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Abstract

We deal with integral representation problems of the Bessel form. Suitable formulations are obtained, but they are not
proved for all values of the parameter. Generalizations to modified classical forms are possible.

0. Introduction

The history of the Bessel form is more tortured than that of other classical forms. The reason is
certainly the fact that the Bessel form is not positive definite for any value of the parameter. The
problem was to find a weight function, defined on the real axis, with respect to which the Bessel
polynomials would be orthogonal. Several authors have given an integral representation through
a distribution [7, 3] or an ultradistribution [5].

Here, we propose an integral representation through a true function as a consequence of the
semi-classical character of the Bessel form. For another representation through a function,
see [1].

1. An integral representation for semi-classical forms: the Bessel case

Let # be the vectorial space of complex polynomials and let 2’ its dual. Let us recall
the definition of a semi-classical form. The form u € 2’ will be called semi-classical if it satisfies
(cf. [9])

(1) u is regular and

(2) there exist two polynomials @ and i such that

D(®u) + yu =0 (@ monic, degy = 1). (1.1)
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Let u be a semi-classical form satisfying Eq. (1.1). We are looking for an integral representation of u,
considering
+ oo
wpy= | uwswe ez (12

~— o

where we suppose the function U to be absolutely continuous on R, with rapid decay and
derivative U'. From (1.1), we obtain

+ @
| (@ur +yuismex - e wswItE =0 e,
Hence, from the assumptions on U, the following conditions hold

PX)VUX)f(x)]I2 =0, fe?, (1.3)

Jm((qw)' +YU)f(x)dx =0, fe. (1.4)

Condition (1.4) implies
(PUY +yU = 4y, (1.5)

where 4 # 0 is arbitrary and g is a locally integrable function with rapid decay representing the
null-form

+
J x"g(x)dx =0, n=0. (1.6)

—a

Reciprocally, if U is a solution of (1.5) verifying the hypotheses above, then (1.3) and (1.4) are
fulfilled and (1.2) defines a form u which is a solution of (1.1). But, is this solution correct for our

problem?
Now, we must show that the form so-constructed is not identical to the null-form which is always
a solution of Eq. (1.1). Precisely, the problem is to prove

Jﬂo U(x)dx # 0, (1.7)

e o]

which is also a necessary (but not sufficient) condition for the regularity of u.

1.1. Examples of some functions g representing the null-form

The fundamental example is given by the Stieltjes function [13]:

0, x <0,
stx) = {exp( — x")sin x4, x>0. (18)
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More generally, consider the integrals [2]

T i —ar I'(p) sin (p0)

L xP~le s1n(mx)dx=m/—2, p,a,m >0,
T —ax I (p) cos (pb)

L xP~le cos(mx)dx=m, p,a,m>0,

with sin@ = m/r, cos@ = a/r, 0 < 0 < 1/2, r = (a* +m?)"2
Put a = pm, then:

) 1
sin =——5—-—, cosf = p

—— 0.
T+ )7 T+ 7

253

(1.9)

(1.10)

For instance, let us take p = (7 — 4\/3)1/2, then 6 = 5n/12. With p = 12(n + 1), n > 0, we have

from (1.9)

+ oo a
J x12"+11e‘“"sin<—x>dx=0, n=0.
0 1Y

Differentiating twice with respect to a

+ 1
f x12<"+“e‘“"{—cos<ﬁx>-—sin<ﬁx>}dx=0, nz=0,
0 p p P
+o 1\ . (a 2 a
f x12("+1)+1e‘“"{<1——2>s1n<—x>——cos<—x>}dx=0, n>0.
0 p p p p

So (1.11), (1.12) and (1.13) give respectively, with a = 1:

g(x) =

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)
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When p = 1, then 0 = n/4, we have from (1.10) and (1.9):

0 x<0
= ; s 1.17
909 {x”z exp( —x'*)cos (x'/4), x>0, (1.17)

I = xva exp( —x'*){cos (x!/*) + sin(x'*)}, x>0, '

o= {0 x<0, (1.19)
9= x!*exp(—x'"*) {cos (x'*) —sin(x'/*)}, x >0. .

Remark. If g is a representation of the null form, then so is x — x™ g(x) for each m € N and also the
convolution product h * g where h is a locally integrable function with rapid decay.
When supp g = R™*, as for the Stieltjes function, the following functions

x —|x|g(x?) and x—3g(x|)
are even representations of the null form and
x - x|x|g(x?) and x — sgnxg(x?)

are odd representations of the null form.

1.2. The Bessel case [8, 4, 9, 10]

In this case, we have u = #(a), « # — n/2, n 2 0 with
d(x)=x*  Y(x)=—2(x +1),

1—a _ n+ D+ 2a—1)
mta—Dn+a) "' Gny2a—Dn+oaPCn+2astl)

ﬂn= nz=0,

if {P,},>0 denotes the sequence of monic Bessel polynomials, verifying
Po(x) =1,  Pi(x) =x — po,
Ppia(X) = (X = Bus 1) Pas1(x) = pus 1 Pua(x), n=0.

