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a b s t r a c t

The unique properties and diverse functionality of biological membranes make them excellent candidates
for nano-scale applications, such as sensors and actuators. Taking the view of biological membranes as
smart bio-materials, we study the behavior of a simply supported beam made from a biological mem-
brane-like material. Equilibrium configurations are derived by calculating the first variation of a general-
ized Helfrich energy, and their stability is examined by means of the second variation. Our numerical
results demonstrate the richness of phenomena exhibited by these structures, in accordance with exper-
imental observation of multi-component vesicles. Further, we demonstrate that the intriguing behavior
of biological membrane beams, which is fundamentally different from standard beams and from standard
Cahn Hilliard systems, can be utilized for actuation and sensing. For example, temperature and also pres-
sure difference across the membrane can be indirectly measured by gauging the fluorescence intensity of
the membrane components.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The rapid progress in nano-scale technologies along with new
findings in the behavior of biological systems emphasize the
potential in integrating bio-materials into nano-scale engineering
applications and in developing bio-inspired materials. From the
engineering perspective, efforts are under way to manufacture
devices at ever smaller sizes. These efforts have reached the point
where it is required that materials act as ‘‘machines’’ themselves,
i.e., provide functions such as actuation and sensing without the
need of moving parts or complicated structures (Bhattacharya
and James, 2005). For this reason, the interest in ‘‘intelligent’’
materials, which can undergo reversible deformations in response
to external stimuli, such as temperature, pressure, PH, magnetic
field (or alternatively sense changes in these quantities) is con-
stantly increasing. An important class of such materials are adap-
tive materials, which experience significant changes in their
mechanical properties in response to external stimuli, and vice-
versa. A classic example are materials undergoing martensitic
phase transformations, such as shape memory alloys and magneto-
strictive alloys (James and Hane, 2000). These materials can pro-
vide large deformations which are attributed to ‘‘switching’’ (or
transformations) between different locally stable configurations
at the level of the atomic lattice.

In this paper we introduce the concept of using biological mem-
branes as adaptive materials for applications at the nano-scale.
ll rights reserved.
Specifically, we propose to utilize the unique properties and di-
verse functionality of the biological membrane (BM) to provide
sensing of temperature and osmotic pressure, as well as actuation
in response to external stimuli. Besides the new and exciting
possibilities they provide, a main advantage of the BMs is their
bio-compatibility which makes them natural candidates for appli-
cations associated with invasive medical applications or study of
biological systems. In addition, we show that one can take advan-
tage of the adaptive nature of biological membranes in order to
indirectly measure some of the non-standard material properties
of the membrane.

Biological membranes play a crucial role in a wide range of bio-
logical processes. As fundamental building blocks of cell walls,
mitochondria and numerous other important cell organelles, they
protect by providing a barrier, control transport, dominate cell to
cell recognition, cell adhesion, and more. Despite their diverse
functionality, the BMs are fairly simple in construction. They are
made from (phospho) lipid molecules and functional molecules
(mostly proteins). The lipid molecules are composed of a hydro-
philic (‘‘water loving’’) head group and a hydrophobic (‘‘water hat-
ing’’) tail. When the lipid molecules are put in water in the right
concentration, this conflict is beautifully resolved by the formation
of a lipid bilayer, which is energetically (free energy) most favor-
able. The lipid bilayer provides the basic structure and serves as
a permeability barrier, while the proteins molecules mediate most
of the other functions of the membrane, and may act as receptors,
‘‘pumps’’, ‘‘channels’’ and more. BMs from different cells can differ
widely both in the relative amounts and in the types of their con-
stituent proteins and lipids (Swanson and Webster, 1977). This

https://core.ac.uk/display/82728522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ijsolstr.2012.05.030
mailto:givli@technion.ac.il
http://dx.doi.org/10.1016/j.ijsolstr.2012.05.030
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


Fig. 1. A simply supported beam (held up by pivot supports at its ends) subjected to
a distributed load q(x). The beam is made from a lipid bi-layer comprised from two
components. Typical thickness of a bi-layer is five nm, b� L.
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variation is the basis for the wide range of biological activities dis-
played by different membranes.

A consequence of the bilayer construction is that it is rather
floppy, i.e., it is more susceptible to bending rather than stretching
(Boal, 2002). In addition, BMs can resist stretching but not shear,
and its constituent molecules can move relatively easy within
the membrane. This suggests a fluid-like nature, first introduced
in 1972 by Singer and Nicolson (Singer and Nicolson, 1972) as
the ‘‘fluid mosaic’’ model. New findings in the past four decades
have led to an amended version of the ‘‘fluid mosaic’’ model which
now includes considerable variations in bilayer thickness, domains
with high concentrations of proteins, and patchiness in the mem-
brane plane (Engelman, 2005).

