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Abstract
Streaming Data Analysis (SDA) of Big Data Streams (BDS) for Condition Based Maintenance
(CBM) in the context of Rail Transportation Systems (RTS) is a state-of-the-art field of re-
search. SDA of BDS is the problem of analyzing, modeling and extracting information from
huge amounts of data that continuously come from several sources in real time through com-
putational aware solutions. Among others, CBM for Rail Transportation is one of the most
challenging SDA problems, consisting of the implementation of a predictive maintenance system
for evaluating the future status of the monitored assets in order to reduce risks related to failures
and to avoid service disruptions. The challenge is to collect and analyze all the data streams
that come from the numerous on-board sensors monitoring the assets. This paper deals with
the problem of CBM applied to the condition monitoring and predictive maintenance of train
axle bearings based on sensors data collection, with the purpose of maximizing their Remaining
Useful Life (RUL). In particular we propose a novel algorithm for CBM based on SDA that
takes advantage of the Online Support Vector Regression (OL-SVR) for predicting the RUL.
The novelty of our proposal is the heuristic approach for optimizing the trade-off between the
accuracy of the OL-SVR models and the computational time and resources needed in order to
build them. Results from tests on a real-world dataset show the actual benefits brought by the
proposed methodology.

Keywords: Big Data Streams, Data Analytics, Condition Based Maintenance, Intelligent Transporta-

tion Systems, Online Learning, Model Selection

1 Introduction

Today’s world is witnessing the exponential growth of data due to the constant generation of
new information that has to be collected, stored, and processed [1]. In particular IBM estimates
that data in the world is doubling every 18 months [2]. Transforming these large amounts of
data into actionable knowledge in a feasible time frame is a key task to map large investments in
database storage into an actual advantage for final users [3]. Data analytics algorithms must be
able to handle big data by optimizing economic sustainability aspects, which result in resource,
time, and accuracy constraints [4].
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Streaming Data Analysis (SDA) of Big Data Streams (BDS) is becoming a hot research topic
[5, 6, 7] since all of the three famous Big Data Vs (Volume, Variety and Velocity) are involved
in processing data streams. SDA relates to high volumes of data from different heterogeneous
sources, collected in order to effectively extract useful information about systems characterized
by a high working speed and affected by noise and other disturbances (high volumes of data do
not necessarily bring to higher data quality). Examples of applications are: financial analytics
[8] and stock data monitoring [9], intrusion detection and surveillance [10], traffic monitoring
[11], real time processing of Radio Frequency Identification readings for events handling [12]
and structural health monitoring [13].

Among other fields of applications, Condition Based Maintenance (CBM) is one of the
most challenging problems for SDA of BDS [14, 15, 16]. The general principle guiding optimal
Maintenance is to make all the necessary actions that guarantee that an asset continues to
perform the required functions in the proper way [17, 18]. In other words, the main goal of
maintenance is to maximize the lifetime of an asset. Maintenance actions can be framed into
a taxonomy, which includes three categories [19]: Corrective Maintenance (CM), Preventive
Maintenance (PM), and Condition Based Maintenance (CBM). In CM every time a failure
is encountered during the lifetime of an asset, a corrective operation is performed in order
to fix the problem, usually by restoring the asset status to normal conditions, or even by
substituting a broken part with a new one (sometimes the whole asset). Obviously, this approach
is proved to be very expensive, since the costs related to a similar breakdown could easily
overcome the asset value. In this case, the combination of direct costs (e.g. failures of connected
parts of the system) and indirect costs (e.g. service disruptions) results in an unaffordable
situation, consequently confirming that CM is far from being optimal. In PM, instead, reliability
measures [20] are considered, such as the Mean Time Before Failure (MTBF), so to perform
scheduled maintenance activities along time and to reduce the probability of failures. PM
introduces the possibility of planning maintenance actions (replacements, inspections, and so
on), so that the time in which the asset is considered unavailable is no more random, instead it
is predetermined, except for exceptional events. PM also shows some drawbacks, indeed parts
of the assets could be replaced without accurately assessing their real health status, as they
get statistically closer and closer to a probable failure. CBM, instead, suggests a prognostic
attitude towards maintenance, that can be realized by constantly monitoring the conditions
of an asset, consequently allowing triggering maintenance activities only if any potential asset
degradation is detected. A further step to this kind of maintenance approach is the possibility
to predict possible future issues on the asset by building an in-service degradation model of the
asset.

