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Abstract

We study the possible strictly equivalence classes of a pencil when a regular subpencil

is prescribed. We also study the possible invariant polynomials and the possible char-

acteristic polynomials of A� BY � XC � XDY when X and Y vary. Ó 1999 Elsevier

Science Inc. All rights reserved.

1. Introduction

Throughout this paper F denotes an in®nite ®eld.
In [3], a necessary and su�cient condition for the existence of a regular

pencil with prescribed Kronecker invariants and a prescribed subpencil was
given. It was also given a necessary and su�cient condition for the existence of
a square constant matrix with prescribed similarity invariants and a prescribed
arbitrary submatrix. These results are reproduced in the next two theorems. In
[1], the problem of embedding a regular subpencil into a regular pencil was
solved, generalizing the well-known S�a-Thompson's interlacing theorem [4,8].
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In this paper, we give a necessary and su�cient condition for the existence of
a matrix pencil (not necessarily regular) with prescribed Kronecker invariants
and a prescribed regular subpencil. See also [10].

As a consequence, we describe all the possible invariant polynomials of
A� BX � YC � YDX when X and Y vary. This problem had been solved for
C � 0 and D � 0 in [11] and for D � 0 in [7]. When B � 0 and C � 0, this result
describes the possible invariant polynomials of A� Z when Z varies and
rank Z6D (cf. [5,6]).

The problem of giving a necessary and su�cient condition for the existence
of a matrix pencil with prescribed Kronecker invariants and a prescribed ar-
bitrary subpencil remains open and seems to be a very di�cult one. Note that
theorems giving necessary and su�cient conditions for the existence of con-
stant matrices with prescribed feedback equivalence invariants and a pre-
scribed submatrix are particular solutions of this general problem.

Given a polynomial f, d�f � denotes its degree.
Let C�x� 2 F �x�n�h

be a matrix pencil, a1�x; y� j � � � j aw�x; y� its homogeneous
invariant factors, k1 P � � � P knÿw its row minimal indices, t1 P � � � P thÿw its
column minimal indices and � � t1 � � � � � thÿw.

Theorem 1 [3]. Let D�x� 2 F m�m be a regular pencil, with n; h6m. Let
c1�x; y� j � � � j cm�x; y� be its homogeneous invariant factors. The following con-
ditions are equivalent:
�a1� There exists a pencil E�x� strictly equivalent to D�x�containing C�x� as a

subpencil.
�b1� There exist nonzero polynomials d1 j � � � j dn such that the following con

ditions hold:
�i1� lcm�aiÿn�w; ci� j di j gcd�ai; ci�2mÿ2n�wÿh�; i 2 f1; . . . ; ng:
�ii1� �k1 � 1; . . . ; knÿw � 1� � �d�rnÿw� ÿ d�rnÿwÿ1�; . . . ; d�r1� ÿ d�r0��,

where rj � rj
1 � � � rj

w�jÿ� and rj
i � lcm�aiÿj��; di���; j 2 f0; . . . ;

nÿ wg, i 2 f1; . . . ;w� jÿ �g.
�iii1� n � hÿ w P d�ghÿw� and �t1 � 1; . . . ; thÿw � 1� � �n� h ÿ wÿ d

�ghÿwÿ1�; d�ghÿwÿ1� ÿd�ghÿwÿ2�; . . . ; d�g1� ÿ d�g0��, where gj � gj
1

� � � gj
n�j and gj

i � lcm�diÿj; ci�; j 2 f0; . . . ; hÿ wg, i 2 f1; . . . ; n� jg.

Convention. In the previous statement, we are making convention that,
whenever a chain of polynomials b1 j � � � j bl is given, and bi; i 62 f1; . . . ; lg;
is not explicitly de®ned, then bi � 1 for i6 0 and bi � 0 for i > l. The
symbol � means majorization. We are also assuming that if nÿ w � 0 then
�ii1� is true and if hÿ w � 0 then �iii1� is true and � � 0. This convention,
with the adequate changes, applies throughout the paper in analogous sit-
uations.
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Now assume that

C�x� � ÿA1;2 ÿ A1;3

xIq ÿ A2;2 ÿ A2;3

� �
2 F �x�n�h

; �1�

where A1;2;A1;3;A2;2;A2;3 have their entries in F ; and that n � p � q, h � q� u,
m � p � q� u� v, where all the letters denote nonnegative integers.