An important avenue through which BMs achieve their diverse
functionality is through strong coupling between membrane
mechanics and biochemical events. Generally speaking, mechanical
‘‘signals’’, carried by the membrane, are preconditioning for the on-
set of many biochemical events in the cell, and have an important
role in controlling and regulating cell biochemistry (Ingber, 2006;
Perozo and Rees, 2003; Stamenovic and Wang, 2000; Vogel and
Sheetz, 2006; Zhu et al., 2000). The coupling between biochemical
events and mechanics is mediated through two main coupled
mechanical processes: deformations (or stresses) and phase segre-
gation. As mentioned earlier, BMs are not made from lipid mole-
cules only, but also from proteins, ‘‘rigid’’ cholesterol molecules
and other functional molecules. Moreover, for the same lipid, vari-
ous bilayer phases may be found, such as gels, liquid disordered and
liquid ordered phases. These phases differ in their mechanical prop-
erties, leading to a complex heterogeneous mechanical structure.
Depending on the types of lipids and the functional molecules in-
volved, as well as the external conditions (such as osmotic pressure,
external forces, temperature and level of acidity), the BM can re-
main homogeneous or segregate into different phases. The latter
changes the stress distribution in the membrane and either absorb
or release energy. Therefore, just like other heterogeneous materi-
als, deformation of the membrane is affected by composition (Altus
and Givli, 2003; Givli and Altus, 2003). However, unlike standard
heterogeneous materials structures, composition is modulated by
curvature of the membrane. Hence, BMs may be conceived as dy-
namic structures in the sense that their chemical composition and
molecular arrangements responds to changing conditions. The rich-
ness of this phenomenon has been demonstrated by several exper-
imental groups (Baumgart et al., 2003, 2005; Kahya et al., 2003;
Samsonov et al., 2001; Veatch and Keller, 2003). Furthermore, the
shape of the membrane and its bio-chemical function are domi-
nated by the interplay between lipids and proteins: reversible
insertion of proteins that act on the membrane like wedges lead
to areas with high curvature. In addition, certain types of functional
proteins concentrate in domains of curvature that they prefer, lead-
ing to the formation of functionalized domains (Sprong et al., 2001).
The formation of such domains controls membrane transport, cellu-
lar sensors, cellular signaling, and adhesion.

Since the pioneering work of Helfrich (1973), the mechanics of
BMs has been studied theoretically extensively (e.g., Evans and Skal-
ak, 1980; Seifert et al., 1991; Zhong-can and Helfrich, 1989). Yet,
much of it has focused on single component (homogenous) mem-
branes. In the last two decades there has been a growing effort in
studying multi-component BMs theoretically. These works usually
focus on specific problems of interest, commonly motivated by a par-
ticular experiment, for which various simplifying assumptions can be
employed. For example, (Seifert, 1993) studied shape transformation
in two-component axisymmetric vesicles by mapping the energy of
the two-component system onto the energy of a single-component
system. To this end, the non-linear and the gradient composition-re-
lated terms have been assumed negligible. Other works commonly
assume that the two-component mixture is in the strong segregation
limit (Baumgart et al., 2005; Boulbitch, 1999; Harden et al., 2005; Juli-
cher and Lipowsky, 1993; Kawakatsu et al., 1993; Yanagisawa et al.,
2010), that one of the components is ideally stiff (Auth and Gompper,
2009), or that the membrane shape is predetermined (Kozlov et al.,
1997; Parthasarathy et al., 2006). Also, the stability of equilibrium
solutions associated with multi-component BMs has rarely been ad-
dressed (Givli et al., 2012; Safran et al., 1991; Veksler and Gov, 2007).
Due to the complexity of calculating equilibrium configurations of
multi-component and three-dimensional BMs, advanced numerical
methods such as nonlinear finite elements and phase field methods
have been developed (Du et al., 2004; Feng and Klug, 2006; Lowen-
grub et al., 2009; Ma and Klug, 2008). The focus of these works is usu-
ally put on the numerical procedure.