These degradation models can be either based on the physical laws describing the behavior
of the asset or data-driven. The latter relies on machine learning algorithms that aim at build-
ing models by exploiting data depicting the condition of the monitored asset over its lifetime. In
this case, algorithms belonging to the supervised learning framework, where model is inferred
from labeled training data, represent a preferable choice. In this framework, Model Selection
(MS) addresses the problem of choosing the most suitable model given the available data by
properly tuning one or more hyperparameters in order to avoid either under- or overfitting [21].
In order to perform SDA of BDS for CBM algorithms must be able to face two main challenges:
(i) to train and select accurate degradation models (i.e. to choose an effective MS strategy);
(ii) to deploy such strategy in order to optimize the tradeoff between computational require-
ments and accuracy. Concerning challenge (i), online training algorithms can help reducing
the influence of the training phase on the overall learning process. They have been developed
in order to incorporate additional training samples efficiently [22, 23], so that they can deal
with BDS. On the contrary, MS procedures have not been adapted to BDS, and traditional
ones are often computationally expensive and add a further detrimental effect on challenge (ii),
leading to the need of designing the procedure of selecting the best model in a computational
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efficient way. In other words, the extension to the BDS framework of MS approaches is not as
much straightforward, in addition it can be computationally prohibitive, despite representing a
desirable feature [22, 24, 25].

In the CBM context, the Remaining Useful Life (RUL) is an important index of the health
status of an asset. In order to assess the RUL of an axle bearing, it is necessary to perform a
regression analysis over the historical data showing the behavior of the asset from the beginning
to the end of its life. In this paper we deal with the problem of estimating the RUL of the train
axle bearings based on the data that comes from several on-board sensors. Our proposal takes
advantage of the Online Support Vector Regression (OL-SVR) algorithm in order to estimate
the RUL of in-service axle bearings and to update the models as soon as new data are available.
Every time an axle bearing presents a defect that leads the component to the end of its life
(i.e. to failure and to subsequent substitution), we retrieve sensor measurements describing its
lifetime and we analyze them. We input data to the OL-SVR algorithm, and we train the
associated model with this new data, so to use the generated model as an estimator of the
RUL of a train axle bearing. In order to increase the performance of the model, it is extremely
important to perform a MS phase, for example by exploiting classical methodologies such as
the K-fold Cross Validation (KCV). Unfortunately KCV is too computationally expensive even
if the models selected by this method show high accuracy [21]. The proposed solution overtakes
these limitations by applying a meta-heuristic optimization approach in order to reduce the
time needed to perform this task. The optimization process balances the trade-off between the
accuracy that we can achieve with the sub-optimal model we select, and the computational
efforts needed in order to find the best model and to assess its performance. In order to prove
that our solution is effective, we made use of the Prognostic Health Monitoring (PHM) challenge
datasets provided by the FEMTO-ST Institute for the IEEE PHM 2012 Data Challenge [26].
The results show that our solution allows to decrease the computational requirements with
respect to complete a MS phase, but improves the accuracy performance of the models with
respect to not performing the MS phase.

The rest of the paper is organized as follows. Section 2 describes the problem of CBM for
train axle bearings. Section 3 proposed a new computational aware MS strategy for Online
Support Vector Regression. Section 4 shows the results of the application of our proposal to
the CBM. Finally in Section 5 the conclusions of the paper are drawn.

2 Condition Based Maintenance of Train Axle Bearings

Axle bearings are fundamental rotating elements that aim at constraining relative motion
and reducing friction between rotating parts in a machine. In trains, every wheel-axle pair
is equipped with an axle bearing. Since high stress and load are applied to these components,
they are subjected to deterioration, damages and failures, which have safety and economic
implications, that caused a growing scientific and industrial interest about the detection and
prediction of axle bearing RUL. This problem is also an example of a challenging real world SDA
of BDS problem: in Italy, for example, statistics from the Ministry of Transportation [27] show
that, in 2012, every day approximately 8000 trains have traveled along the Italian railway lines.
Every train has in average 10 wagons [27], resulting in approximately 80 bearings, a datum that
leads to a total number of axle bearings to be monitored in Italy every day approximately equal
to 600000. This potentially results in a very large amount of collected data because, according
to the literature [28, 29, 30], the average order of magnitude of the frequency of the collection
rate suitable for axle bearing condition monitoring is in kHz, since the characteristic vibration
frequencies related to bearing damages and defects can be expressed as a function of the dimen-
sions of the axle bearing and of the rotational speed of the considered wheel-axle system. In
the Prognostic Health Monitoring (PHM) datasets [26] used to perform the tests described in
Section 4, the monitoring system provides data coming from sensors with sampling frequency
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Figure 1: Reading model of the bearing sensors, black blocks are the active reading time of the
sensors.

