̃X) ⊆ Tqi X̃ = 〈L(xi), qj〉 with i 6= j, and Tq1 X̃ ∩ Tq2 X̃ = L so that
L ⊇ Tq1Σp(̃X) ∩ Tq2Σp(̃X) ⊇ Secp(̃X) = P2K , a contradiction. If t ≥ 4, thenΣp(̃X) is irreducible. In this case, ifΣp(̃X) is
not a smooth quadric surface then Pic(Σp(̃X)) = 〈OΣp (̃X)(1)〉. This contradiction yields that t = 4 and that Σp(̃X) is a
smooth quadric surface. �

We now consider the case in which the scroll X̃ is not necessarily smooth. First we introduce some notation.

Notation and Remark 3.3. Let X̃ ⊆ Pr+1K be a rational normal scroll of codimension at least 2 and with the vertex
Vert(X̃) = PhK for some h ≥ −1. Let dim X̃ = n + h + 1 and note that X̃ is a cone over an n-fold rational normal scroll
X̃0 in 〈X̃0〉 = Pr−hK . Consider the projection map

ψ : Pr+1K \ Vert(X̃) � 〈X̃0〉 = Pr−hK .

For a closed point p ∈ Pr+1K \Vert(X̃), we denote ψ(p) by p. �

The following result is an immediate consequence of Proposition 3.2 and of the previous definitions.

Corollary 3.4. Assume that the rational normal scroll X̃ ⊆ Pr+1K has codimension at least 2 and let p ∈ Pr+1K \X̃ . Then we have
either
(a) Secp(X̃) = 〈Vert(X̃), p〉 = Ph+1 andΣp(X̃) = 2Vert(X̃) ⊆ Ph+1K .
(b) Secp(X̃) = 〈Vert(X̃), L〉 = Ph+2K for some line L ⊆ 〈X̃0〉 and either

(i) Σp(X̃) = Join(Vert(X̃), Z) ⊆ Ph+2K , where Z ⊆ L consists of two simple points; or
(ii) Σp(X̃) = 2〈Vert(X̃), Z〉 ⊆ Ph+2K , where Z ⊆ L consists of one simple point.

(c) Secp(X̃) = 〈Vert(X̃), P〉 = Ph+3K for some plane P ⊆ 〈X̃0〉 andΣp(X̃) = Join(Vert(X̃),W ), where W ⊆ P is either a smooth
conic or the union of two lines L, L′ ⊆ P such that L ⊆ L(x) ∩ X̃0 for some x ∈ P1K and L

′ is a line section of X̃0.
(d) Secp(X̃) = 〈Vert(X̃),D〉 = Ph+4K for some 3-space D ⊆ 〈X̃0〉 and Σp(X̃) = Join(Vert(X̃), V ), where V ⊆ D is a smooth
quadric surface.
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4. The secant stratification in the smooth case

According to Proposition 3.2 there are at most six different possibilities for the secant locus Σp(X̃) of smooth rational
normal scrolls X̃ ⊆ Pr+1K with respect to the point p ∈ Pr+1K \X̃ . This gives a decomposition of P

r+1
K \X̃ into at most six disjoint

strata. The aim of this section is to describe this stratification in geometric terms.

Definition and Remark 4.1. (A) Let

X̃ = S(a1, . . . , an) ⊆ Pr+1K
be an n-dimensional smooth rational normal scroll of type (a1, . . . , an) with 1 ≤ a1 ≤ · · · ≤ an. We assume that
codim(̃X) ≥ 2, or equivalently, a1 + · · · + an ≥ 3. We write

k :=
{max{i ∈ {1, . . . , n}|ai = 1} if a1 = 1, and
0 if a1 > 1

and

m :=
{max{i ∈ {k+ 1, . . . , n}|ai = 2} if ak+1 = 2, and
k if ak+1 6= 2.

So, we have k ∈ {0, . . . , n} andm ∈ {k, . . . , n} and may write

X̃ = S(1, . . . , 1︸ ︷︷ ︸
k

, 2, . . . , 2︸ ︷︷ ︸
m−k

, am+1, . . . , an) = S(1, 2, a)

with 3 ≤ am+1 ≤ · · · ≤ an.
(B) Consider the (possibly empty) scrolls

S(1) = S(1, . . . , 1︸ ︷︷ ︸
k

) ⊂ P2k−1K and S(2) = S(2, . . . , 2︸ ︷︷ ︸
m−k

) ⊂ P3m−3k−1K

which are contained in X̃ . Obviously S(1) ∼= P1K × Pk−1K and S(2) ∼= C × Pm−k−1K for a smooth plane conic C ⊂ P2K . For each
α ∈ Pk−1K , we denote the line P1K × {α} in S(1) by Lα . Similarly, for each β ∈ Pm−k−1K , we denote the smooth plane conic
C × {β} in S(2) by Cβ . Also S(2) can be regarded as a subvariety of the Segre variety

∆ :=
⋃̇

β∈Pm−k−1K

〈Cβ〉 = P2K × Pm−k−1K ⊂ P3m−3k−1K .