Theorem 2 [3]. Let B 2 F m�m and let c1�x; y� j � � � j cm�x; y� be the homogeneous
invariant factors of xIm ÿ B. The following condition is equivalent to �b1�:
�a2� There exist matrices A1;1�2 F p�p�, A1;4, A2;1, A2;4, A3;1, A3;2, A3;3, A3;4, A4;1,

A4;2, A4;3, A4;4, with entries in F, such that

A � Ai;j

� � 2 F m�m �i; j 2 f1; 2; 3; 4g� �2�
is similar to B.

For notational convenience, denote the condition �b1� by

� �c; a; k; t� � � �c1; . . . ; cm; a1; . . . ; aw; k1; . . . ; knÿw; t1; . . . ; thÿw�:
With every monic polynomial

f �x� � xn � anÿ1xnÿ1 � � � � � a1x� a0 2 F �x�;
associate the homogeneous polynomial

~f �x; y� � xn � anÿ1xnÿ1y � � � � � a1xynÿ1 � a0yn 2 F �x; y�:
Note that every nonzero homogeneous polynomial h�x; y� has a unique

factorization of the form ayr ~f , where a 2 F n f0g, r is a nonnegative integer
and f 2 F �x� is a monic polynomial. Also note that efg � ~f ~g and f j g if and
only if ~f j ~g, for every monic polynomials f ; g 2 F �x�. Let T be the set of all the
polynomials of the form yr ~f . Throughout this paper, we assume that homo-
geneous invariant factors of matrix pencils and gcd and lcm of homogeneous
polynomials (in F �x; y�) belong to T.

2. Embedding a regular subpencil into a general linear pencil

Theorem 3 [7]. Let A;A0 2 F m�m, B 2 F m�r, C 2 F s�m. Let f1�x; y� j � � � j fw�x; y�
be the homogeneous invariant factors, k1 P � � � P km�sÿw the row minimal indices
and t1 P � � � P tm�rÿw the column minimal indices of

xIm ÿ A ÿ B
ÿC 0

� �
: �3�
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Let c1�x; y� j � � � j cm�x; y� be the homogeneous invariant factors of xIm ÿ A0. Let

ai � fi

gcd�fi; y2� ; i 2 f1; . . . ;wg:

Let v � wÿ m; the number of infinite elementary divisors of (3). Let
u � rank Bÿ v, p � rank C ÿ v. Then there exist B0 2 F m�r, C0 2 F s�m such that

xIm ÿ A0 ÿ B0

ÿC0 0

� �
and

xIm ÿ A ÿ B
ÿC 0

� �
are strictly equivalent if and only if
�b3� � �c1; . . . ; cm; ap�u�2v�1; . . . ; aw; k1 ÿ 1; . . . ; kp ÿ 1; t1 ÿ 1; . . . ; tu ÿ 1�:

Note that all the in®nite elementary divisors of (3) have degree P 2, u is the
number of nonzero column minimal indices and p is the number of nonzero
row minimal indices of (3).

The particular case of Theorem 3 where (3) does not have in®nite elementary
divisors is a lemma for the proof of the main result in this section. Note that, in
this case, w � m; ai � fi; i 2 f1; . . . ;mg; p � rank C; u � rank B; and the
condition �b3� takes the form:

�b03� There exist nonzero polynomials d1 j � � � j dmÿu such that the following
conditions hold:
�i3� lcm�ai�u; ci� j di j gcd�ai�p�u; ci�u�; i 2 f1; . . . ;mÿ ug:
�ii3� �k1; . . . ; kp� � �d�rp� ÿ d�rpÿ1�; . . . ; d�r1� ÿ d�r0��, where rj � rj

1 � � �
rj

mÿp�jÿ� and rj
i � lcm�aiÿj���p; di��ÿu�; j 2 f0; . . . ; pg, i 2 f1; . . . ;

mÿ p � jÿ �g, � � t1 � � � � � tu.
�iii3� m P d�gu� and �t1; . . . ; tu� � �mÿ d�guÿ1�; d�guÿ1� ÿ d�guÿ2�; . . . ;

d�g1� ÿ d�g0��, where gj � gj
1 � � � gj

mÿu�j and gj
i � lcm�diÿj; ci�;

j 2 f0; . . . ; ug, i 2 f1; . . . ;mÿ u� jg.