of 25.6 kHz, resulting in approximately 30000 samples every seconds. Measures are taken for
0.1 seconds every 10 seconds (see Figure 1), and they consist of a set of sensor readings, each
one including 3 measurements (vertical and horizontal vibration and temperature) for a total of
3 single precision values (12 bytes). The set of information needed to compute the size of data
generated daily by the entire monitoring system must be completed with the average in-service
time for an Italian train equal to 8 hours, which can be combined with the previously presented
information to give a total of approximately 10 TB of data each day. The enormous amount of
data generated by this system must be handled and many problems arises, the first of which is
to monitor in real time all these bearings. Secondly it is unfeasible to store this kind of data
and keep years of history, instead the solution is to compress this information in a model that
extracts just the useful one in order to predict the RUL effectively. Lastly it is important to
update these models as soon as new data become available by increasing the accuracy of the
models and at the same time decreasing the computational effort of performing this task.

3 Online Support Vector Regression: computational-
aware models

Let us recall the now-classical regression framework [31] where a set of data Dn = {(x1, y1), . . . ,
(xn, yn)} is sampled i.i.d. from an unknown distribution μ over X × Y where X ∈ R

d is an
input space (x ∈ X ) and Y ∈ R is and output space (y ∈ Y). The purpose of the learning
process is to find a function f : X → Y which best approximates μ. In particular, in the
next sections, we will show how to perform this task, when dealing with streaming data, in a
computational-aware fashion.

3.1 Online Support Vector Regression

The conventional Support Vector Regression (SVR) [31] searches a regressor in the form f(x) =
wTφ(x)+ b which is a linear regressor in the space defined by the nonlinear function φ : Rd →
R

D where usually D � d. Assuming to use the ε-insensitive loss function, w and b are obtained
by solving the following Convex Constrained Quadratic Programming (CCQP) optimization
problem [31]:

min
w,b,ξ+,ξ−

1

2
‖w‖2 + C

n∑
i=1

(ξ+i + ξ−i ), s.t.

⎧⎨
⎩

yi −wTφ(xi)− b ≤ ε+ ξ+i , ∀i ∈ {1, . . . , n}
wTφ(xi) + b− yi ≤ ε+ ξ−i , ∀i ∈ {1, . . . , n}
ξ+i , ξ

−
i ≥ 0, ∀i ∈ {1, . . . , n}

(1)

where ε ≥ 0 is the maximum deviation allowed during the training and C ≥ 0 is the associated
penalty for excess deviation during the training. ε and C are two hyperparameters that must
be aprioristically tuned before solving the CCQP problem. Moreover ξ+i and ξ−i correspond
to the size of this excess deviation for positive and negative deviations respectively, ‖w‖2 is
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the regularized term, thus it controls the function capacity and finally
∑n

i=1(ξ
+
i + ξ−i ) is the

empirical error measured by the ε-insensitive loss function. Since φ is possibly unknown, it is
possible to compute the dual formulation of Problem (1) and obtain [31]:

min
α+,α−

1

2

[
α+

α−

]T [
Q −Q
−Q Q

] [
α+

α−

]
+

[
ε− y
ε+ y

]T [
α+

α−

]
, s.t.