Eq. (1.5) becomes
(x2U) ~2(ax + 1)U = ig(x)

or equivalently

U(x)x“““’exp(%)—U(c)c“““”exp(%)=ljxg(£)£'2“exp<%>dé, c>0, xeR.
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A possible solution is

0, x <0,

ixz‘“_l’exp<—§)f+mé 2“exp<€>s(f)d§ x>0,

where the function s is given by (1.8).
First, condition (1.3) is fulfilled, for we have:

Ux) =

U <™ exp( =2 ) [ e exp( 2 ) exp(—£¥4)dE, x>0,
X ¢

X

1
Ix2U(x)| < |A|x2m“exp(—%>j é‘zm“exp<§>dé+o(1), x— +0.

We apply ’Hospital’s rule to the ratio
f &M exp(2/8)dE i x ™ exp (2/x) o x2

lim

so x2U(x) » 0 when x - + 0.
Further, when x - + o0,

+

UG <12 | 7 &P exp(—£1%) d¢ = ofexp(—4x1)

z

Finally, let us show Ue L;. For 0 < x <
2
U(x) = 0(x) + O<x2‘m°“”exp ( -3 )
with

0(x) = Ax2@" ”exp(——)[ & 2"‘exp( )s(C)dé

Hence,

f |0(x)dx < Iilf ET Zm“exp(6>|s(é)|(f 2"'“"Zexp(—%)dx)dé.
But,
R ; 2Ra — 1 2 d
— Ra 0x exp( — - Jdx

Jéx”“‘zexp _2 dx—léz"““exp
0 X 2
1 ¢ 2
<—§29‘“exp<— )+|‘.Roc|é_( x”’“"“%xp(——)dx
2 0 X

1,

el BN NIN

255

(1.20)

x+0 X Fexp(2/x) eto exp(2/x) {2Rax ~ e~ 1 4 2~ Me=2) xlir?o WMax +2
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and hence
(¢ 2 1 &= exp( — 2/¢) 1
Mo =2 —Z)dx <= SE<—.
dox exp( x) X 2 1 —|Ra|é > 0 €<|‘.Roc|

It results in

rl

|0(x)dx < + .
JO

The function (1.20) is a possible representation whatever a € C. Condition (1.7) now becomes

j”’ U (x)dx = arw 72 exp <E)S(é)<rx2“‘zem< —E)dx>dc — iS5, #£0, (1.21)
0 0 ¢ 0 X

with

+ o
S“=4J t3‘8“exp(
0 t

h,(t) = J(: x2*exp ( — %)

2. Some results about S,

NN

) h,_1(t*)e 'sintdt,
dx.

Lemma 2.1. We have for o > 0

1 t2cx+2 2 1 t2a+2 2
L7 (B o<t ep(-2). >0
21+4a+nt“p< t> halt) 2y+aa+nt“p< t)

_Lg2 3
o l+t—3a® +0@) <_%> .

t2e 2
—— ) <h ()<t
P\ TS 2 T+@+ )t

\Y%

21 +at
From (1.23), we have upon integration by parts

1 20+2 2 ' 2a+1 2
ha(t)=§t exp -3 —(x+1) ox exp 3 dx.

The monotonicity gives

t
—l—tha(t) < J x2**1exp (—%> dx < thy(t).
2 0 X

0.

(1.22)

(1.23)

2.1)

2.2)

(2.3)

Hence (2.1) with (2.3). For (2.2), the first inequality of (2.1) is valid when « — o — 1 and from (2.3)

where « — o — 1, after a new integration by parts

he—1(t) = % t2*(1 — at) exp <—%> +%a(2a + )h,(¢)

2.4)
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or with (2.3)

1
hy—1(t) = Etza(l — at +%a(2a + 1)t2>exp(—%>

t
—lcx(cx + 1) Qu + I)J x2et! exp<—2> dx.
2 0 X

Hence the second inequality from (2.2) follows from the first inequality from the line below (2.3) and
from the first one from (2.1).

Corollary 2.2. Putting F,(t) = f,(t)e”" with f,(t) = f,(t) = 3~ 3% exp(2/t*) hy_ 1 (t*). Then, for each
o > 0 the function F, is not decreasing for t = 0.
Indeed, we have from (2.2)
1 3 1 1 4¢*—4at® 4+ 0(1?)
S — < fily <z , t=0.
1T 1 Sh0S3 1+ @+ D f

Therefore f,(t) > 0 for t > 0 and f,(0) = 0.

Remark. This shows that it is not possible to employ the usual monotonicity property for the
integral (2.6) below.