Theorem 4. Let A1;1 2 F h�h and b1 j � � � j bh be the homogeneous invariant fac-
tors of xIh ÿ A1;1. Let A 2 F m�m; B 2 F m�r; C 2 F s�m; m P h. Suppose that �3�
does not have infinite elementary divisors. Let a1 j � � � j am be the homogeneous
invariant factors, k1 P � � � P ks be the row minimal indices, t1 P � � � P tr be the
column minimal indices of �3�. Let � � t1 � � � � � tr; p � rank C; u � rank B.
The following conditions are equivalent:
�a4� There exist matrices A1;2, A1;3; A2;1; A2;2; A2;3; A3;1 and A3;2; with entries in F ;

such that

xIh ÿ A1;1 ÿA1;2 ÿ A1;3

ÿA2;1 xImÿh ÿ A2;2 ÿ A2;3

ÿA3;1 ÿA3;2 0

24 35 �4�
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and (3) are strictly equivalent.
�b4� There exist nonzero polynomials d1 j � � � j dmÿu such that the following con

ditions hold:
�i4� lcm�ai�u; biÿ2m�2h� j di j gcd�ai�p�u; bi�u�; i 2 f1; . . . ;mÿ ug:
�ii4� �k1; . . . ; kp� � �d�rp� ÿ d�rpÿ1�; . . . ; d�r1� ÿ d�r0��, where rj � rj

1 � � �
rj

mÿp�jÿ� and rj
i � lcm�aiÿj���p; di��ÿu�; j 2 f0; . . . ; pg, i 2 f1; . . . ;

mÿ p � jÿ �g, � � t1 � � � � � tu.
�iii4� m P d�gu� and �t1; . . . ; tu� � �mÿ d�guÿ1�; d�guÿ1� ÿ d�guÿ2�; . . . ;

d�g1� ÿ d�g0��, where gj � gj
1 � � � gj

mÿu�j and gj
i � lcm�diÿj;

biÿ2m�2h�; j 2 f0; . . . ; ug, i 2 f1; . . . ;mÿ u� jg.

Proof. Necessary condition. Suppose that the matrices (3) and (4) are strictly
equivalent. Let c1 j � � � j cm be the homogeneous invariant factors of

xIm ÿ A1;1 A1;2

A2;1 A2;2

� �
: �5�

According to Theorem 3, the condition �b03� is satis®ed. It follows from the
S�a-Thompson's interlacing theorem [4,8] that (also see [1])

ci j bi; i 2 f1; . . . ; hg; �6�
bi j ci�2mÿ2h; i 2 f1; . . . ; 2hÿ mg: �7�

Then �i4� follows from �i3�; (6) and (7). Note that the conditions �ii4� and
�ii3� coincide. Let us prove �iii4�. Let g0ji � lcm�diÿj; ci�, g0j � g0j1 � � � g0jmÿu�j,
j 2 f0; . . . ; ug, i 2 f1; . . . ;mÿ u� jg. As in [4 Proposition 4.1], it can be shown
that the sequence �g0u; . . . ; g00� has a convex degree function, that is

d�g0j�1� ÿ d�g0j�P d�g0j� ÿ d�g0jÿ1�; j 2 f1; . . . ; uÿ 1g:
From (6) and (7) it follows that d�g0j�P d�gj�, j 2 f0; . . . ; ug. Also note that
g00 � g0 � d1 � � � dmÿu. Then �iii4� follows from �iii3�.

Su�cient condition. Suppose that �b4� is satis®ed. For h � m the theorem
had already been proved. Suppose now that h < m.