(C) We define the following sets in Pr+1K \X̃:

SL∅(X̃) := {p ∈ Pr+1K \X̃ |Σp(X̃) = ∅}; (4.1)

SLq1,q2(X̃) := {p ∈ Pr+1K \X̃ |Σp(X̃) consists of two simple points}; (4.2)

SL2q(X̃) := {p ∈ Pr+1K \X̃ |Σp(X̃) is a double point in some straight line P1K ⊆ Pr+1K }; (4.3)

SLL1∪L2(X̃) := {p ∈ Pr+1K \X̃ |Σp(X̃) is the union of two distinct coplanar simple lines}; (4.4)

SLC (X̃) := {p ∈ Pr+1K \X̃ |Σp(X̃) is a smooth plane conic}; (4.5)

SLQ (X̃) := {p ∈ Pr+1K \X̃ |Σp(X̃) is a smooth quadric in a 3-space}. (4.6)

Note that some of the above sets can be empty. According to Proposition 3.2 we have

Pr+1K = X̃ ∪̇ SL
∅(X̃) ∪̇ SLq1,q2(X̃) ∪̇ SL2q(X̃) ∪̇ SLL1∪L2(X̃) ∪̇ SLC (X̃) ∪̇ SLQ (X̃). (4.7)

This decomposition will be called the secant stratification of X̃ ⊂ Pr+1K .

We now describe the strata (4.1)–(4.6).

Theorem 4.2. Assume that the rational normal scroll X̃ ⊆ Pr+1K is of codimension at least 2 and smooth. Let (cf. Definition and
Remark 4.1(B))

A := 〈S(1)〉;

B := Join(S(1), X̃);
U := Join(A,∆).

Then X̃ ⊆ B, A ⊆ B ∩ U, B ∪ U ⊆ Tan(X̃) and

(a) SL∅(X̃) = Pr+1K \Sec(X̃);
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(b) SLq1,q2(X̃) = Sec(X̃)\Tan(X̃);
(c) SL2q(X̃) = Tan(X̃)\(B ∪ U);
(d) SLL1∪L2(X̃) = B\(A ∪ X̃);
(e) SLC (X̃) = U\B;
(f) SLQ (X̃) = A\X̃ .

In order to prove this theorem we will need a preliminary result we mention now:

Lemma 4.3. Let X̃ ⊂ Pr+1K be a smooth rational normal scroll and let p be a closed point contained in Pr+1K \ X̃ .

(1) If dimΣp(̃X) > 0, then p ∈ Tan(̃X).
(2) Let X̃ = S(1, . . . , 1︸ ︷︷ ︸

n

) ⊂ P2n−1K with n ≥ 2. ThenΣp(̃X) is a smooth quadric surface.

(3) Let X̃ = S(1, 2) ⊂ P4K . Then dimΣp(̃X) = 1.
(4) Let X̃ = S(1, . . . , 1︸ ︷︷ ︸

n−1

, 2) ⊂ P2nK with n ≥ 2. Then dimΣp(̃X) ≥ 1.

Proof. (1): The claim is obvious by Proposition 3.2.
(2), (3), (4): The statements follow by keeping in mind that for every p ∈ Sec(̃X) \ X̃ we have

(2n+ 1)− dim Sec(̃X) ≤ dimΣp(̃X) (4.8)

with equality holding for general p ∈ Sec(̃X) \ X̃ .
For X̃ = S(1, . . . , 1︸ ︷︷ ︸

n

) ⊂ P2n−1K we have dim Σp(̃X) ≥ 2n + 1 − (2n − 1) = 2 since Sec(̃X) ⊆ P2n−1K . Therefore by

Proposition 3.2,Σp(̃X) is a smooth quadric surface for every p ∈ Sec(̃X) \ X̃ . For X̃ = S(1, 2) ⊂ P4K we have dimΣp(̃X) ≥ 1
by (4.8) so that equality holds. Moreover, since two general rulings of X̃ = S(1, . . . , 1︸ ︷︷ ︸

n−1

, 2) ⊂ P2nK with n ≥ 2 span a linear

space of dimension 2n− 1 contained in Sec(̃X), we have Sec(̃X) = P2nK and hence dimΣp(̃X) ≥ 1 with equality for general
p ∈ Sec(̃X) \ X̃ . �

Now we give the

Proof of Theorem 4.2. The inclusions X̃ ⊆ B and A ⊆ U are obvious. As A = Sec(S(1))we get A ⊆ Join(S(1), X̃) = B, hence
A ⊆ B ∩ U .
To prove the inclusions B ⊆ Tan(X̃) and U ⊆ Tan(X̃)we write

S(1) =
⋃

α∈Pk−1K

Lα and ∆ =
⋃

β∈Pm−k−1K

〈Cβ〉

(cf. Definition and Remark 4.1(B)). Now, the first inclusion follows from the equalities

B = Join(S(1), X̃)

=

⋃
α∈Pk−1K

Join(Lα, X̃)

=

⋃
α∈Pk−1K

Join

Lα,⋃
x∈P1K

L(x)


=

⋃
α∈Pk−1K ,x∈P1K

〈Lα,L(x)〉. (4.9)

To prove the second inclusion we first observe that

U = Join(A,∆)

= Join

A, ⋃
β∈Pm−k−1K

〈Cβ〉


=

⋃
β∈Pm−k−1K

〈A, 〈Cβ〉〉. (4.10)
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For each β ∈ Pm−k−1K consider the smooth rational normal scroll

S(1, 2)β := 〈A, 〈Cβ〉〉 ∩ X̃ ⊂ 〈A, 〈Cβ〉〉.
Since S(1, 2)β spans the linear space 〈A, 〈Cβ〉〉, Lemma 4.3(4) implies that

〈A, 〈Cβ〉〉 = Tan S(1, 2)β ⊂ Tan(̃X).

This gives the desired inclusion U ⊆ Tan(X̃).
We now prove statements (a), (b), (f), (d), (e) and (c).
(a): This follows by Notation and Remarks 2.3(B).
(b): ‘‘⊆’’: Let p ∈ SLq1,q2 (̃X). Then Σp(̃X) = {q1, q2} and L := 〈q1, q2〉 is a secant line to X̃ and hence p ∈ Sec(̃X). Now

assume that p ∈ Tan(̃X). Then there exists q ∈ X̃ such that p ∈ TqX̃ . Therefore q ∈ Σp(̃X). This implies that q = q1 or q = q2.
In particular, L is a tri-secant line to X̃ and so we get the contradiction that p ∈ L ⊆ X̃ . Therefore p ∈ Sec(̃X) \ Tan(̃X).
‘‘ ⊇’’: Let p ∈ Sec(̃X) \ Tan(̃X). By statement (a) we have Σp(̃X) 6= ∅. By Lemma 4.3(1) we have dimΣp(̃X) ≤ 0. Thus

Σp(̃X) has dimension zero. Now Proposition 3.2 and p /∈ Tan(̃X) guarantee thatΣp(̃X) is the union of two simple points.
(f): ‘‘⊆’’: Let p ∈ SLQ (̃X) so that Secp(̃X) = P3K and Σp(̃X) ⊂ P3K is a smooth quadric surface. Remember that Σp(̃X)

contains two disjoint families of lines {Lλ}, {Mλ}, each parameterized by λ ∈ P1K . Also since p /∈ X̃ , the restriction map
ϕ|Σp (̃X) : Σp(̃X) → P1K is surjective. Therefore one of the two families, say {Lλ}, consists of line sections of X̃ . Thus
Σp(̃X) ⊂ S(1) and hence p ∈ Secp(̃X) = 〈Σp(̃X)〉 ⊂ A = 〈S(1)〉.
‘‘⊇’’: Let p ∈ A \ X̃ . Then k > 1 (s. Definition and Remark 4.1(B)). Therefore Lemma 4.3(2) shows that Σp(S(1)) is a

smooth quadric surface. Since Σp(S(1)) ⊂ Σp(̃X) this implies that dim Σp(̃X) ≥ 2. Now by Proposition 3.2 we see that
Σp(̃X) = Σp(S(1)) is a smooth quadric surface and hence p ∈ SLQ (̃X).
(d): ‘‘⊆’’: Let p ∈ SLL1∪L2 (̃X) so that Secp(̃X) = P2K and Σp(̃X) = L1 ∪ L2 where Li are lines such that L1 is a line section

of X̃ . Thus L1 ⊂ S(1) and L2 ⊂ L(x) for some x ∈ P1K . This shows that p ∈ 〈L1, L2〉 = Secp(̃X) ⊂ Join(S(1), X̃) = B. On the
other hand statement (f) implies p /∈ A. Therefore, p ∈ B \ (A ∪ X̃).
‘‘⊇’’: Let p ∈ B \ (A ∪ X̃). By (4.8), there exists a line Lα ⊂ S(1) and a point x ∈ P1K such that p ∈ 〈Lα,L(x)〉 = PnK . Let L

denote the line 〈p, Lα〉 ∩ L(x). Then clearly Lα ∪ L ⊂ Σp(̃X). On the other hand, Proposition 3.2 and statement (f) show that
Σp(̃X) has dimension at most one so thatΣp(̃X) = Lα ∪ L and hence p ∈ SLL1∪L2 (̃X).
(e): ‘‘⊆’’: Let p ∈ SLC (̃X). This means that Secp(̃X) = P2K and Σp(̃X) ⊂ P2K is a smooth plane conic curve. Clearly