[
1
−1

]T [
α+

α−

]
= 0, 0 ≤ α+,α− ≤ C

(2)

where Qij = φ(xi)
Tφ(xj). By using the kernel trick [32] we do not have to known the φ

explicitly since K(xi,xj) = φ(xi)
Tφ(xj). Note that, by knowing α+ and α− it is possible

to reformulate the expression of f(x) as f(x) =
∑n

i=1(α
+
i − α−i )K(xi,x) + b. One of the

most exploited kernel is the Gaussian one, since it enables learning every possible function
[33] K(xi,xj) = exp[−γ‖xi − xj‖2] where γ is a hyperparameter that must be aprioristically
tuned (analogously to C) and controls the non-linearity of the regressor. By exploiting the
Karush-Kuhn-Tucker (KKT) conditions [31] it is possible to prove that:

f(xi) ≤ −ε f(xi) = −ε −ε < f(xi) < ε f(xi) = ε f(xi) ≥ ε
α+
i = 0 α+

i = 0 α+
i = 0 0 ≤ α+

i ≤ C α+
i = C

α−i = C 0 ≤ α−i ≤ C α−i = 0 α−i = 0 α−i = 0
(3)

Note that, the larger ε is the faster will be the computation of f(x) since most of the α−i and
α+
i will be zero.
In the Online SVM (OL-SVR) approach [23], the regression parameters must be incremen-

tally increased or decreased each time a new sample is added. To achieve this, the five conditions
of Eq. (3) can be represented by three subsets into which the samples in a training set Dn can
be classified:

• The E set. Error support vectors: E =
{
i :

∣∣α+
i − α−i

∣∣ = C
}

• The M set. Margin support vectors: M =
{
i : 0 <

∣∣α+
i − α−i

∣∣ < C
}

• The R set. Remaining samples: R =
{
i :

∣∣α+
i − α−i

∣∣ = 0
}

The online algorithm updates the trained SVR function whenever a new sample (xn+1, yn+1)
is added to (or removed from) the training set Dn. The basic idea is to change the coefficients
α+
i and α−i corresponding to the new sample xn+1 in a finite number of discrete steps until it

meets the KKT conditions, while ensuring that the existing samples in Dn continue to satisfy
the KKT conditions at each step. Note that, even if we do not go into details with the method
for updating the model (it can be retrieved in [23]), the larger ε is, the faster will be the update
of the model since if the new sample (xn+1, yn+1) falls in the ε-insensitive tube the update is
straightforward: α+

n+1 = α−n+1 = 0.

3.2 Online Model Selection

SVR is one of the most effective technique for regression purposes. Unfortunately the SVR
learning does not consist just on the training (TR) step where a set of parameters is found
by solving the optimization problem described in the previous section. There is also another
phase, the Model Selection (MS) phase, where a set of additional variables (hyperparameters)
is tuned to find the SVR characterized by optimal performance in classifying previously unseen
data [34, 21].

In case of Gaussian kernel-based SVR classifiers, for example, the set of hyperparameters
is H = {C, γ, ε}, where C weights a regularization term, γ tunes the non-linearity of the
classifier and ε defines the insensitivity tube. In this section we thus focus on the MS step
of SVR learning in the OL framework, exploiting an efficient heuristic approach for updating
the set of hyperparameters H when new samples are collected [25, 35]. Typically, in the OL
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Figure 2: Online k–Fold Cross Validation in the particular case where Δ+ = Δ− = Δ.

framework, MS is performed only once in a batch mode by exploiting the first n data collected:
by using a conventional MS approach, such as the K-Fold Cross Validation (KCV) [36], the
SVM hyperparameters are fixed to the optimal value at the n-th step H∗n and a first model is
trained (fn). When Δ+ new samples are gathered, the learning set is updated by adding the
most recent samples and, eventually, by discarding Δ− old ones:

Dn+Δ+−Δ− = {Dn \ {(x1, y1), ..., (xΔ− , yΔ−)}} ∪ {(xn+1, yn+1), ..., (xn+Δ+ , yn+Δ+)} (4)

and fn+Δ+−Δ− is consequently modified, e.g. accordingly to the method proposed in the previ-
ous section. Ideally, we should be able to update both the model and the set of hyperparameters,
thanks to the new collected samples. A possible approach consists in performing a full MS-TR
procedure at every step, i.e. a complete learning from scratch every time new patterns are col-
lected. However, this approach is too computationally expensive, as described in [25, 35], so an
heuristic approach is adopted where a whole re-learning is avoided.