As the divisors of homogeneous polynomials are homogeneous, di is ho-
mogeneous, for every i6 maxfmÿ p ÿ u; hÿ ug. As the pencils xIh ÿ A1;1 and
(3) do not have in®nite elementary divisors, y does not divide bham. Therefore y
does not divide di, for every i6 maxfmÿ p ÿ u; hÿ ug.

For i > maxfmÿ p ÿ u; hÿ ug, we assume, without loss of generality, that
di is homogeneous and is not a multiple of y. Otherwise, suppose that di � li

~hi,
where li does not have homogeneous divisors di�erent from y. Note that
gcd�li; ambh� � 1. As F is in®nite, one can choose a 2 F such that
gcd�xÿ ay; ambh� � 1. Then the conditions that result from �i4�, �ii4�, �iii4� on
replacing di by d�i � �xÿ ay�d�li�~hi, i > maxfmÿ p ÿ u; hÿ ug, are satis®ed.
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Let

ci � lcm�diÿu; biÿ2m�2h�; i 2 f1; . . . ;mÿ 1g; �8�
cm � lcm�dmÿu; b2hÿm�~v; �9�

where v 2 F �x� is a monic polynomial such that d�v� � mÿ d�gu�. From the
previous remarks it follows that the polynomials c1; . . . ; cm are homogeneous
and are not multiples of y. Therefore ci � ~si, for some monic polynomial si,
i 2 f1; . . . ;mg. Analogously, bi � ~gi, i 2 f1; . . . ; hg, where g1 j � � � j gh are the
(nonhomogeneous) invariant factors of xIh ÿ A1;1.

From �i4�; (8) and (9) it follows that (6) and (7) are satis®ed. Consequently,

si j gi; i 2 f1; . . . ; hg;
gi j si�2mÿ2h; i 2 f1; . . . ; 2hÿ mg:

According to the S�a-Thompson's interlacing theorem [4,8], there exist matrices
A1;2, A2;1 and A2;2 such that (5) has invariant factors s1 j � � � j sm.

From �i4�; (8) and (9) it also follows that �i3� is satis®ed. (Note that if u � 0
then all the column minimal indices of (3) are zero and � � 0. Then, from �ii4�,
it follows that k1 � � � � � kp � d�d1 � � � dm� ÿ d�a1 � � � am�. As (3) does not have
in®nite elementary divisors, k1 � � � � � kp � d�a1 � � � am� � m. Therefore
d�g0� � d�d1 � � � dm� � m and v � 1.)

From �i4� and the de®nition of ci it follows that, for every j 2 f0; . . . ; ug,
i 2 f1; . . . ;mÿ u� jg, with i 6� m,

lcm�diÿj; biÿ2m�2h� � lcm�diÿj; ci�;
while

lcm�dmÿu; b2hÿm�~v � lcm�dmÿu; cm�:

Therefore

d
Ym

i�1

lcm�diÿu; ci�
 !

� m

and �iii3� follows from �iii4�.
As conditions �ii3� and �ii4� coincide, �b03� is satis®ed. According to Theorem

3, there exist matrices A1;3;A2;3;A3;1;A3;2 such that (3) and (4) are strictly
equivalent. �

The following two lemmas are easy to prove.

Lemma 5. Let S�x�, S0�x�, D�x� be matrix pencils, with S�x� strictly equivalent to
S0�x�.
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There exists a pencil E�x� strictly equivalent to D�x� containing S�x� as a
subpencil if and only if there exists a pencil E0�x� strictly equivalent to D�x�
containing S0�x� as a subpencil.

Lemma 6. Let A1;1 2 F h�h, let D�x� be a matrix pencil without infinite elementary
divisors and rank D�x� � m P h. Then:
�a6� D�x� is strictly equivalent to a pencil of the form (3).
�b6� There exists a pencil E�x� strictly equivalent to D�x� containing xIh ÿ A1;1 as

a subpencil if and only if there exist matrices A1;2;A1;3;A2;1; A2;2;A2;3;A3;1

and A3;2; with entries in F ; such that (4) and D�x� are strictly equivalent.

