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The family of vector languages properly contains all context-free languages. For 
vector languages the emptiness and finiteness problems are proved to be decidable. 
The Parikh mapping of a vector language is shown to be semilinear. 

INTRODUCTION 

In this paper we investigate the family of so-called vector languages which properly 
contains all context-free languages. Vector languages are generated by context-free 
grammars with certain matrixlike restrictions. 

It is shown that the emptiness and finiteness problems are solvable for vector 
languages. Furthermore, the Parikh mapping is proved to be semilinear for each 
language in the family considered. These results are achieved by an arithmetic approach 
involving systems of linear diophantine equations. 

l .  PRELIMINARIES 

The reader is assumed to be familiar with the basics of formal language theory. 
Let G = (N, T, R, S) be a context-free grammar, where N is the finite nonterminal 
alphabet, Tis the finite terminal alphabet, R is the finite set of context-free productions, 
i.e., productions of the form A ~ w, A in N, w in (N w T)*, and S in N the starting 
symbol. L(G) denotes the language generated by G. 

Let F = {r 1 ,..., rm} be an alphabet of labels. To each production A ~ w we 
associate a label r, such that different productions are denoted by different labels. The 
application of a production r: A ~ w to a word x is denoted by 

X =:=~" 1" Y" 

* Currently associated with the University of Southern California, Computer Science Program, 
Los Angeles, California 90007. 
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If  r: S = w 0 =:%,t wt => -'" : ~ ,  w,~ is a derivation according to G, then r i t  " "  r Q  in 
F* is called a control word of the derivation ~-. 

Matrix grammars are eontext-free grammars with restrictions on the use of the 
productions (cf. [1]). 

DEFINITION. A matrix grammar (mg) is a pair 

Gm = (G, M), where G = (N, T, R, S) 

denotes a context-free grammar, and M is a finite set of finite strings 

f~ = rix " ' "  r% with ri~ in F for 1 <~ j <~ n i . 

These strings are called matrices. 
The language L(Gm) generated by Gm = (G, M) is the set of all words in L(G) 

which have a derivation with a control word in M*. The family of languages generated 
by arbitrary matrix grammars is denoted as usual by rig'. 

We define a generalization of matrix grammars. 

DEFINITION. A (generalized unordered) vector grammar (guvg) is a pair 
Gv = (G, V) where G = (N, T, R, S) is a context-free grammar and V is a finite set 
of finite strings 

r i x r i  ~ " ' "  r in~  , ni >~ 1, 

of labels of productions in R. The elements of V are called vectors. Let 

V ~ = {Px "'" P,  I P l  ,..., P ,  i n F  and some permutation ofpx "-. p ,  is in V*). 

The language L(Gv) generated by G~ ----- (G, V) is the set of all words in L(G) 
which have a derivation with a control word in V ~. L(G~) is called a vector language. 

As in [2] the family of vector languages is denoted by q/~"~'. 
The family q/~r properly contains all context-free languages. The well-known 

non-context-free standard language 

{a'~b~c~ l n ~ 1} 

is generated by the grammar (G, V) with 

G = ({S, A, B}, {a, b, c}, {S ~ AB,  A --~ aAb, A -+ ab, B --~ cB, B --* c}, S) 

and 

V = {(S -,- AB),  (A --,- aAb, S -+ cB), (A -~ ab, B -~ c)}. 

THEOREM 1. q/Coo' C..r 

The proof of Theorem 1 can be found in [2] where some other matrixlike restrictions 
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of context-free grammars are also considered and further inclusion results are 
established. In  a corollary of Section 4 it will be shown that the inclusion in Theorem 1 
is proper. 

2. AN ARITHMETIC APPROACH TO MATRIXLIKE LANGUAGES 

A system of linear diophantine equations is introduced controlling the nonterminal 
balance in derivations according to matrixlike grammars and vector grammars.  