We start by identifying the best hyperparameters set H∗t and model ft at the t-th step with

a KCV procedure; we have to keep track of the k models f
(1)
t , . . . , f

(k)
t trained while applying

KCV. When Δ+ new samples are acquired, we want to modify both the hyperparameters set
and the model: it is reasonable to assume that, if Δ+ and Δ− are not large (i.e. they are not
comparable to n), the hyperparameters will not vary too much from the previous best value.
Thus, we can define a neighborhood set Hη

t , centered around H∗t :

C∈
{
C:C ∈ Cgrid, C ∈

[
C∗t
ηC

, ηCC∗t

]}
, γ∈

{
γ:γ ∈ γgrid, γ ∈

[
γ∗t
ηγ

, ηγγ∗t

]}
, ε ∈

{
ε:ε ∈ εgrid, ε ∈

[
ε∗t
ηε

, ηεε∗t

]}

(5)

where ηC , ηγ , ηε ≥ 1 and Cgrid, γgrid and εgrid are predetermined grid of possible values for C, γ
and ε. We can update the KCV samples set (refer to Fig. 2) and, accordingly, the KCV models

f
(1,...,k)
t for every value of the hyperparameters included in the neighborhood set: through
a conventional MS approach based on KCV, we can thus identify the best hyperparameters
configuration H∗t+1 ∈ Hη

t . Finally, ft+1 is trained accordingly to H∗t and the Δ new samples
collected by exploiting the procedure described in the previous section. We define this approach
as OL-MS. The supplementary computational burden is limited: in fact, we have to update k+1
models instead of just one and we have to perform a KCV MS at each updating step, but limited
to a restricted neighborhood set. Note that, if the H∗t+1 
= H∗t the neighborhood set of H∗t+1

will be different from the neighborhood set of H∗t , so we may have to update old models with
the most recent data.
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3.3 Computational-aware models

In this section we propose a computational-aware heuristics for optimizing all the parameters
involved in the procedure described in the previous section. In particular the problem is to
find the best value of ηC , ηγ and ηε so to maximize the accuracy of the regressor and minimize
the computational effort for achieving this goal. In order to address this issue we use a meta–
optimization heuristic technique. Our proposal exploits the simple rule proposed by Baba in
[37, 38]. Let us take our set of hyperparameters ηC , ηγ and ηε which defines the neighborhood
set and let us optimize their value based on Algorithm 1. Note that δ, ηC0 , η

γ
0 , η

ε
0 are parameters

Algorithm 1: The Computational Aware OL-SVR MS meta-heuristic optimization ap-
proach.

Require: Dn, [η
C
0 , ηγ

0 , η
ε
0], δ, Cgrid, γgrid and εgrid

1: Search H∗0 with [ηC
0 , ηγ

0 , η
ε
0] as described in Section 3.2

2: Set LKCV (f0) as the KCV error for H∗0
3: Set a tridimensional vector m = 0
4: for t ∈ {1, 2, . . .} do

5: Δ+ are available and Δ− can be disregarded
6: Generate a tridimensional Gaussian random vector r centered in m
7: Set [ηC

t+1, η
γ
t+1, η

ε
t+1] = [max(1, ηC

t + r1),max(1, ηγ
t + r2),max(1, ηε

t + r3)]

8: Find H∗t+1 and LKCV (ft+1) with [ηC
t+1, η

γ
t+1, η

ε
t+1] as described in Section 3.2

9: if LKCV (ft+1) < LKCV (ft) + δ then
10: m = 0.4 · r + 0.2 ·m
11: else
12: [ηC

t+1, η
γ
t+1, η

ε
t+1] = [ηC

t − r1, η
γ
t − r2, η

ε
t − r3]

13: m = 0.5 ·m
14: end if
15: end for

that balance the tradeoff between accuracy of the final model and computational requirements
of our model. Also note that the computational requirements of the complete procedure are
basically proportional to the size of the neighborhood set; the larger is the neighborhood, the
larger will be the number of models to update with the procedure of Section 3.2. Then we can
show some interesting cases:

• if δ = ∞ and ηC0 = ηγ0 = ηε0 = 1 we never move H∗0 so basically we do not perform any
model selection

• if δ = 0 and ηC0 = ηγ0 = ηε0 � 1 we start with a big neighborhood set and we are willing
to shrink it only if the KCV error strictly decreases

• if δ 
= 0 and ηC0 = ηγ0 = ηε0 > 1 we have a mixed behavior, we want to shrink the
neighborhood set if the KCV error does not change too much