ϕ|Σp (̃X) : Σp(̃X) → P1K is a surjective map. We will show that indeed Σp(̃X) is a conic section of X̃ , or equivalently, that
ϕ|Σp (̃X) is bijective. Suppose to the contrary that there is a point x ∈ P1K such that L(x) meets Σp(̃X) in two distinct points
q1 and q2. Then the two lines Tq1Σp(̃X) and Tq2Σp(̃X)meet at a point z ∈ Secp(̃X)\X̃ . Thus we have

Tq1 (̃X) = 〈L(x), z〉 = Tq2 (̃X),

which is impossible. Therefore,Σp(̃X) is a conic section of X̃ . In particularΣp(̃X) ⊂ S(1, 2).
Next we claim that Secp(̃X) ∩ A = ∅. Suppose to the contrary that there is a closed point z in Secp(̃X) ∩ A. If z /∈ S(1),

then k > 1 and so Secz (̃X) contains the 3-dimensional space Secz(S(1)) (s. Lemma 4.3(2)) and the point p. This implies that
Secz (̃X) has dimension at least 4, a contradiction to Proposition 3.2. If z ∈ S(1), then let Lz be the unique line section of X̃
which passes through z. Note that z ∈ Lz ∩Σp(̃X) since otherwise 〈p, z〉 is a proper tri-secant line to X̃ , which is not possible
since X̃ is cut out by quadrics. AsΣp(X̃) is a smooth plane conic curve, we have Lz * Secp(X̃) = 〈Σp(X̃)〉, since otherwise X̃
would have tri-secant lines. Observe that the 3-dimensional linear space 〈Secp(̃X), Lz〉 contains both p and the surface

S :=
⋃

x∈P1K \{ϕ(z)}

〈L(x) ∩Σp(̃X),L(x) ∩ Lz〉 ⊂ X̃ .

As the conic Σp(X̃) is contained in S, S cannot be a plane. So the generic line in 〈Secp(X̃), Lz〉 passing through p is a secant
line to S, whence to X̃ . It follows thatΣp(̃X) contains S, which contradicts the fact that dim Σp(X̃) = 1. This completes the
proof that Secp(̃X) ∩ A = ∅.
Now consider the canonical projection map
π : 〈S(1, 2)〉 \ A→ 〈S(2)〉

which fixes 〈S(2)〉. The image π(Σp(X̃)) is contained in S(2). Also it is again a smooth plane conic as Secp(X̃) ∩ A = ∅.
Moreover, for all x ∈ P1K we have π(L(x) ∩ (〈S(1, 2)〉\A)) ⊆ L(x) so that ](π(Σp(X̃)) ∩ L(x)) ≤ 1 for all such x. Therefore
π(Σp(X̃)) is a conic section of X̃ and hence is equal to Cβ for some β ∈ Pm−k−1K . Therefore π(Secp(̃X)) = 〈Cβ〉 which
guarantees that

p ∈ Secp(̃X) ⊂ Join(A, 〈Cβ〉) ⊂ U .

On the other hand, p /∈ (B \ (A ∪ X̃)) ∪ (A \ X̃) ∪ X̃ = B by statements (d) and (f). This completes the proof that p ∈ U \ B.
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‘‘⊇’’: Let p ∈ U \ B. By statements (a), (b), (d), (f) and Proposition 3.2 we have

p ∈ SL2q(̃X) ∪̇ SLC (̃X).

Thus it suffices to show that dimΣp(̃X) ≥ 1. By (4.9), there exists a point β ∈ Pm−k−1K such that p ∈ 〈A, 〈Cβ〉〉 \A. If p ∈ 〈Cβ〉,
then Cβ ⊂ Σp(̃X) and hence dimΣp(̃X) ≥ 1. Now assume that p /∈ 〈Cβ〉, so that A 6= ∅, and consider the canonical projection
map (which fixes A)

% : 〈A, 〈Cβ〉〉 \ 〈Cβ〉 → A.

Let q = %(p). If q ∈ S(1), let L be the unique line section of X̃ which passes through q. Then

p ∈ Join(L, 〈Cβ〉) = P4K .

Moreover, P4K contains the smooth rational normal surface scroll

S(1, 2) =
⋃

v∈L,w∈Cβ ,ϕ(v)=ϕ(w)

〈v,w〉 ⊂ X̃ .