Let

X � a b
c d

� �
2 F 2�2

be a nonsingular matrix. If xA� B is a pencil, where A;B have entries in F ; then

PX �xA� B� � x�aA� cB� � �bA� dB�:
If f �x; y� 2 F �x; y�, then

PX �f � � f �xa� yb; xc� yd�:
The transformations PX and PX were introduced in [2]. The following lemmas
are easy to prove. For details, see [2].

Lemma 7. �a7� PX is invertible and �PX �ÿ1 � PXÿ1 .

�b7� Two pencils D�x� and E�x� are strictly equivalent if and only if PX �D� and
PX �E� are strictly equivalent.

�c7� Given two pencils, D�x� and S�x�, there exists a pencil E�x� strictly equivalent
to D�x� containing S�x� as a subpencil if and only if there exists a pencil E0�x�
strictly equivalent to PX �D� containing PX �S� as a subpencil.

Lemma 8. �a8� PX is invertible and �PX �ÿ1 � PXÿ1 .

�b8� PX �fg� � PX �f �PX �g�, for every f ; g 2 F �x; y�.
�c8� d�PX �f �� � d�f �, for every f 2 F �x; y�.

Theorem 9. Let D�x� be an m0 � n0 matrix pencil, a1 j � � � j aw its homogeneous
invariant factors, k1 P � � � P km0ÿw its row minimal indices and t1 P � � � P tn0ÿw

its column minimal indices. Let u be the number of nonzero column minimal in-
dices and p be the number of nonzero row minimal indices of D�x�. Let
S�x� 2 F h�h; h6w; be a regular pencil and b1 j � � � j bh be its homogeneous in-
variant factors. The following conditions are equivalent:
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�a9� There exists a pencil E�x� strictly equivalent to D�x� containing S�x� as a
subpencil.

�b9� There exist nonzero polynomials d1 j � � � j dwÿu such that the following con-
ditions hold:
�i9� lcm�ai�u; biÿ2w�2h� j di j gcd�ai�p�u; bi�u�; i 2 f1; . . . ;wÿ ug:
�ii9� �k1; . . . ; kp� � �d�rp� ÿ d�rpÿ1�; . . . ; d�r1� ÿ d�r0��, where rj � rj

1 � � �
rj

wÿp�jÿ� and rj
i � lcm�aiÿj���p; di��ÿu�; j 2 f0; . . . ; pg, i 2 f1; . . . ;

wÿ p � jÿ �g, � � t1 � � � � � tu.
�iii9� w P d�gu� and �t1; . . . ; tu� � �wÿ d�guÿ1�; d�guÿ1� ÿ d�guÿ2�; . . . ;

d�g1� ÿ d�g0��, where gj � gj
1 � � � gj

wÿu�j and gj
i � lcm�diÿj; biÿ2w�2h�;

j 2 f0; . . . ; ug, i 2 f1; . . . ;wÿ u� jg.

Proof. Case 1. Suppose that D�x� and S�x� do not have in®nite elementary
divisors. According to Lemma 6, D�x� is strictly equivalent to a pencil of the
form (3), where m � w, and S�x� is strictly equivalent to a pencil of the form
xIh ÿ A1;1; with A1;1 2 F h�h. The proof is a simple consequence of Lemmas 5, 6
and Theorem 4.

Case 2. Now consider the general case. As F is in®nite, one can choose a
nonsingular matrix X 2 F 2�2 such that y does not divide PX �aw�PX �bh�.

According to [2, Lemma 10], PX �a1� j � � � j PX �aw� and PX �b1� j � � � j PX �bh�
are the homogeneous invariant factors of PX �D� and PX �S�; respectively, while
the minimal indices of PX �D� and PX �S� coincide with the minimal indices of D
and S, respectively. Bearing in mind the choice of X, PX �D� and PX �S� do not
have in®nite elementary divisors.

From Lemma 8, it follows that �b9� is equivalent to the condition �b09� that
results from it on replacing the polynomials ai, bi, di by PX �ai�, PX �bi�, PX �di�,
respectively.

