Results: Maximal diameter of ASD in “multiple” group was larger than “sufficient” or “single” group (29 mm, 16 mm, 19 mm, p<0.01). Procedural success rate was 98% with no in-hospital death. One cardiac erosion occurred in “single” group and 1 device embolization occurred in “multiple” group. In 6 patients, stable device deployment was not achieved. Although procedural success rate in “multiple” group was significantly lower than “sufficient” or “single” group, >80% of patients having multiple rim deficiencies completed the procedure (Figure).

Conclusions: Even for ASD patients with multiple rim deficiencies, device closure has the validity to be considered as an initial therapeutic option.

TCT-686

LEFT ATRIAL APPENDAGE CLOSURE WITH A SECOND GENERATION DEVICE

Ali O. Abualsaud1, Xavier Freixa1, Mohamed Nosair1, Jason Leung Kwai Chan1,2

DEVICE

Lev Atrial Appendage Closure With A Second Generation TCT-686 has the validity to be considered as an initial therapeutic option.

Background: Accurate measurement of the left atrial appendage (LAA) neck and depth are important for correct sizing and safe placement of LAA closure devices. However, our experience suggests that LAA measurements derived from 2D TEE do not consistently predict closure device size, and do not consistently correlate with LAA measurements derived from LAA angiography.

Methods: Two-dimensional TEE measurements of the isthmus and neck of the LAA were performed in orthogonal planes at 0, 45, 90, and 135 degrees. During LAA angiography, the LAA neck was measured in the right anterior oblique (RAO) caudal projection and the depth in the RAO cranial plane. The diameter of a 6 F pigtail catheter was used as standard reference for the angiographic measurements.

Results: 43 patients underwent LAOO in the period February 2010 to May 2013. LAA closure was performed with a Watchman device in 29 patients (67%), a Coherex device in 11 patients (26%), and an Amplatzer plug in the remaining 3 patients. 9 procedures had to be abandoned due to complications, and the same patient also had a larger thrombus on the atrial surface (81%). During follow up, one patient (4.8%) had a thrombus at the atrial surface documented. One patient developed a LAA thrombus during the procedure related to different LAA anatomy and a thrombus at the atrial surface of the AmuletTM. However, the same patient also had a larger thrombus on the left atrial surface of an AmplatzerTM atrial septal occluder implanted on the same day of his LAA occlusion. None of the patients presented with any clinical events of the AmuletTM. However, the mean LAA depth was 23 mm (range, 16-53 mm), whereas the average LAA isthmus length was 21 mm (range, 8-38 mm).

Conclusions: TEE systematically underestimates LAA dimensions compared to angiography. By contrast, in unsuccessful procedures, TEE oversized the LAA neck compared to angiography in unsuccessful procedures, by an average of 1.2 mm. The average discrepancy between the maximal LAA neck length measured by 2D TEE and LAA angiography and the diameter of the implanted device was 5 mm and 4 mm, respectively.

TCT-687

A Comparison of Angiographic and Transesophageal Measurements of Left Atrial Appendage Dimensions during Catheter-Based Left Atrial Appendage Occlusion: Implications for Sizing and Safety.

Roberto Spina1, John E. Boland2, David Baron3, Paul Roy4, David W. Muller5

1St Vincent’s Hospital, Sydney, NSW, Australia, 2St Vincent’s Hospital, Sydney, Australia, 3University of NSW, Darlinghurst, Australia

Background: Accurate measurement of the left atrial appendage (LAA) neck and depth are important for correct sizing and safe placement of LAA closure devices. However, our experience suggests that LAA measurements derived from 2D TEE do not consistently predict closure device size, and do not consistently correlate with LAA measurements derived from LAA angiography.

Methods: Two-dimensional TEE measurements of the isthmus and neck of the LAA were performed in orthogonal planes at 0, 45, 90, and 135 degrees. During LAA angiography, the LAA neck was measured in the right anterior oblique (RAO) caudal projection and the depth in the RAO cranial plane. The diameter of a 6 F pigtail catheter was used as standard reference for the angiographic measurements.

Results: 43 patients underwent LAOO in the period February 2010 to May 2013. LAA closure was performed with a Watchman device in 29 patients (67%), a Coherex device in 11 patients (26%), and an Amplatzer plug in the remaining 3 patients. 9 procedures had to be abandoned due to complications, and the same patient also had a larger thrombus on the atrial surface (81%). During follow up, one patient (4.8%) had a thrombus at the atrial surface documented. One patient developed a LAA thrombus during the procedure related to different LAA anatomy and a thrombus at the atrial surface of the AmuletTM. However, the mean LAA depth was 23 mm (range, 16-53 mm), whereas the average LAA isthmus length was 21 mm (range, 8-38 mm).

Conversely, on 2D-TEE mean LAA depth was 28 mm (range, 15-44 mm), whereas the average isthmus length was 20 mm (range, 12-33 mm). The mean discrepancy between the maximal LAA neck measurements derived from angiography and 2D-TEE was 0.8 mm, whereas the discrepancy between the measurements of the depth was 3 mm, with TEE undersizing the LAA dimensions compared to angiography. By contrast, 2D-TEE overestimated the LAA neck dimensions compared to angiography in unsuccessful procedures, by an average of 1.2 mm. The average discrepancy between the maximal LAA neck length measured by 2D-TEE and LAA angiography and the diameter of the implanted device was 5 mm and 4 mm, respectively.

Conclusions: TEE systematically underestimates LAA dimensions compared to angiography. By contrast, in unsuccessful procedures, TEE oversized the LAA neck compared to angiography. Implanted device diameter is on average 5 mm and 4 mm greater than the LAA neck length derived from TEE and angiography, respectively.

TCT-688

Left Atrial Appendage Closure Using the Amulet Device - A Single Center Experience

Simon C. C. Lam1, Stefan C. Bertog2, Sameer Gajoo1, Laura Vaskelytė1, Jennifer Franke1, Ilona Hofmann1, Horst Seibt2

1CardioVascular Center Frankfurt, Frankfurt, Germany

Background: Amulet Device (St Jude Medical, Minneapolis, MN, USA) is a new self-expanding device specifically designed for LAA closure. It was designed to facilitate the implantation process and minimize procedural or device-related complications. Further clinical follow-up and TEE were done at 1 to 3 months.

Results: Twenty one patients (mean age 74±8, 61.5% males) with a CHADS2 score of 3±1.45 were included in the study. Four patients (19%) presented with complex chicken-wing LAA anatomies with an early significant (>100%) bend. The AmuletTM was successfully implanted in all patients except one, which presented with a very small LAA. The mean size of the device was 23.8±4.3 mm. No device embolization, procedure-related strokes or pericardial effusions were documented. One patient developed a LAA thrombus during the procedure related to the delivery sheath that was successfully trapped behind the device without sequelae. Clinical and follow-up TEE at 1 - 3 months was available in 17 patients (81%). During follow-up, one patient (4.8%) had a thrombus at the atrial surface of the AmuletTM. However, the same patient also had a larger thrombus on the left atrial surface of an AmplatzerTM atrial septal occluder implanted on the same day of his LAA occlusion. None of the patients presented with any clinical events and all of them showed complete LAA sealing without any degree of residual shunt.

Conclusions: In this initial series, the AmuletTM showed good performance in terms of efficacy and safety as depicted by the successful implantation in almost all patients and the absence of procedural complications.