Since Σp(S(1, 2)) ⊂ Σp(̃X), Lemma 4.3(3) shows that dim Σp(̃X) ≥ 1. If q ∈ A \ S(1), we have k > 1 and Lemma 4.3(2)
implies thatΣq(S(1)) is a smooth quadric surface. Moreover

p ∈ Join(〈Σq(S(1))〉, 〈Cβ〉) = P6K .

For each point x ∈ P1K consider the line Lx = Σq(S(1)) ∩ L(x). Now P6K contains the threefold rational normal scroll

S(1, 1, 2) =
⋃

x∈P1K ,w∈Cβ ,ϕ(w)=x

〈Lx, w〉 ⊂ X̃ .

AsΣp(S(1, 1, 2)) ⊂ Σp(̃X), it remains to show that dimΣp(S(1, 1, 2)) ≥ 1. This follows by Lemma 4.3(4).
(c): It is easy to see that Pr+1K \X̃ is the disjoint union of the sets Pr+1K \Sec(X̃), Sec(X̃)\Tan(X̃), Tan(X̃)\(B ∪ U), B\(A ∪

X̃),U\B and A\X̃ . Now, statements (a), (b), (d), (e), (f) and the equality (4.7) imply that SL2q(X̃) = Tan(X̃)\(B ∪ U). �

5. The secant stratification in the general case

We now treat the secant stratification in the general case, that is in the case where the scroll X̃ is not necessarily smooth.
We keep all the previous hypotheses and notations.
We first appropriately generalize the concepts defined in Definition and Remark 4.1.

Definition and Remark 5.1. (A) Let X̃ ⊆ Pr+1K be a rational normal scroll of codimension at least 2 and with vertex
Vert(X̃) = PhK for some h ≥ 0. As in Notation and Remark 3.3, let dim X̃ = n + h + 1 and note that X̃ is a cone over
an n-fold rational normal scroll X̃0 in 〈X̃0〉 = Pr−hK . Let (a1, . . . , an) be the type of X̃0. Let the integers k and m and the
subvarieties S(1), S(2) and∆ of Pr−hK be as in Definition and Remark 4.1. Again we consider the projection map (cf. Notation
and Remark 3.3)

ψ : Pr+1K \ Vert(X̃) � 〈X̃0〉 = Pr−hK
and write p := ψ(p) for a closed point p ∈ Pr+1K \Vert(X̃).
(B) We define the following sets in Pr+1K \X̃:

SL∅(X̃) := {p ∈ Pr+1K \X̃ |Σp(X̃) = 2Vert(X̃) ⊆ 〈Vert(X̃), p〉}; (5.1)

SLq1,q2(X̃) := {p ∈ Pr+1K \X̃ |Σp(X̃) = Join(Vert(X̃), {x, y})where x, y are two distinct points in some line P1K ⊆ 〈X̃0〉};
(5.2)

SL2q(X̃) := {p ∈ Pr+1K \X̃ |Σp(X̃) = 2Join(Vert(X̃), x) ⊆ Join(Vert(X̃), L),where L ⊆ 〈X̃0〉 is a line and x ∈ L}; (5.3)

SLL1∪L2(X̃) := {p ∈ Pr+1K \X̃ |Σp(X̃) = Join(Vert(X̃), L ∪ L
′)where L, L′ ⊆ 〈X̃0〉 are two distinct coplanar simple lines};

(5.4)

SLC (X̃) := {p ∈ Pr+1K \X̃ |Σp(X̃) = Join(Vert(X̃), V )where V ⊆ 〈X̃0〉 is a smooth plane conic}; (5.5)

SLQ (X̃) := {p ∈ Pr+1K \X̃ |Σp(X̃) = Join(Vert(X̃),W )whereW ⊆ 〈X̃0〉 is a smooth quadric surface in a 3-space}. (5.6)

Clearly, if X̃ is smooth, the strata defined in (5.1)–(5.6) respectively coincide with the corresponding strata defined
in (4.1)–(4.6). According to Corollary 3.4 we have

Pr+1K = X̃ ∪̇ SL
∅(X̃) ∪̇ SLq1,q2(X̃) ∪̇ SL2q(X̃) ∪̇ SLL1∪L2(X̃) ∪̇ SLC (X̃) ∪̇ SLQ (X̃). (5.7)

This decomposition will be called the secant stratification of X̃ ⊂ Pr+1K .
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Table 1
The secant stratification.

p ∈ Σp(X̃0) ⊆ X̃0 Σp(X̃) ⊆ X̃ dim(Σp(X̃)) depth(Xp)