Proposition 2.3. We have the following expression

1 2m+1

+
Ja=Em HO (2oc+u)f0 t3_8“exp(%)hﬁm(t“)c“‘sintdt, m>=0; oeC. (2.5)
ek

From (2.4), and using the Stieltjes representation (1.8) of the null-form, we obtain

+

S, = 202 + 1)f

0

13 8 exp <%> h, (t*)e 'sintdt.
Suppose (2.5) for m > 0 fixed. From (2.4) where a > o +m + 1

1
Byrm(t) = 512(“"’“’(1 —(x+m+ 1)t)exp< —%>

435 2+ m) + D@+ M)+ D 1)

hence easily (2.5) for m > m + 1.

Corollary 2.4. We have S_,;;, =0, n > 0.

This result is consistent with the fact that the Bessel form is not regular for these values
of a.
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Conjecture 2.5. The unique zeros of S, are o, = — n/2, n = 0.
A partial answer is the following.
Proposition 2.6. For o > 6(2/n)*, we have S, > 0.
We need Lemma 2.7.
Lemma 2.7. Consider the following integral
S= J(: ) F(f)sintdt (2.6)

where we suppose F(t) = 0, continuous, increasing in 0 < t < T and decreasing to zero fort > t. Then,

if

O<t<m, L"sint(F(t)—F(n+t))dt>0, (2.7)
we have S > 0.
Or, if
O<f<m, Lﬂ sint(F(t) — F(r +t) + F2rn + 1)) dt <0, (2.8)
then S < 0.

Proof. Writing S = S, + S, with

N =f sin tF (1) dt; S, = Z (—1)"J sint F(nr + t)dt,
0 nz1 0
we have S, < 0, for the function F is decreasing in ¢t > 7.
It is easily seen that

4

sint F(n + t)dt + f sint F2n + t)dt,
0

n

—f sintF(n+t)dt < S, < —f

0 0

r sint(F(f) — F(n + ¢t))dt < S < Jn sint(F(t) — F(m +t) + F(2r + t))dt.
0

0

Hence the result. []

Proof of Proposition 2.6. Let us prove (2.7) with F(t) = F,(t) introduced in Corollary 2.2. The
function F, has a maximum for ¢t = = i(«) defined by f; (f) = f,(f), hence

4¢3

= — = 2.9
8 + (8x — 3)F* + 1 29

Ja(f)
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since

fro=%-(E22 4 5o

t

But, from the first inequality of (2.2), we have

L2 i@ 20, a>0
21 +at* 70 - '
With (2.9) necessarily: £ < 3.
On the other hand, the 1nequa11t1es (21)yarevalidfora »a—landa>1—(1/2n),0 <t < 2x

1 % 2 3 2
= 2 ) <ho () <5 ———exp( —5), 0<t<
2l+atexP( t) 1< 21 c"( t) Ost<in

because the function x — x**~ Y exp ( —2/x) is increasing in 0 < x < 2n for each a > 1 — 1/2n.
Hence,

1 3 | 1

e <SS i, OS2 a>1—o.

v SSOS3TITe o n

Now, the inequality (2.7) is fulfilled if the following is verified

fﬂSlnt—L—_{Pt—)s——e‘("+”dt< nsint e e 'dr (2.10)
1+ da(m +1)* = Jo 1+ oat* ' '

The function ¢ — £3/(1 + 3« t*) is decreasing for ¢ > t, = (6/a)/* and t, < n/2 if and only if
a = 6(2/r)*. We have successively

" (m +t)° —(n+1) - n’ -
sint —p————— ¢ dt<e "————4i(1 +e ")
J 1+ 3a(r + t)* = 1+%oc1t42( )
The integral 0 to « can be split into two parts O to ¢,, and ¢, to m.

T 3 " 21+ 3art
sin ¢t 7€ 'dt=| sint 1 o etdr
. 1+ at " T4+3ot* 1+ ot?

1

1 =3 n 1 3
> sinte 'dt =—e "———— (€ + 1).
/21+%ocn4L/2 4 1 +1on* (e )

Thus, (2.10) is fulfilled if

1 T b e | B
5(1+e e "—lnz< sint +O(t4e dt+Z(€ + 1e I—*W (2.11)

But, we have
1+e "<l +e™)
Therefore, the inequality (2.11) is satisfied.
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Uniqueness of f. For any abscissa ¢ of an extremum, we have easily
"o ¥ 4 g
a(t)_fa(t): _l?jka(t)9

where
32—+
8 + (8o — 3)t* 4+ 1%
For 8« — 3 > 0, the function k, is increasing and has a unique positive zero t*. If £ > 0 is the first

abscissa such that F,(f) = 0, then F,(f) is a maximum and therefore £ > t*. So 7 > { is not possible,
since F, (f) <0, consequently f < f, hence f =f. []

k.(t)=1t+1

Remarks. (1) The representation (1.20) is given and the condition (1.7) is proved for « = 1 in [6].
(2) The method is applicable to any semi-classical form; in particular, to the various modified
classical forms obtained by a shifting [11, 12].
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