According to Case 1, �b09� is satis®ed if and only if there exists a pencil E0�x�
strictly equivalent to PX �D� containing PX �S� as a subpencil. According to
Lemma 7, this last statement is equivalent to �a9�. �

3. The similarity class and the characteristic polynomial

of A� BY � XC � XDY

Theorem 10. Let A;A0 2 F m�m; B 2 F m�r; C 2 F s�m and D 2 F s�r. Let
b1 j � � � j bm be the homogeneous invariant factors of xIm ÿ A0. Let a1 j � � � j aw be
the homogeneous invariant factors, k1 P � � � P km�sÿw be the row minimal indices
and t1 P � � � P tm�rÿw be the column minimal indices of

xIm ÿ A ÿ B
ÿC ÿ D

� �
: �10�
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Let u be the number of nonzero column minimal indices and p be the number of
nonzero row minimal indices of (10). The following conditions are equivalent:
�a10� There exist X 2 F m�s; Y 2 F r�m such that A� BY � XC � XDY is similar to

A0.
�b10� There exist B0 2 F m�r; C0 2 F s�m and D0 2 F s�r such that the matrices (10)

and

xIm ÿ A0 ÿ B0

ÿC0 ÿ D0

� �
�11�

are strictly equivalent.
�c10� There exist nonzero polynomials d1 j � � � j dwÿu such that the following

conditions hold:
�i10� lcm�ai�u; biÿ2w�2m� j di j gcd�ai�p�u; bi�u�; i 2 f1; . . . ;wÿ ug:
�ii10� �k1; . . . ; kp�� �d�rp�ÿd�rpÿ1�; . . . ; d�r1�ÿ d�r0��; where rj � rj

1 � � �
rj

wÿp�jÿ� and rj
i � lcm�aiÿj���p; di��ÿu�; j 2 f0; . . . ; pg; i 2 f1; . . . ;

wÿ p �jÿ �g; � � t1 � � � � � tu:
�iii10� w P d�gu� and �t1; . . . ; tu� � �wÿ d�guÿ1�; d�guÿ1� ÿ d�guÿ2�; . . . ;

d�g1� ÿ d�g0��, where gj � gj
1 � � � gj

wÿu�j and gj
i � lcm�diÿj;

biÿ2w�2m�; j 2 f0; . . . ; ug, i 2 f1; . . . ;wÿ u� jg.

Proof. �a10� implies �b10�. Suppose that �a10� is satis®ed. Let N 2 F m�m be a
nonsingular matrix such that A0 � N�A� BY � XC � XDY �Nÿ1. Then (10) is
strictly equivalent to

N NX
0 Is

� �
xIm ÿ A ÿ B
ÿC ÿ D

� �
Nÿ1 0

YNÿ1 Is

� �
;

which has the prescribed form.
�b10� implies �a10�. Suppose that (10) and (11) are strictly equivalent. Then

there exist P 2 F m�m;R 2 F m�s; S 2 F s�s;Q 2 F r�m;U 2 F r�r such that P ; S; U
are nonsingular and

xIm ÿ A0 ÿ B0

ÿC0 ÿ D0

� �
� P R

0 S

� �
xIm ÿ A ÿ B
ÿC ÿ D

� �
Pÿ1 0
Q U

� �
:

Then A0 � P�A� Pÿ1RC � BQP � Pÿ1RDQP �Pÿ1:
It follows immediately from Theorem 9 that �b10� implies �c10�.
�c10� implies �b10�. According to Theorem 9, there exists a pencil of the form

xIm ÿ A0 B0�x�
C0�x� D0�x�

� �
�12�

strictly equivalent to (10). As the coe�cient of x in (12) has rank equal to m, it
is not hard to deduce that B0;C0;D0 may be taken constant. �
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Theorem 11. Let f be a monic polynomial of degree m. Let A 2 F m�m; B 2 F m�r;
C 2 F s�m and D 2 F s�r. Let s1 j � � � j sw be the nonhomogeneous invariant factors
of (10). The following conditions are equivalent:
�a11� There exist X 2 F m�s; Y 2 F r�m such that A� BY � XC � XDY has charac-

teristic polynomial f.
�b11� There exist A0 2 F m�m; B0 2 F m�r; C0 2 F s�m and D0 2 F s�r such that A0 has

characteristic polynomial f and the matrices (10) and (11) are strictly
equivalent.