Pr+1K \W ∅ 2Z ⊆ 〈Z, p〉 h h+ 2

W\V {q1, q2} 〈Z, q1〉 ∪ 〈Z, q2〉 h+ 1 h+ 3
q1, q2 ∈ X̃0, q1 6= q2

V\(B ∪ U) 2q ∈ 〈p, q〉 2〈Z, q〉 ⊆ 〈Z, p, q〉 h+ 1 h+ 3
q ∈ X̃0

B\(A ∪ X̃) L1 ∪ L2 ⊆ X̃0 〈Z, L1〉 ∪ 〈Z, L2〉 h+ 2 h+ 4
two coplanar lines

U\B C ⊆ X̃0 a Join(Z, C) h+ 2 h+ 4
smooth plane conic

A\X̃ Q ⊆ X̃0 , a smooth Join(Z,Q ) h+ 3 h+ 5
quadric surface

Lemma 5.2. Let p ∈ Pr+1K \X̃ and let p ∈ 〈X̃0〉 be defined according to Definition and Remark 5.1(A). Then

p ∈ SL∗(X̃)⇐⇒ p ∈ SL∗(X̃0)

where ∗ runs through the set of symbols {∅, (q1, q2), 2q, L1 ∪ L2, C,Q }.

Proof. Clear from Corollary 3.4. �

Theorem 5.3. Let X̃ ⊆ Pr+1K be a rational normal scroll of codimension≥ 2. In the notations of Definition and Remark 5.1, let

V := Join(Vert(̃X), Tan(X̃0));

W := Join(Vert(̃X), Sec(X̃0));
A := 〈Vert(̃X), 〈S(1)〉〉;

B := Join(Vert(̃X), Join(S(1), X̃0));
U := Join(A,∆).

Then X̃ ⊆ B, A ⊆ B, B ∪ U ⊆ V ⊆ W and

(a) SL∅(X̃) = Pr+1K \W;
(b) SLq1,q2(X̃) = W\V ;
(c) SL2q(X̃) = V\(B ∪ U);
(d) SLL1∪L2(X̃) = B\(A ∪ X̃);
(e) SLC (X̃) = U\B;
(f) SLQ (X̃) = A\X̃ .

Proof. For any closed subset T ⊆ 〈X̃0〉, we have ψ−1(T ) = Join(Vert(̃X), T )\Z . Therefore we get the relations

ψ−1(X̃0) = X̃\Vert(̃X);
ψ−1(〈S(1)〉) = A\Vert(̃X);

ψ−1(Join(S(1), X̃0)) = B\Vert(̃X);

ψ−1(Join(〈S(1),∆)) = U\Vert(̃X);

ψ−1(Tan(X̃0)) = V\Vert(̃X) and

ψ−1(Sec(X̃0)) = W\Vert(̃X).

Thus we get our claim by combining Theorem 4.2 and Lemma 5.2. �

Remark 5.4. Let Z = Vert(̃X) and let p ∈ Pr+1K \X̃ . By Proposition 3.2(1) and Theorem 5.3, the secant lociΣp(X̃),Σp(X̃0) and
the arithmetic depth of the projection Xp ⊂ PrK depend on the position of p as shown in Table 1.

6. Non-normal del Pezzo varieties

Remark 6.1. (A) A non-degenerate closed integral subscheme X ⊆ PrK is called a maximal del Pezzo variety if it is
arithmetically Cohen–Macaulay and satisfies deg(X) = codim(X)+2 (cf. [1, Definition 6.3]). A del Pezzo variety is a projective
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variety X ⊆ PrK which is an isomorphic projection of a maximal del Pezzo variety. It is equivalent to say that the polarized
pair (X,OX (1)) is del Pezzo in the sense of Fujita [5], (cf. [1, Theorem 6.8]). So in particular we can say:

A del Pezzo variety X ⊆ PrK is maximally del Pezzo if and only if it is linearly normal. (6.1)

(B) Let X ⊆ PrK be a non-degenerate closed integral subscheme. According to [3, Theorem 2.1(a)] and Proposition 3.2,

X ⊆ PrK is a non-normal maximal del Pezzo variety if and only if X = πp(̃X) where X̃ ⊆ Pr+1K
is of minimal degree with codim(̃X) ≥ 2, p is a closed point in Pr+1K \X̃ with dimΣp(̃X) = dim(̃X)− 1. (6.2)

Obviously X̃ is either (a cone over) the Veronese surface in P5K or a rational normal scroll (cf. Notation and Remarks 2.1).
We say that the del Pezzo variety X is exceptional (resp. non-exceptional) if X̃ is (a cone over) the Veronese surface (resp. a
rational normal scroll).