In this paper we study the behavior of a beam made of a BM-like
material, which is simply supported at the beam ends. We consider
a BM composed of two components. Equilibrium equations and
stability conditions are obtained by calculating the first and second
variations of a generalized Helfrich energy functional, subjected to
the constraint that the overall composition, i.e., total number of
molecules of each type, does not change in the course of the exper-
iment. The energy functional accounts for the elastic energy of the
BM, free energy of mixing, coupling between shape and composi-
tion through the spontaneous curvature, and arbitrary distribution
of the mechanical load exerted on the BM. We calculate equilib-
rium configurations numerically, and study their stability. Unlike
other theoretical studies in the field, which commonly focus on
reproducing qualitative observations of specific experiments, the
main objective of this paper is to examine the suitability of BMs
for engineering applications, such as sensors and actuators. We
emphasize that our study is purely theoretical and does not pre-
tend to provide a proof of concept. The main purpose of the paper
is to demonstrate the richness of possibilities and to inspire. It is
not clear at this point whether integrating BMs into engineering
applications can be realized. Yet, we hope that the results pre-
sented here will motivate experimental study in this direction.

2. Theoretical considerations

Consider a simply supported beam of length L and width b� L,
as illustrated in Fig. 1. The beam, made of a BM material, is sub-
jected to a distributed load (force per unit area), q(x). We assume
that the BM is composed of two components, which we shall refer
to as type-I and type-II. These can represent two different lipid
phases (e.g., liquid ordered and liquid disordered phases), two dif-
ferent types of lipid molecules, or mobile membrane proteins



Fig. 2. The molecular shape of lipids determines the spontaneous curvature of the
membrane (figure is schematic and not in scale). The shape of a lipid depends on
the relative size of its headgroup and tails. In cases where the headgroup and lipid
backbone have similar cross-sectional areas, the molecule has a cylindrical shape.
Differences in the relative size of the headgroup and tales result in either cone-
shape or inverted-cone shape.
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embedded in a lipid phase. We introduce a concentration
c : x ? [0, 1] which describes the mole fraction of type-I in each
point of the beam. Also, we denote by q the total density (both
phases combined) which describes the number of molecules per
area. Since the BM is not susceptible to stretching it is reasonable
to assume that q is constant. It follows that at any point in the
beam, cq and (1 � c)q are the densities of type-I and type-II,
respectively. Further, if MI and MII denote the total number of mol-
ecules of each phase, we haveZ

L
cqdx ¼ MI and

Z
L
qdx ¼ M ðM � MI þMIIÞ: ð1Þ

Above, it was assumed that the densities of the two components
are identical. This is commonly a reasonable assumption (Kozlov
et al., 1997). However, in certain cases, such as liquid ordered and
liquid disordered phases of certain lipids, this may not be the case.
Finally, the total potential energy of the vesicle may be written as

F ¼ b
Z L

x¼0
udx� b

Z L

x¼0
qwdx; u ¼ fsðqÞ þ fbðH; cÞ þ f ðcÞ þ kcjrcj2:

ð2Þ

Here, the second integral describes the work of the external
load, where w is the deflection (vertical displacement) field. Also,
fs and fb account for the stretching energy and bending energy of
the membrane, respectively, f describes the interaction energy be-
tween the two phases, H is the mean curvature, and the term
kc|rc|2 penalizes sharp changes in concentration as for example
phase boundaries. The function f : ½0;1� ! R is convex at high
temperatures (miscible) but non-convex with a double-well struc-
ture at low temperatures. Next, we assume that / takes a general-
ized Helfrich form (Zhong-can and Helfrich, 1989), thus

u ¼ 1
2

kðcÞ � ð2H � H0ðcÞÞ2 þ f ðcÞ þ 1
2

kcjrcj2; ð3Þ

where j is the bending (mean curvature) modulus and H0 is the
spontaneous curvature. Above, the stretching energy has been ig-
nored since its contribution to the energy is constant. In what fol-
lows we assume small deflections. Thus, the mean curvature can
be approximated by the second derivative of w with respect to x:

2H ffi w;xx: ð4Þ

The spontaneous curvature. If the two phases have different
molecular structure, any inhomogeneity induces a local spontane-
ous curvature (see Fig. 2). Therefore, spontaneous curvature is dic-
tated by composition, resulting in a coupling between composition
and shape. For example, membrane proteins can act on the mem-
brane as wedges lead to areas of high curvature. Also, different
types of lipids can have different molecular shapes. For example,
in phosphatidylcholine the headgroup and lipid backbone have
similar cross-sectional areas, and therefore the molecule has a
cylindrical shape. On the other hand, phosphatidylethanolamine
molecules have a small headgroup and are cone-shaped, while in
lysophosphatidylcholine the hydrophobic part occupies a rela-
tively smaller surface area and the molecule has the shape of an in-
verted cone (Sprong et al., 2001). The mixture of cylindrical lipids
and conical lipids will have a spontaneous curvature that depends
on the concentration of the conical lipids (Das et al., 2008). For sim-
plicity, we assume here that the spontaneous curvature has a linear
dependence with concentration, i.e.,