Let  G,  = (G, V) be a grammar  as described in Section 1. Let  G = (N, T, R, A1) 
with N = {A 1 ,..., An} and V = {v 1 ,..., vm} where vt = r i  1 ""rt, ,  and r~j : s ~ wi~ 

for 1 <~ i ~ m, 1 <~ j <~ nt .  
For each vector v~ and each variable Aj we define 

kji = lz,(WilWi2 "'" w%) - -  laj(di f l i ,  "" Ai,,) 

where the number  of occurrences of a symbol A in a word w is denoted by lA(w). 
Obviously, k~., is the number  of occurrences of the variable A~. "introduced" by the 

application of the vector (or matrix) % ; kii < 0 means that the number  of occurrences 
of A t has decreased. 

PROPOSITION 1. Let w in L(G~) have the derivation T, let x, be the number of 
applications of v~ in r, then x -- (Xl ,..., x,~) r is a solution of the system of linear equations 

~n ~--1 for j = l ,  
k~ix~ = ~ (1) 

i=x 0 for 2 < ~ j < ~ n .  

In  connection with vector grammars (or matrix grammars), we are only interested 
in nonnegative integer solutions of (1). Obviously, to each nonnegative integer solution 
x = (xl ..... x,~) r of (1) corresponds a finite subset L(x) of L(G~) : L(x) = {w f w in 
L(G~), a derivation of w contains xi applications of vi , 1 <~ i ~ m}. Note that L(x) 
may be empty  for a nonnegative integer solution x of (1). 

In  the following, we develop a finite representation of the set of nonnegative solutions 
of the diophantine problem (1). 
L e t K = ( k ~ ) ,  1 ~ j ~ < n ,  1 ~ i ~ < m ;  

X = {x I K x  = (--1 ,  0,..., 0) r, x in N m} where N = {0, 1, 2,...}; 

n = (x f  K x  = (0, 0,..., 0) T, x in Nm}; 

Z be a maximal subset of pairwise incomparable 1 elements of H where z in Z 
implies that there is no x in H - -  (0,..., 0) r such that x < z;  

1 F o r x  = (xl,...,Xm) andy = (yl,. . . ,ym) in~d'~,letx <. y i f x i  < yi foral l i ,  1 < i < re ; le t  
x < y if x < y and there exists at least one index i, 1 < i < m, such that xt < yi ; x and y are 
said to be incomparable if neither x < y nor  y < x. 
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Y be a maximal subset of X such that for all y in Y and z in Z the vector y - -  z 
is not in [~". 

I t  follows from well-known results that Z and Y are finite subsets of N m (el. [3, 6]). 

Let  Z ---- {zl ..... zs}, Y = { Yl ,..., Y~}. 

PROPOSITION 2. The sets Z and Y can be effectively constructed (cf. [6]). 

By this construction we get the following finite representation of the set X of 
solutions: 

X is a finite union of linear sets, i.e., a semilinear set in the sense of [4]. 

3. DECIDABILITY RESULTS 

T h e  generalized unordered vector grammars have in common with context-free 
grammars,  that the emptiness and finiteness of the generated languages are decidable. 
T h e  proof is based on certain relations between the language generated by a guvg 
and its matching system of equations (1). For each pair (G, V) and matching system 
(1), let X,  Y, Z be the sets as defined in Section 2. 

Notation. For u = (u 1 , u s ,..., u,~) r in N m, let Ru denote the collection of the 
U 1 U 2 U~I productions the labels of which form the word v 1 v~ ".. v,n ; i.e., R u contains for 

1 ~ i ~ m all productions of each vector vi exactly ui times. 
We say a collection P of productions A1--~ wl ,..., As--~ ws is balanced, if 

la(A1 ... A~) = 14(Wl...w~) for each A in {A~ ,..., As}. 
A set D of derivations is called a complete application of the collection P, if the 

collection of all productions applied in D forms P. 
A derivation w o :~rl ... =~r, wn is said to be a derivation in P, if any permutation of 

rl  ,..., rn is obtained by deleting suitable production labels in v'~lv~ ~ ".. v~". 