�c11� The following conditions hold:
�i11� s1 � � � sm j f .
�ii11� If w � m; then there exists g 2 F �x� such that s1 � � � smg j f and

d�s1 � � � smg� � mÿ �; where � is the sum of the column minimal
indices of (10).

Proof. The equivalence between �a11� and �b11� can be proved with arguments
analogous to the ones used to prove that �a10� and �b10� are equivalent.

�b11� implies �c11�. Use the notation of Theorem10. According to that
theorem, �c10� is satis®ed. Note that ~si j ai; i 2 f1; . . . ;wg. From �i10� it follows
that gs1 � � � sm j a1 � � � am j d1 � � � dmÿu j bu�1 � � � bm j ~f : �13�
Then s1 � � � sm j f .

Now suppose that w�m. From (13) it follows that d1 � � � dmÿu is a polyno-
mial of the form a~h; where a is a nonzero constant and h 2 F �x� is a monic
polynomial. Therefore h � s1 � � � smg j f ; for some g 2 F �x�. From �iii10� it fol-
lows that mÿ � � d�g0� � d�d1 � � � dmÿu� � d�h�.
�c11� implies �b11�. Use the notation of Theorem 10 for the Kronecker in-

variants of (10). Let A0 2 F m�m be a matrix such that xIm ÿ A0 has homogeneous
invariant factors b1 j � � � j bm, where

bi � ai; i 2 f1; . . . ;mÿ 1g;

bm �
~f

a1 � � � amÿ1

:

Note that ai � ~si for i 2 f1; . . . ;mg. Let

di � ai�u; i 2 f1; . . . ;wÿ uÿ 1g;
dwÿu � aw~v;

where v 2 F �x� is a monic polynomial of degree k1 � � � � � kp and v � g if
w � m.

It is not hard to see that the conditions �i10�, �ii10� and �iii10� are satis®ed.
According to Theorem 10, �b10� is also satis®ed. Hence �b11� holds. �

The next theorem can be proved with similar arguments.
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Theorem 12. Let f be a monic polynomial of degree m. Let A 2 F m�m; B 2 F m�r;
C 2 F s�m and D 2 F s�r. Let s1 j � � � j sw be the nonhomogeneous invariant factors
of (10). The following conditions are equivalent :

�a12� There exist X 2 F m�s; Y 2 F r�m such that A� BY � XC � XDY is nonde
rogatory and has characteristic polynomial f.

�b12� There exist A0 2 F m�m; B0 2 F m�r; C0 2 F s�m and D0 2 F s�r such that A0 is
nonderogatory, has characteristic polynomial f and the matrices (10) and
(11) are strictly equivalent.

�c12� The following conditions are satisfied:
�i12� s1 � � � � � smÿ1 � 1 and sm j f .
�ii12� If w � m; then there exists g 2 F �x� such that smg j f and

d�smg� � mÿ �; where � is the sum of the column minimal indices of
(10).

Theorem 13 [5,6]. Let A;A0 2 F m�m. Let g1 j � � � j gm be the nonhomogeneous
invariant factors of xIm ÿ A. Let h1 j � � � j hm be the nonhomogeneous invariant
factors of xIm ÿ A0. The following conditions are equivalent:
�a13� There exists a matrix Z 2 F m�m such that rank Z6 t and A� Z is similar

to A0.
�b13� gi j hi�t and hi j gi�t; i 2 f1; . . . ;mÿ tg.

Proof. Consider the pencil of the form (10), where r � s � t, B � 0, C � 0 and
D � It. Then �a13� () �a10� () �c10�. In this case, p � u � 0 and �c10� takes
the form:

�c010� lcm�ai; biÿ2t� j gcd�ai; bi�; i 2 f1; . . . ;m� tg;

where

bi � ~hi; i 2 f1; . . . ;mg;
ai � 1; i 2 f1; . . . ; tg;
ai � ~giÿt; i 2 ft � 1; . . . ;mg;
ai � ~giÿty; i 2 fm� 1; . . . ;m� tg:

It is easy to see that �c010� is equivalent to �b13�. �.
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