H0ðcÞ ¼ Kcðc � c0Þ: ð5Þ

Above, c0 is a constant which can take either positive or negative
values. If positive, c0 can be interpreted as the concentration for
which the spontaneous curvature is zero (the beam tends to be
straight). When negative, the spontaneous curvature is never zero.
2.1. Non-dimensional analysis

We define the unit length as the beam length, L. Accordingly, we
introduce the following non-dimensional quantities and operators:

~w ¼ w
L
; ð Þ;~x ¼ Lð Þ;x; ~H0 ¼ LH0: ð6Þ

and

~k ¼ k
k�
; ~kC ¼

kC

k�
; ~q ¼ q

L3

k�
; ~f ¼ f

L2

k�
: ð7Þ

where k⁄ = k|c=0.5. Therefore, the non-dimensional energy functional
reads

~F¼ L
b

F
k�
¼
Z 1

x¼0

1
2

~kð ~w;~x~x� ~H0ðcÞÞ2þ~f ðcÞþ1
2

~kcðc;~xÞ2�~q ~w
� �

d~x: ð8Þ

In what follows all quantities are non-dimensional, and we dis-
regard the (	) symbol for brevity.

2.2. Equilibrium equations

We assume that equilibrium configurations of the beam are sta-
tionary points of the energy with respect to variations in w and c,
subjected to the constraints (1). We note that only the first con-
straint has to be considered since q is constant, and term this con-
straint the ‘‘mass constraint’’:Z 1

x¼0
c dx ¼ mI: ð9Þ

where mI � MI
M is the average (or total) concentration of type-I. Next,

we introduce the following Lagrange functional:

F� ¼
Z 1

x¼0

1
2

kðw;xx � H0ðcÞÞ2 þ f ðcÞ þ 1
2

kcðc;xÞ2 � qw
� �

dx

� l
Z 1

x¼0
c dx�mI

� �
; ð10Þ

where l is a Lagrange multiplier associated with the mass con-
straint. Equilibrium equations can be derived by requiring that
the first variation of F⁄ vanishes for any variation of w and c. There-
fore, we require that
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dð1ÞF�ðw; cÞ �
lim

e! 0
dF�ðwþ ew1; c þ ew2Þ

de
¼ 0 8wi ði ¼ 1;2Þ:

ð11Þ

From (11), we find, after some manipulations, that

dð1ÞF� ¼
Z 1

x¼0
½ðkðw;xx � H0Þ;xx � qÞw1 þ ðf 0 � kH00ðw;xx � H0Þ;xx

� kcc;xx � lÞw2�dxþ kðw;xx � H0ðcÞÞw1;x

��1
x¼0

þ kðw;xx � H0ðcÞÞ;xw1

���1
x¼0
þ kc c;xw2

��1
x¼0: ð12Þ

where ( )0 indicates derivative of ( ) with respect to c. Since (12)
must vanish for any wi, we conclude with the following equilibrium
equations:

ðkðw;xx � H0ÞÞ;xx � q ¼ 0

f 0 � kcc;xx � l� ðkH0Þ0ðw;xx � H0Þ ¼ 0
; ð13Þ

subjected to the boundary conditions

ðaÞ w ¼ 0 at x ¼ 0;1 ðzero deflectionÞ
ðbÞ kðw;xx � H0ðcÞÞ ¼ 0 at x ¼ 0;1 ðzero bending momentÞ
ðcÞ c;x ¼ 0 at x ¼ 0;1 ðsymmetry; zero fluxÞ

ð14Þ

The first equilibrium equation is associated with variation of w,
while the second equation with variation of c. Thus, we term these
equations shape equation and composition equation, respectively.
Note that the shape equation generalizes the standard bending
equation of homogeneous straight beams, and can be rewritten
in the form

ðkw;xxÞ;xx ¼ qþ ðkH0Þ;xx: ð15Þ

Thus, (kH0),xx can be interpreted as a pseudo load which com-
pensates for the effect of spontaneous curvature. In addition, the
first three terms in the composition equation resemble the steady
state Cahn Hilliard equation. The fourth term introduces the cou-
pling between shape and composition into the equation.