In viewof (6.2) it suffices to classify the pairs (̃X, p)whereXp = πp(X̃) ⊆ PrK is arithmetically Cohen–Macaulay in order to
classify the non-normal maximal del Pezzo varieties in PrK , obtaining a different geometric description of the classification
of singular del Pezzo varieties obtained by Fujita in [3, Theorem 2.1], see also [4,5]. This we do now for the case of non-
exceptional non-normal maximal del Pezzo varieties. For the exceptional case, see Remark 6.3.

Theorem 6.2. Let X̃ ⊆ Pr+1K be a rational normal scroll with codim(̃X) ≥ 2 and with vertex Z := Vert(̃X) = PhK for some
h ≥ −1. Let X̃0 ⊂ Pr−hK be a smooth rational normal scroll such that X̃ = Join(Z, X̃0). Then for a closed point p in Pr+1K \X̃ , the
variety

Xp := πp(̃X) ⊆ PrK
is arithmetically Cohen–Macaulay, and hence non-normal maximally del Pezzo precisely in the following cases:

(a) X̃0 = S(a) for some integer a > 2 and p ∈ Join(Z, Sec(X̃0))\X̃ .
(b) (i) X̃0 = S(1, 2) and p ∈ Pr+1K \X̃ ;

(ii) X̃0 = S(1, b) with b > 2 and p ∈ Join(Z, Join(S(1), X̃0))\X̃ ;
(iii) X̃0 = S(2, 2) and p ∈ Join(Z,∆)\X̃ ;
(iv) X̃0 = S(2, b) for some integer b > 2 and p ∈ Join(Z, 〈S(2)〉)\X̃ .

(c) (i) X̃0 = S(1, 1, 1) and p ∈ Pr+1K \X̃ ;
(ii) X̃0 = S(1, 1, c) for some integer c > 1 and p ∈ Join(Z, 〈S(1, 1)〉)\X̃ .

Proof. Let n + h + 1 denote the dimension of X̃ . Thus X̃0 has dimension n. According to (6.2), Xp is arithmetically Cohen–
Macaulay if and only if Σp(̃X) has dimension equal to n + h. Since dim Σp(̃X) = h + j (0 ≤ j ≤ 3) (cf. Corollary 3.4 and
Remark 5.4), it follows that Xp is arithmetically Cohen–Macaulay if and only if n = jwith j ∈ {0, 1, 2, 3}. Obviously the case
j = 0 cannot occur. Therefore n ∈ {1, 2, 3}.
‘‘(a)’’: Assume that n = 1, so that X̃0 = S(a) for some integer a ≥ 3. Then Remark 5.4 yields that depth(Xp) = h + 3 if

and only if

p ∈ (W\V ) ∪ (V\B ∪ U) = W\B ∪ U .

Since B = X̃ , U = Z and W = Join(Z, Sec(X̃0)), it follows that Xp is arithmetically Cohen–Macaulay if and only if
p ∈ Join(Z, Sec(X̃0))\X̃ .
‘‘(b)’’: Assume that n = 2, so that X̃0 = S(a, b) for some integers a, bwith 1 ≤ a ≤ b and b ≥ 2. Then Remark 5.4 yields

that depth(Xp) = h+ 4 if and only if

p ∈ (B\A ∪ X̃) ∪ (U\B) = (B ∪ U)\(A ∪ X̃). (6.3)

If a ≥ 3, then we have∆ = S(1) = ∅ and hence B = X̃ and U = Z ⊆ X̃ , which leaves no possibility for p. Therefore a ≤ 2.
Observe that for all b ≥ 2 we have

A =
{ Join(Z, 〈S(1)〉), if a = 1;
Z, if a = 2. (6.4)

As 〈S(1)〉 = S(1) it follows A ⊆ X̃ for all b ≥ 2. So, the condition (6.3) imposed on p now simply becomes

p ∈ (B ∪ U)\X̃ . (6.5)

Also we get for all b ≥ 2

B =
{
Join(Z, Join(S(1), X̃0)), if a = 1;
X̃, if a = 2.

(6.6)
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Observe that∆ is given by

∆ =


〈S(2)〉, if a = 1 and b = 2;
∅, if a = 1 and b > 2;
P2K × P1K , if a = b = 2;
〈S(2)〉, if a = 2 < b.

So, we get the following possibilities for U = Join(Z, Join(〈S(1)〉,∆)

U =


Pr+1K , if a = 1 and b = 2;
Join(Z, S(1)) ⊆ X̃, if a = 1 and b > 2;
Join(Z, P2K × P1K ), if a = b = 2;
Join(Z, 〈S(2)〉), if a = 2 < b.

(6.7)

Combining (6.6) and (6.7), we now get for T := (B ∪ U)\X̃ the following values

T =


Pr+1K \X̃, if a = 1 and b = 2;
Join(Z, Join(S(1), X̃0))\X̃ if a = 1 and b > 2;
Join(Z, P2K × P1K )\X̃, if a = b = 2;
Join(Z, 〈S(2)〉)\X̃, if a = 2 < b.