LEMMA 1. I f  P is a balanced collection of productions, then there exist nonterminals 
B 1 .... , Bz and words ~ i ,  fll ,..., ~ ,  fi~ in T* such that for each i, 1 ~ i ~ l, there is a 
derivation 

( + )  "r i : B i ~" otiBi~ i in P 

where the collection of productions applied in -r i is balanced for each i, 1 ~ i ~ l, 
and D = (,1,.. . ,  r~} is a complete application of P. 
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Proof. Let N = {Az ..... An} be the set of all nonterminals occurring in the 
productions of P. Clearly, the collection of productions applied in a derivation (4-) 
in P is balanced. 

Now we show the existence of at least one B in N for which there is a derivation (+) :  
We consider a derivation B *~ u in P. Then three cases have to be distinguished: 

Case 1. u contains a variable A @ B. Then the balance of P implies that the 
derivation B g u can be extended to a derivation B ~ u *~ 12 in P and g does not 
contain any variable A @ B. 

Case 2. u contains only the variable B. Hence there exists a derivation (4-). 

Case 3. u is a terminal word. Then the balance of P implies the existence of a 
production A --+ w occurring in P, such that w = xBy and A => xBy ~+ xuy is 
a derivation in P. 

In cases 1 and 3 we extend the considered derivation in P. Either we get a derivation 
in P of the desired form (4-) after a finite number of extension steps, or we have 

a contradiction to the finiteness or balance of P. 
Let Pz be the subcollection of P, obtained by decreasing the number of occurrences 

of a production p in P by the number of its applications in ~. P1 is balanced; the above 
arguments hold true also for Pz �9 Then the lemma results from the finiteness of P. 

LEraivta 2. Let (G, V) be a guvg. For elements x in X and z in Z, L(x + z) =A 
if and only if  L(x + 2z) :~ ~ .  

Proof. Assume L(x + z) =A ~ .  In a derivation ~ of a word w' in L(x + z), all 
productions of Rz are applied. Then all derivations ( + )  of Lemma 1 which form 
a complete application of R~ can be embedded in ~-. Thereby, we obtain a derivation 
of a word w in L(x + 2z). 

Let L(x + z) = ~ .  We consider a derivation ~-: S *~ t in Rx+~ of maximal length; 
let P be the collection of all productions of R~+, not applied in r. Clearly, t is a terminal 
word and P is balanced. Then by Lemma 1 there exist variables B z ,..., Bs and 
derivations (4-) Bi *~ otiBifii, cti and fit terminal words, 1 ~< i ~< s, forming a complete 
application of P. Furthermore, the maximal length of z implies that no B , ,  1 ~< i ~< s, 
occurs in ~-. For convenience, let A I>R B denote the fact that there is a production 
A --* uBv in a collection R of productions. The transitive closure of relation t>R is 
denoted by 1> + . 

In order to prove that L(x 4- 2z) is empty, it is sufficient to show that there is at 
least one production Bi --+ w~, 1 ~< i ~< s, in P, such that S l>Rx+,+ B i does not hold. 
The proof will be by contradiction: 

Assume S I>+,+, Bi holds for each i, 1 ~< i ~ s. 
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Consider for each i, 1 ~ i ~< s, a sequence of variables S = Aq ,  Aq ,  Aq ,..., 
Aq = B~ with 

S = Aq L> Aq D Ai a ~> ""D Ai. 1 ~> Ain-= B~. 
R z +  z R x +  z R x +  z i -  ,Rx+ z t 

The rightmost symbol in this sequence which occurs i n ,  is denoted by A~. Then 
Ai t> + Bi ; hence, by the balance, of P the variable A~ must also occur in one of the 
derivations (+)  above. Now for A i there must be a Bq,  1 <~ i x <~ s, such that 

Bi x D + At .  
Now take a fixed Ai ,  1 <<. i <~ s, and track it back by means of the relation I> + 

first to Bt~, then this Bix to Ail, then Aix to a Bi2 and so on. By 2s such backtracking 
steps we get a chain 

In this chain, at least one As, 1 ~< j ~< s, occurs twice. Therefore, there is a 
subchain 

This implies that there are CJo ,..., C~.+ 1 such that 

A, : c,. ~ c,~ ~ c,, ~ ... ~ c,~+ 1 = A, , 

where C 6 # C  6 f o r  1 ~ < i < l ~ < k .  
Hence there is a derivation Aj ~ uAjv in P in which no production is applied 

twice. The balance of P implies, that this derivation can be elongated to a derivation 
Aj *=> utAr in P where u, and v, are terminal words. This is a contradiction to the 
maximal length of T. 