The shape and composition equations form a set of coupled differ-
ential equations. This set is linear with respect to w, yet non-linear in
c. Despite the coupling between shape and composition one can re-
write these equations in a form of a nonlinear equation for c only
(decoupled from w) along with a coupled equation of c and w. To this
end, we integrate the shape equation twice with respect to x:

kðw;xx � H0Þ ¼
ZZ

qdxþ a1xþ a0: ð16Þ

Above, a0 and a1 are integration constants associated with the
indefinite integration of q. The values of a0 and a1 can be directly
calculated from the boundary conditions (14)b:

a0¼�
Z Z

qðxÞ
� �����

x¼0
; a1¼

Z Z
qðxÞ

� �����
x¼0
�

Z Z
qðxÞ

� �����
x¼1
: ð17Þ

Next, we plug relations (16) and (17) into the composition
equation to get

f 0 � kcc;xx � l� kH00

ZZ
qðxÞdxþ

ZZ
qðxÞ

� �����
x¼0
ðx� 1Þ

�

�
ZZ

qðxÞ
� �����

x¼1
x
�
¼ 0; ð18Þ

which is independent of w. For the particular case of a uniform load,
q(x) = q0, we write

kðw;xx � H0Þ ¼ 1
2 q0xðx� 1Þ;

f 0 � kcc;xx ¼ 1
2 q0ðkH0Þ0xðx� 1Þ þ l:

(
ð19Þ
Therefore, one can calculate equilibrium configurations by solv-
ing the second equation, which does not depend on w, for c(x).
Then plug the solution for c(x) into the first equation and solve
for w(x). The second equation must be solved along with boundary
conditions (14)c and the mass constraint (9), while the solution for
w must satisfy the boundary conditions (14)a. We emphasize that
this ‘‘decoupled’’ procedure is possible only for statically determi-
nate problems, i.e., problems for which the bending moment in the
beam can be calculated by means of statics considerations (zero
resultant force and moment) only. In particular, it is not possible
to obtain a0 and a1 directly from the boundary conditions in the
case of a statically indeterminate beam.

Recall that the interaction energy, f(c), is a non-linear function
of c, which may take a convex (single well) or non-convex (double
well) structure depending on temperature. In the Landau formal-
ism f(c) can be approximated by a potential of the form A1(T) �
(c � c0)2 + A2(T) � (c � c0)4. Plugging this approximation into (18)
yields a non-linear ODE (ordinary differential equation) similar to
Duffing equation. In particular, if we replace the parameter x with
time, equation (18) describes the dynamics of an oscillator sub-
jected to a non-linear potential and a non-harmonic force. Yet,
due to this non-harmonic force and boundary conditions (rather
than initial conditions in the classical doffing equation) analytical
solution (e.g., in terms of elliptic functions) cannot be obtained.

2.3. Stability of equilibrium configuration

The two coupled equations (13) enable us to find equilibrium
configurations. Nevertheless, an equilibrium configuration is not
necessarily a stable one. We therefore proceed with analyzing
the stability of the equilibrium solutions. An equilibrium configu-
ration is said to be stable if the second variation of the energy, cal-
culated at the equilibrium configuration, is positive for any
variation in w and c which satisfy the boundary conditions and
the mass constraint. In order to formulate stability conditions,
two equivalent methods can be applied. (i) In the Lagrange multi-
pliers formalism, stability requires that the second variation of the
Lagrange functional, F⁄, is positive for any perturbation in w and c
which lie in the space tangent to the constraint (Zeidler, 1984) and
satisfy the boundary conditions. (ii) The complexity associated
with the method of Lagrange multipliers can be avoided by intro-
ducing variations which satisfy the constraint identically. Below,
we adopt the latter method.

In accordance with the second approach above, we introduce
the following variations

dw ¼ ew1; dc ¼ ew2;x; w2ð0Þ ¼ w2ð1Þ; ð20Þ

for which the mass constraint is satisfied identically:

Z 1

x¼0
ðc þ dcÞdx ¼

Z 1

x¼0
c dxþ

Z 1

x¼0
w2;x dx ¼ mI þ w2j

x¼L
x¼0 ¼ mI: ð21Þ

Note that the equilibrium equations can also be derived by
requiring that the first variation of F vanishes for any variations
in w and c of the form (20). This results in a third order differential
equation for c, which can be integrated to obtain (19)b. An equilib-
rium configuration is stable if the second variation of the energy
functional, F, is positive for any variations in w and c of the form
(20). Therefore, we require that

dð2ÞFðw; cÞ �
lim

e! 0
d2Fðwþ ew1 ; c þ ew2;xÞ

de2 > 0 8wi – 0 ði ¼ 1;2Þ:

ð22Þ

Leaving out the details of the calculation we find that
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dð2ÞF ¼
X2

i¼1

X2

j¼1

Z 1

x¼0
Dijwiwj dx: ð23Þ

where

D11w1w1 ¼
1
2

k ðw1;xxÞ
2
: ð24Þ

D12w1w2 ¼ D21w2w1 ¼ �
1
2

kH00ðw1;xxÞ
2w2;x: ð25Þ

D22w2w2¼
1
2
ðkH000H0þ f 00 þkðH00Þ

2�kH000w;xxÞðw2;xÞ
2þ1

2
kcðw2;xxÞ

2
:

ð26Þ

Equations (24)–(26) need to be calculated at the specific equi-
librium configuration for which stability is examined. Thus, w
and c (through f(c) and H0(c)) in the equations above correspond
to the solution of the equilibrium equations. The stability condi-
tion, (22), along with (24)–(26) provide a powerful tool for numer-
ical analysis of the stability of any equilibrium configuration.
Critical configurations are identified by the solution of the eigen-
value problem associated with (23). Further, stability can be exam-
ined by studying the eigenvalues of the operator D. To this end, we
expand w1 and w2 into a series of base functions which satisfy the
boundary conditions and condition (20)b, w2(0) = w2(1). Specifi-
cally, it is required that

w1 ¼ 0 at x ¼ 0;1
w1;xx

� Kcw2;x ¼ 0 at x ¼ 0;1
w2;xx

¼ 0 at x ¼ 0;1
w2ð0Þ ¼ w2ð1Þ

ð27Þ

where (5) has been used for the second relation. Accordingly, we
write

w1 ¼
X1
n¼1

An
/nðxÞ
k/nðxÞk

; w2 ¼ B1 þ
X1
n¼3

Bn
UnðxÞ
kUnðxÞk

/1 ¼ xðx� 1Þðx2 � x� 1Þ; /2 ¼ xðx� 1Þðxþ 2Þð3x2 � 2x� 4Þ
/n ¼ Un ¼ ðx� 1Þ3xn; n P 3

ð28Þ

An equilibrium solution is stable if the second variation is posi-
tive for any A1, A2, An, B1, Bn (n = 3, 4, 5, ..). After some mathematical
manipulations, one can write the second variation in the following
form:

dð2ÞF ¼ Gij v i v j; ð29Þ

where summation convention is used, vi are the components of the
vector of coefficients vi = (A1, A2, A3, B3, A4, B4, . . .)T, and G is a sym-
metric matrix. Thus, an equilibrium configuration is stable, if G is
positive definite. In what follows, all numerical examples involve
stable solutions. Further details are provided in Appendix A.

3. Numerical examples

In this Section, we present numerical examples which illustrate
the fundamental differences between the mechanical response of
beams made of BM compared to ‘‘standard’’ engineering materials.
Further, we demonstrate the potential for various engineering
applications manifested by these differences. All examples below
use the following non-dimensional quantities, in accordance with
experimental reports and common experimental set-ups (Baum-
gart et al., 2005; Boal, 2002; Seifert et al., 1991):

k 	 10�19 J; kc 	 10�21 J; Kc ¼ 1 lm�1; mI ¼ 0:5; L ¼ 1 lm;

ð30Þ
Although in certain systems the dependence of the bending
modulus on composition may play an important role (Sorre et al.,
2009; Tian et al., 2009), it is usually weaker compared to that of
the spontaneous curvature (Seifert, 1997; Sprong et al., 2001).
Thus, in the examples below, we neglect the dependence of the
bending stiffness with composition and focus our attention to the
shape-composition coupling through the spontaneous curvature.
In addition, for specificity, we assume a simple model for f(c) which
combines aggregation enthalpy and the entropy of mixing:

f ðcÞ ¼ kB
�Tq0ðc ln c þ ð1� cÞ lnð1� cÞÞ þ 1

2
Bq0cð1� cÞ; ð31Þ

so that it is convex at high temperatures (miscible) but non-convex
at low temperatures (immiscible). Above, kB is Boltzmann constant,
and �T is temperature, and q0 is the density (number of molecules
per unit area of the BM). It turns out that the critical temperature,
T0 ¼ B

4kB
, is typically close to room-temperature (Veksler and Gov,

2007). Therefore, we rewrite equation (31):

f ðcÞ ¼ kBT0q0ðTðc ln c þ ð1� cÞ lnð1� cÞÞ þ 2cð1� cÞÞ; ð32Þ

where T ¼ �T=T0 is a non-dimensional temperature, and

T0 ¼ 297
 K; q0 ¼ 104 lm�2: ð33Þ

In addition, we consider the following relation for the spontane-
ous curvature (5):

H0ðcÞ ¼ Kcðc �mIÞ; ð34Þ

which means with no external load (q0 = 0), the beam is straight and
has a uniform composition c(x) = mI.