This proves statement (b).
‘‘(c)’’: Assume that n = 3, so that X̃0 = S(a, b, c) for some integers a, b, c with 1 ≤ a ≤ b ≤ c . According to Remark 5.4

we have depth(Xp) = h+ 5 if and only if p ∈ A\X̃ . If a > 1, we have A = Z , so that no choice for p is left. Therefore a = 1.
Now, for Awe get the following possibilities:

A =

{
〈Z, 〈X̃0〉〉 = Pr+1K , if a = b = c = 1;
Join(Z, 〈S(1, 1)〉), if a = b = 1 < c;
Join(Z, 〈S(1)〉), if a = 1 < b.

If a = 1 < b, we have A = Join(Z, S(1)) ⊆ X̃ , so that no possibility is left for p. Therefore b = 1. This proves claim (c). �

Remark 6.3. In order to understand all non-normal del Pezzo varieties it suffices now to know the exceptional cases in
which X = Xp ⊆ PrK where X̃ ⊆ Pr+1K is a cone over the Veronese surface S ⊂ P5K .
(A) Recall that Sec(S) is a cubic hypersurface. Let p be a closed point in P5K \ S. It belongs to folklore that the following
statements are equivalent:

(a) p ∈ Sec(S) \ S.
(b) Σp(S) is a smooth plane conic curve.
(c) πp(S) ⊂ P4K is a complete intersection of two quadrics and so it is arithmetically Cohen–Macaulay.

Therefore the secant stratification of S ⊂ P5K is

P5K = S ∪̇ SL
C (S) ∪̇ SL∅(S) (6.8)

where SLC (S) is equal to Sec(S) \ S.
(B) In the same way as in Corollary 3.4 and Theorem 5.3, one can get the secant stratification of X̃ ⊂ Pr+1K from (6.8). In
particular, Xp ⊂ PrK is a maximal del Pezzo variety if and only if p ∈ Join(Vert(X̃), Sec(S))\X̃ .

Remark 6.4. (A) Let X̃ ⊆ Pr+1K be a variety of minimal degree with codim(X̃) ≥ 2 and let p be a closed point in Pr+1K \ X̃ . As a
consequence of Theorem 6.2 and Remark 6.3, we finally have a complete list of pairs (X̃, p) for which Xp is a non-normal del
Pezzo variety. This provides a complete picture of non-normal del Pezzo varieties from the point of view of linear projections
and normalizations.
(B) Let the notations and hypotheses be as in Theorem 6.2 and Remark 6.3. Since Xp = πp(X̃) is a cone with vertex
πp(Vert(X̃)), the non-normal del Pezzo varieties which are not cones are the varieties described in Theorem 6.2 and
Remark 6.3 for which Vert(X̃) 6= ∅. More precisely, the non-normal maximal del Pezzo varieties which are not cones are
precisely the following ones:

(i) Projections of a rational normal curve S(a) ⊆ PaK with a > 2 from a point p ∈ Sec(S(a))\S(a).
(ii) Projections of the Veronese surface S ⊆ P5K from a point p ∈ Sec(S)\S.
(iii) Projections of a smooth cubic surface scroll S(1, 2) ⊆ P4K from a point p ∈ P4K\S(1, 2).
(iv) Projections of a smooth rational normal scroll S(1, b) ⊆ Pb+2K with b > 2 from a point p ∈ Join(S(1), S(1, b))\S(1, b).
(v) Projections of a smooth quartic surface scroll S(2, 2) ⊆ P5K from a point p ∈ P2K × P1K\S(2, 2).
(vi) Projections of a smooth surface scroll S(2, b) ⊆ Pb+3K with b > 2 from a point p ∈ 〈S(2)〉\S(2, b).
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(vii) Projections of a smooth 3-fold scroll S(1, 1, 1) ⊆ P5K from a point p ∈ P5K\S(1, 1, 1).
(viii) Projections of a smooth 3-fold scroll S(1, 1, c) ⊆ Pc+4K with c > 1 from a point p ∈ 〈S(1, 1)〉\S(1, 1, c).

Therefore if X ⊂ PrK is a non-normal del Pezzo and is not a cone, then the dimension of X is ≤ 3 while there is no upper
bound of the degree of X . This fact was first shown by Fujita (cf. (2.9) in [4] and (9.10) in [5]).

Remark 6.5. Using the same method as above, one can indeed classify all varieties X ⊂ PrK of almost minimal degree and
codimension ≥ 2, via their arithmetic depth, as projections from rational normal scrolls of given numerical type and the
position of the center of the projection. We shall give a detailed exposition of this in a later paper.
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