THEOREM 2. It is decidable whether the language generated by a guvg is (a) empty, 
and (b) finite. 

Proof. Let G~ be a guvg. 

(a) Lemma 2 implies that the language generated by G~ is empty if and only if 
$ 

L(y + ~-~4=1 k*zi) = Z for each y in Y and each ( k  I . . . .  , ks) in {0, 1} s. 

(b) Lemma 2 implies that the language generated by G~ is finite if and only if 
for each y in Y, each (k 1,...,ks) in {0,1} s either L ( y + ~ : = t k i z , ) :  ~ for 
(kl ,..., ks) # (0,..., 0), or L(y + Z:=I k,z,) C= r implies 

r y + I; k,'~, - -L y + ~ k,,, for any (kl',..., ks') 
i = 1  / i = I  

57x1812-4 
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which is obtained from (k 1 ,..., ks) by increasing arbitrary nonzero dements k, by I. 
The conditions in (a) and (b) can be checked in a finite number of steps. 

COROLLARY 1. Given guvgs G~ and G. there is no recursive procedure for obtaining 
a guvg generating the intersection ofL(G,) andL(Gv) or a guvg generating the complement 
of L(G~). 

This results from the fact that the finiteness is undecidable for the intersection 
and the complement of context-free languages. 

4. THE PARIKH MAPPING OF VECTOR LANGUAGES 

In this section we consider the Parikh mapping of unordered vector languages. 

DEFINITION. Let T ---- {al, a2 ,..., an} be an alphabet. The Parikh mapping is 
a mapping r T* --~ Nn defined as follows: 

r = (0, 0,..., 0) 

r = (1, 0 ..... 0) 

r = (0, 1,..., o) 

= (0 ,  o . . . . .  1)  

~b(xy) = r + ~b(y) (x, y in T*) 

r ---- (.J r (n C T*). 
xinL 

~b(x) gives the number of occurrences of each terminal symbol ai in each word x in T*. 
In [4], it is shown that r is a semilinear set for each context-free language L. The 
following theorem is an extension of this result. 

THEOREM 3. Let L be a vector language. Then r is a semilinear set. 

Proof. LetL be the language generated by aguvg (G, V). By a remark in Section 2 
the set X of all nonnegative integer solutions of the matching system of equations is 
semilinear. By a straightforward argument using Lemma 2 the set 

M = { x i n X ] L ( x )  :/: ;~} 

is also semilinear; M can be effectively constructed. Let w in L, then there is an 
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x = (x 1 ,..., x,~) r in M, such that xi gives the number  of applications of the vi in V in 
a derivation of w. Conversely, for each x in M there is such a word w in L. As each 
application of a vector vi in V yields a fixed number  of terminal symbols the semi- 
linearity of L immediately results from that of M. 

COROLLARY 2. Each infinite vector language L contains a subset L' such that the 
lengths of the words in L' form an arithmetic progression. 

COROLLARY 3. The family ~#"oo ~ of vector languages is a proper subset of the family 
,,/1/" of matrix languages. 

Proof. Following [8], a matrix grammar  is given which generates a language 
whose Parikh mapping is not semilinear. 

Let  G ~ (N, T, R, S) where N ---- {S, A, B, C, D, E}, T = {a, b, c}. 
Let  M consist of the following matrices. 

(S ~ aAE), (E --, DD, A --+ A), 

(A --~ aB), (D -+ EE, B -~ B), 
(B ~ aA), (A ~ C), 

(B ~ C), (C --~ c), 

(E ~ b, C--~ C), (D --~ b, C--+ C), 

(S--~ cb). 

Obviously, this matrix grammar  generates the language 

L = {a'~cbmln >~ O, 1 <~ m <~ T'}. 

Note added in proof. The results of this paper were presented at the Symposium and Summer 
School on "Mathematical Foundations of Computer Science," September 3-8, 1973, High 
Tatras, Czechoslovakia. 
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