Fig. 3 Illustrates the equilibrium configuration of a beam sub-
jected to a uniform load, q0 = 10 (non-dimensional), directed up-
ward, at a temperature just above T0. At this temperature the
interaction function is f(c) is convex with a single well at c = 0.5.
Therefore, the composition of the beam tends to be uniform with
a value of c = 0.5. Nevertheless, the composition is not uniform.
This is a direct consequence of the coupling between shape and
composition through H0(c), and exemplifies the fundamental dif-
ference between the BM and a standard Cahn–Hilliard system.

Note that even though the variation of composition along the
beam is small, it has a significant impact on the beam deflection.
Specifically, the 4% dispersion in c leads to a 30% increase in the
mid-span deflection compared to the deflection of a standard beam
(with constant composition). This implies that BM beams can be
‘‘designed’’ to amplify deflections, which in turn may be exploited
for actuation. As temperature is reduced below the critical temper-
ature, the two phases of the BM become less miscible, and tend to
form regions with concentrations associated with the two energy
wells of f(c), see Fig. 4a. Note the impressive effect that
temperature has on the beam deflection (through composition),
as illustrated in Fig. 4b. Also, the significant effect of temperature
on composition make the BM beam an excellent candidate for
non-invasive temperature sensing applications. The two types of
domains, each associated with a different energy well of f(c), are
separated by continuous ‘‘transition’’ zones - the width of which
is controlled by kc (the gradient term in the energy functional).
Fig. 5 illustrates a non-intuitive equilibrium configuration for the
same BM at 14 �C below T0, and a smaller value of kc,
kc = 5 � 10�22 J. Here, smaller domains form, each with a distinc-
tive composition that is close to a complete separation of the
two phases. Consequently, the coupling between shape and com-
position leads to a non-standard wiggly deflection. Another
intriguing behavior of the BM beam is exemplified in Fig. 6 which
shows the equilibrium configuration of the same beam from Fig. 5
but with an opposite direction of the external load (same magni-
tude). Here, contrary to the standard beam, an opposite external
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Fig. 5. Equilibrium configuration of a beam subjected to a uniform load, q0 = 10,
directed upward, at a temperature of 10 �C, and with kc = 5e�22 J. (a) The deflection
of a beam made of BM material (solid line) compared to the deflection expected by a
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Beam configuration – the shape of the curve corresponds to the beam deflection,
while the color map illustrates composition.
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load does not invert the beam deflection. Moreover, certain parts of
the beam experience deflection that is opposite to the direction of
the external load.

The effect of external load is further studied in Fig. 7 which
shows the maximum upward deflection as a function of q0. The
Fig. 4. The effect of temperature on the beam composition and shape. (a) Maximum value
1, 10, 24 �C. (b) Maximum deflection of the beam as a function of temperature. Insets s
kink in the plot corresponds to the load for which the mid-span
deflection is equal to the deflection of the incidental regions at
the sides (see second inset from the right). Interestingly, it turns
out that the level of external load associated with this kink is very
of c as function of temperature. Insets show the distribution of c along the beam for
how w(x) for two different 10, 30 �C.
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Fig. 7. The effect of the external load on the beam deflection is significantly
different from the standard beam. The solids line show the maximal deflection of
the beam (upwards) as a function of q0. Insets show w(x) for four different values of
q0.
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sensitive to the value of kc. Since measuring the value of kc is a
complicated task, Fig. 7 suggests an interesting alternative which
enables an indirect measurement of kc.
4. Summary and conclusions

We have studied a simply supported beam made of a BM-like
material comprised from two components. These can represent
two different lipid phases (e.g., liquid ordered and liquid disordered
phases), two different types of lipid molecules, or mobile mem-
brane proteins embedded in a lipid phase. Equilibrium equations
were obtained by calculating the first variation of a generalized
Helfrich energy functional subjected to an overall composition con-
straint. Further, stability of equilibrium configurations was exam-
ined by means of the second variation of the energy functional.
We have demonstrated a rich behavior characterized by a vari-
ety of non-intuitive equilibrium configurations. Importantly, the
coupling between shape and composition make the BM behavior
fundamentally different from standard beams and also from stan-
dard Cahn–Hilliard systems. The current analysis is limited to
small deformations. Extending the current work to account for
large deformations is a natural generalization, which will enable
us to study the behavior of the structure when subjected to high
loads (or osmotic pressure). Obviously, this will result in additional
complexity due to geometrical non-linearity.