4 Experimental Results

We evaluated the performance of our method on the Prognostic Health Monitoring (PHM)
challenge datasets, provided by the FEMTO-ST Institute for the IEEE PHM 2012 Data Chal-
lenge [26]. Each dataset includes sensors data collected during a run-to-failure experiment of a
single ball bearing using the PRONOSTIA platform, developed by the FEMTO-ST Institute in
order to study ball bearings damages and failures. The experiments have been conducted under
different load and rotational speed settings so to obtain a different behavior for every bearing.
Sensors data is composed of vibration (both in the vertical and the horizontal directions) and
temperature measurements, extracted from three signals that are sampled as described in Sec-
tion 2. The goal of the tests is to assess the performance of the OL-SVR regressor in estimating
the RUL of the axle bearings under test. Every axle bearing dataset is treated as the complete
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Parameters MAPE (%) Time (s) Speedup Mem (KB)

C-MS - 2.57± 0.11 18398 ×1 15400
No-MS - 6.01± 0.34 1147 ×16 5

CA-MSS (1) δ = 0, ηC0 = ηγ0 = ηε0 = 100 3.4± 0.17 1901 ×10 474

CA-MSS (2) δ = 0, ηC0 = ηγ0 = ηε0 = 10 3.5± 0.14 1862 ×10 397

CA-MSM (1) δ = 0.1, ηC0 = ηγ0 = ηε0 = 10 3.1± 0.16 1319 ×14 227

CA-MSM (2) δ = 0.3, ηC0 = ηγ0 = ηε0 = 10 3.2± 0.12 1282 ×14 209

Table 1: Prognostic Health Monitoring (PHM) challenge datasets [26]

axle bearing lifetime data coming as a stream from the condition monitoring system connected
to that particular bearing. We compare three different approaches to this problem:

• C-MS: Complete MS (no rule, considers the entire parameters sets)
• No-MS: No MS =⇒ δ = ∞ and ηC0 = ηγ0 = ηε0 = 1
• CA-MSS: Computational Aware MS Strict approach (the target is to decrease the compu-
tational requirements only if the error strictly decreases) =⇒ δ = 0 and ηC0 = ηγ0 = ηε0 � 1

• CA-MSM: Computational Aware MS Mixed approach (the target is to decrease the
computational requirements if the error does not increase too much) =⇒ δ 
= 0 and
ηC0 = ηγ0 = ηε0 > 1

The hyperparameters sets are defined as Cgrid ∈ [10−4, 102], γgrid ∈ [10−4, 102] and εgrid ∈
[0, 10−1] sampled in logarithmic scale, 25 points for C, 7 for γ and 4 for ε, resulting in a total
number of tuples equal to 700. For each tuple we have to keep k = 4 models plus one: k for
performing the KCV in order to quantify its generalization error, and one, trained with the
complete dataset, used as final model of the RUL. We want to record and compare the best
models selected by the different approaches based on three different indices of performance:

• Mean Absolute Percentage Error (MAPE) [39] on a set of data that have been hidden
from the learning process

• Time requirements (Time) in order to select the model
• Memory requirements (Mem) in order to store all the different models in memory (HDD
and RAM)

We perform tests for different values of δ and for different initial conditions over H0 =
[ηC0 , η

γ
0 , η

ε
0]. Based on the results reported in Table 1, we underline that the C-MS method

results to be the best option in terms of accuracy, but the worst in terms of computational re-
quirements. Concerning the No-MS we can derive the opposite conclusions. CA-MSS manages
to improve the No-MS in terms of accuracy and the C-MS in terms of computational require-
ments, but only the CA-MSM is able to take the best of the two worlds and to achieve accuracy
results that are very close to the C-MS, as well as a computational burden that is much closer
to the No-MS method with respect to CA-MSS.

5 Conclusions

This work focuses on the problem of Streaming Data Analysis of Big Data Streams for Condition
Based Maintenance in the context of Rail Transportation Systems. In particular we deal with
the problem of predicting the Remaining Useful Life of Train Axle Bearings based on the streams
of data that come from the on-board sensors. For this purpose we propose to exploit the Online
Support Vector Regression for updating the model as soon as new data become available. Our
proposal also consists of a model selection strategy that is able to optimize the tradeoff between
accuracy of the final model and resources needed in order to perform the model selection phase
itself, an additional desirable feature mostly disregarded due to its computational requirements.
Results on real world dataset show the advantages of this solution and prove the generality of
the method, which could be successfully used in other applications.
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