Our study suggests that BM beams have an interesting potential
for sensing and actuation. In particular, local temperature can be
measured by means of a simple fluorescence microscopy setup
which can be used to measure fluorescence (intensity) of either
or both phases. Also, the amplified deflections of the BM can be
‘‘designed’’ for various types of actuation. Such BM applications
have inherent advantages which stem from the fact that they are
naturally produced by (and exist in) cells. Specifically, the BM is
biologically compatible, and attributed to its small size it can pro-
vide local sensing and sensitive actuation. Further, current technol-
ogy enables the design and ‘‘production’’ of artificially made BMs.
In addition, the huge variety of different BMs which were opti-
mized by evolution to carry various functions holds a promise for
a wide range of possibilities and applications.

Finally, we emphasize that although our study suggests that
BMs have the potential to be exploited as smart (biological) mate-
rials in engineering applications, such as sensing and actuation, our
work is merely theoretical. Whether BMs can practically be used in
the way proposed here is an open question. We hope that our re-
sults will stimulate such experimental study and motivate further
research in this direction.
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Appendix A. The matrix G

After plugging w1 and w2 in the form of (28) into the second
variation (23)–(26), we conclude with

dð2ÞF ¼ Gij v i v j; ð35Þ

where summation convention is used, vi are the components of the
vector of coefficients vi = (A1, A2, A3, B3, A4, B4, . . .)T, and G is a sym-
metric matrix. The matrix G takes the following form (aibj does
not mean multiplication of ai with bj, but is used for association
with the corresponding components the vector v):

Gij ¼

a1a1 a1a2 a1a3 a1b3 a1a4 a1b4 � � �

a2a2 a2a3 a2b3 a2a4 a2b4 � � �

a3a3 a3b3 a3a4 a3b4 � � �

b3b3 b3a4 b3b4 � � �

sym a4a4 a4b4 � � �

b4b4 � � �

� � �

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

; ð36Þ

where

a1a1 ¼
12
5

k

b3 ; a1a2 ¼
1
2

204
5

k

b3 ; a2a2 ¼
6144

35
k

b3 ð37Þ

and



2624 L. Atia, S. Givli / International Journal of Solids and Structures 49 (2012) 2617–2624
a1an ¼
1
2

�144k

ðnþ 4Þðnþ 3Þðnþ 2Þðnþ 1Þb3 ;

a1bn ¼
1
2

�72ð�3þ nÞkKc

ðnþ 5Þðnþ 4Þðnþ 3Þðnþ 2Þðnþ 1Þb2 ð38Þ

a2an ¼
1
2

�576ð5þ 4nÞk
ðnþ 5Þðnþ 4Þðnþ 3Þðnþ 2Þðnþ 1Þb3 ;

a2bn ¼
1
2

�72ð�7nþ 11n2 � 138ÞkKc

ðnþ 6Þðnþ 5Þðnþ 4Þðnþ 3Þðnþ 2Þðnþ 1Þb2 ð39Þ

aman

¼1
2

�144ðm2�3mnþ1þn2Þnmk

ðmþ3þnÞðmþ2þnÞðmþ1þnÞðmþnÞðm�1þnÞðm�2þnÞðm�3þnÞb3 ;

ambn¼
1
2

36ðm�nÞðm2�8mn�3mþ2þn2�3nÞkKc

ðmþ4þnÞðmþ3þnÞðmþ2þnÞðmþ1þnÞðmþnÞðm�1þnÞðm�2þnÞb2

bmbn ¼
1
2

�144nmKgðm2�3mnþ1þn2Þ
ðmþ3þnÞðmþ2þnÞðmþ1þnÞðmþnÞðm�1þnÞðm�2þnÞðm�3þnÞb3

þ �144kKc2ðm2þn2�m�n�3mnÞ
bðmþ5þnÞðmþ4þnÞðmþ3þnÞðmþ2þnÞðmþ1þnÞðmþnÞðm�1þnÞ

þ
R b

0 f 00ðxb Þ
mðxbÞ

nð�xþbÞ4ðnb�nx�3xÞðbm�3x�mxÞb�6x�2dx

0
BBB@

1
CCCA

ð40Þ

For n, m = 3, 4, 5, . . .
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